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Abstract

Consider testing for independence against stochastic order in an ordered 2xJ contingency
table, under product multinomial sampling. In applications one may wish to exploit prior
information concerning the direction of the treatment effect, yet ultimately end up with a testing
procedure with good frequentist properties. As such, a reasonable objective may be to
simultaneously maximize power at a specified alternative and ensure reasonable power for all
other alternatives of interest. For this objective, we find that none of the available testing
approaches are completely satisfactory. We derive a new class of admissible adaptive tests, each
of which strictly preserves the Type I error rate and strikes a balance between good global power
and nearly optimal (envelope) power to detect a specific alternative of most interest. Prior
knowledge of the direction of the treatment effect, the level of confidence in this prior

information, and possibly the marginal totals might be used to select a test from this class.
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1. INTRODUCTION

When comparing two treatments on the basis of an ordered categorical variable, the data can
be summarized as a 2xJ contingency table. For example, the objective tumor response data from
35 ovarian cancer patients treated with cisplatin-based combination chemotherapy and salvage
platinum-based therapy (Chiara er al, 1993) are (4,7,2,2) and (1,6,7,6) for the patients with the
treatment-free interval < 12 months and > 12 months, respectively, where the categories are
‘progressive disease’, “stable disease’, ’partial response’, and ‘complete response’. Combining
the first two categories into a single 'non-response’ category, as is routinely done, yields counts
Ci1 =(11,2,2) and C; = (7,7,6) in the two groups. For simplicity, we treat the case J = 3, but
our results apply more generally. It is common, in practice, to dispense with the specification of
the alternative hypothesis, and proceed directly to the analysis. We prefer to match the analysis
to the alternative hypothesis. After briefly presenting notation in Section 2 (details can be found
in Berger, 1998, and Berger, Permutt, and Ivanova, 1998; henceforth BPI), we focus attention on
stochastic order as the (composite) alternative hypothesis and an appropriate formalization of the
superiority of one treatment to another (Cohen and Sackrowitz, 1998). Except for under
pathological conditions on the margins, there is no monotone likelihood ratio or uniformly most
powerful test, and there will be an entire class of admissible tests. In Section 3 we discuss linear
rank tests based on assigning scores to the outcome levels. In Section 4 we discuss nonlinear
rank tests such as the Smirnov, improved, convex hull, and COM(L) Fisher tests. In Section 5
we discuss adaptive tests. We generalize, in Section 6, the adaptive test that Berger (1998)
proposed for this problem to provide an entire class of exact, admissible, adaptive tests, each of
which strikes a balance between good global power and optimal power to detect a specific
alternative of moét ‘interest. In Section 7 we discuss using the margins to pick one test from this
class. In Section 8 we assess the exact unconditional power of several of the aforementioned

tests. In Section 9 we give some concluding remarks.



2. NOTATION AND FORMULATION

Consider product multinomial sampling, with n; and n, (each fixed by the design) patients
treated with the control and active treatments, respectively. The vectors of cell probabilities
(each summing to one) are m = (711,712,713) and m = (721,722, 23), respectively, and the
corresponding trinomial random vectors are C1 = (C11, C12,Ci3) and Cz = (Ca1,Ca2, Cy3), with
ni=Cn+Ci+Cps, i=1,2The log odds ratios are calculated from = and m as
01 = log{(mnma)/(mrumi3)}y and 02 = log{(m 12w n3)/(Tnri3)y. Let Tj = Cij+ Cy), j = 1,2,3.
As we condition on T = (T1,T,,T3), the sample space I' is the set of 2 x 3 contingency tables
with non-negative integer-valued cell counts with row totals n = (n;,n2) and column totals 7.
Given T,n, and ¢ = (C;;,C12), we can reconstruct the entire 2 x 3 contingency table as
Ciz=n1—C;1—Cyppand C, =T - Cy. Thus, we let ¢ denote a point of I'. Figure 1 displays
C1, plotted against Cy; for each of the 87 tables of I" for our example, {(11,2,2);(7,7,6)}.

[Figure 1]
Observed table (11,2) is circled. With H(¢) =n!m!/TIL I, Cyl, 0= (61,6:), n= (m,m ),
and K(T;68) =1/ 2 - H(c) expld 'c], our model follows the exponential family with density
PoLc|T}y = Po{c|Ty = K(T; 8)H(c)exp[8'c]. (2.1)

As P.{c|T} (and hence the conditional power) depends on 7z only through €(x), ¢ offers no
information with which to distinguish 7 from #~ if (x) =68(x*). The (conditional)
hypotheses must then be formulated in terms of @ to be identifiable (Berger, 1998). Because the
common null hypothesis of equality 71 = m, is equivalent to (x) =0, the (simple) null
hypothesis is H: 8=0. Let Ay =my—7mo1, and Ay = (T +7w12) — (Wa1 + T22) = T3 — T3,
We wish to test H against the one-sided alternative hypothesis that the active response

distribution is stochastically larger than the control response distribution:

H;\:Alzo,Azzo, T F M.



This would imply the superiority of the active treatment. Unfortunately, #(7z) provides
insufficient information with which to determine if 7 satisfies H;, so no conditional alternative
hypothesis is equivalent to H);. However, if 7 satisfies H), then 0(2)> 0, and if 8; > 0, then
for any 6, there exists (Berger and Sackrowitz, 1997) # satisfying H', such that 8(7) = (01,62).
As such, the treatment effect favors the active treatment whenever 6; > 0, regardless of the
value of 0, and we test H against Hy : 6; > 0. One can also test for the superiority of the
control (87 < 0). Let Qg = {810 = 0}, Qa = {06, > 0}, and Q¢ = {€|0, < 0}. The large
unconditional indifference region, where neither group stochastically dominates the other, has
been reduced by conditioning to the relatively small region Q; = {86, = 0,0, + 0}.

Let 6(8) = 1-0,/0, be the direction of the effect, with Q, = {0[|6(6) =v}. As 6,
increases in both A and A, while 8, (8, — 0,) increases in A, (A1), and decreases in A; (A2),
the superiority of the active treatment to the control is due primarily to a shift from the middle to
the best outcome (A, > Ay) if 6(8) is small, or from the worst the middle outcome (A; > A») if
6(8) is large. As 6(@) is unknown a priori, a test should be sensitive to departures from Hp in
any direction of Q4 = U,.on Q,. A necessary condition for ¢ to be such an omnibus test is that
its rejection region R, (@) contain D[I'], the set of directed extreme points of I" (BPI, 1998). For
reasonable a-levels omnibus tests exist (Sections 4 and 5.3). We exploit prior information about

0(0) to construct admissible, omnibus tests with especially good power in one direction, €2,.
3. ANEW LOOK AT LINEAR RANK TESTS

Linear rank tests are based on numerical scores (vi,v2,v3), vi < v3, assigned to the three
outcome levels. With v = (vo —v1)/(v3 — v1), @, uses test statistic z,(¢) = Ci1 +(1 -v)Cra.
Let M,(c) = {c* € T | z,(c*) = z,(c)} be the ¢, extreme region of ¢, with boundary B,(c) and
pv(c) = Po{M,(c)|T} the corresponding p-value. The level set (Frick, 2000, page 719) of z,(c)
is B,(¢) N T, with o,(c) its order (the number of points of I" on B,(c)). Forc¢ = (C11,C12) € T

and ¢* = (C},,Ch) € T —¢, z,(c*) = z,(c) if and only if v = 1 = (C11 = C7))/(CY, — Cr2), say



v=veer.  Let V()= {vi(c),vale),...,vk.(c)} be the ordered set {veer | [veer

< 0,
c¢* € ['—c}, and let vo(c) = —o and vg.1(c) = oo. For finite v, 0,(c) > 1 if and only if
v e V(c). Let &(c) = ming[viri(c) —vi(€))/2, zi(e)=Cnn+(v-1)Cn, Bi(c)=

{er € Bue)NT | zi(e™) > zi(e)}, and Bi(c) ={c* € By(c) NT | zi(e™) < zi(e)}-

Lemma 1. Letc € Iand k € {0,1,...K.}. If jvi(c) £ e(e)| < o, then vi(c) £e(c) & V).

If v e (vi(c),vis1(c)), then My(c) = M, »(c) - B;M(C)(c) =M, (c)— Bjk((,)(c).

Proof. Increasing (decreasing) v by €(c) moves B;(c) (B}(c)) into the interior of, and By (c)
(B;(c)) completely out of, the new critical region, but if v € V(¢), then no points of I' — M,(c)
are moved into the new critical region (Table 1). Hence, 0, (¢) = 0y4e()(c) = 1, and neither
vi(e) — () nor vi(c) + e(c) is in V(c). If v ¢ V(c), say vi(c) < v < viri(c), then o,(c) = 1, so

Bi(c) = B;(c) = ¥ and M,(c) will not change when v varies within (vi(c),vi1(c)). o

Let  prinn(©) = pu(e) ~max(Po{Bi (@)}, Po{Bi(c)}) = min(limy pu(e),lims pu(c)).
Lemma 1 implies that pminpy(€) = MIn{p,—¢()(€), Prss(y(€)} is an actual p-value. As such, if
vevi(c) = {v* | pw(c) < pile) for all v}, then py+(¢) < pmineyy(c) for all v. As the number of
sets M,(c) is finite, the minimum p-value is attained, and v*(c) # 0. If v € V(c), then
ov(¢) > 1, By () UB(c) = 0, pminw(c) < pv(e), and v & v*(c). Hence, v*(c) N V(c) = 0, and
if ve vi(c), thenv ¢ V(c), say v € (vi(c),vis1(c)) for some k. By Lemma 1, v*(c) consists of
one or several open intervals of the form (vi(c),vis1(c)). In our example, {(11,2,2);(7,7,6)},

we have ¢ = (11,2), K. = 42, ¢(11,2) = 1/84, and

- {6-5-4-3_3 o 5 3 4 5 6 ;.5 4. 3 2 3 _4_1
V(c) - { 6’ 5’ 4’ 3’ 2 b 2’ 3 b 2 b 3 bl 4 ¥ 5 b > 6 b 5 b 4 b 3 b 5 b ’7 b 2 b
3.2 1.2 _ 1 1 1 1l 1112 12127)3,3

7’ 5’ 3’ ’7’ 4’ 5’ 6? 7’0’7’6’5’4’7’3’572’371’ 2’2?27394’5’6}

Figure 1 shows My;(11,2) by dark dots and Mo(11,2) — M17(11,2) by crosses. Because (11,2)

minimizes z3,(11,2) = 7C12 —6Cy; over Bys(11,2)NT (Table 1), By,(11,2) =0 and



pur(11,2) = limy 7 pu(11,2) = 0.066. Also p,(11,2) = 0.020 for v € (1.0,1.5) = v*(11,2).
If v e V(11,2), then Po{B;} < Po{B;} forv > 1.5, while Po{B;} > Po{Bj} forv < 1.0.

[Table 1]

While ¢, is the locally most powerful (LMP) test (BPI, 1998) to detect /8, for [ > 0, this
local optimality of @s) is offset by potentially poor power on parts of Q4 —Q,, . In fact, the ¢,
critical region R,(¢,) will often fail to contain some points of D[I'], so the power of ¢, to detect
18, for some @€ Q4 —Q,,, tends to zero as [ gets large (BPIL, 1998). Podgor, Gastwirth, and
Mehta (1996) proposed the maximin efficiency robust test (MERT) in hopes of providing better
power than linear rank tests. Ironically, the MERT is itself a linear rank test, and its rejection
region may fail to contain D[I'], leading to poor power on parts of Q4 and no power in the limit
in some directions. Berger and Ivanova (2001) showed that at certain a-levels the most stringent
linear rank test is ¢, where vg is such that the two points of D[I"] that are furthest (Euclidean
distance) from each other are equated by z,,(c). For {(11,2,2),(7,7,6)}, this gives vs = 0,

because I has two directed extreme points, D[] = {(15,0);(6,9)}, and z¢(15,0) = z0(6,9).

4. NONLINEAR RANK TESTS

By allowing the boundary of R,(¢) to curve, nonlinear rank tests often require smaller
a-levels to ensure that D[I'] < R,(¢). However, this is not always the case. Berger and Ivanova
(2001) provide an example in which the proportional odds and proportional hazards tests

(McCullagh, 1980) are not nonlinear enough to be omnibus at reasonable a-levels.

4.1. The Smirnov test, ¢g

The Smirnov test, ¢, uses as the test statistic the largest of 0, D1 = Ci1/n; — Ca1/n2, and
Dy = (Cy1 + C)/ny — (Cy1 + Ca2)/ny, and minimizes, among tests routinely available in

standard statistical software packages (¢s is a standard feature of StatXact), the a-level required



for its rejection region to contain D[I"]. However, ¢y is not admissible (Berger, 1998).

4.2. Improved tests

Permutt and Berger (2000) and Ivanova and Berger (2001) each proposed refinements of ¢s
that break its ties. While such refinements are necessarily uniformly more powerful than ¢s
(Rohmel and Mansmann, 1999, page 158), we reserve the term “improvement of ¢” for a test
whose exact (randomized) version is uniformly more powerful than the exact version of ¢. By
this definition, refinements are not necessarily improvements. Berger and Sackrowitz (1997)
developed methodology for constructing admissible improvements of a given inadmissible test.
In fact, by improving the “ignore-the-data” test, ¢;p(¢c) = a for all ¢ € I', Berger and
Sackrowitz (1997) constructed the first known test for this problem that is simultaneously
admissible and unbiased. However, p-values from these improved tests cannot always be

defined unambiguously because rejection regions at different a —levels need not be nested.

4.3, Convex hull tests, ¢ cpy

Berger (1998) established the one-to-one correspondence between the class of convex hull
type tests and the minimal complete class of admissible tests. The convex hull test (BPI, 1998),
@cn, is the simplest member of this class, and is qualitatively similar to the improvements of
both ¢s and ¢;p, while minimizing, among all families of tests, the a-level required for its
rejection region to contain D[T"]. In addition, ¢ ¢y is based on a test statistic, so rejection regions
at different a-levels are nested, and p-values are provided. As such, @cy is about as good a test
as there is for the conditional problem, which is as close as one can get to the unconditional
problem when dealing with @ instead of # Specifically, admissible (unbiased) tests for the
conditional problem are conditionally admissible (unbiased) for the unconditional problem
(Berger and Sackrowitz, 1997). However, the mapping from 7z to @ is nonlinear, and small

corners of 7 -space (neighborhoods of structural zeros) correspond to large regions of -space.



By giving each direction (@) equal consideration, ¢ cx accommodates these small corners of
m—space as much as the large regions of 7 -space that are of most unconditional interest. As
such, @cy may not be ideal when viewed unconditionally. Cohen and Sackrowitz (1998)
proposed another member of the convex hull class, the COM(L) Fisher test, or @comc),
constructed recursively by adding to the critical region those directed extreme points of the
current acceptance region that are least likely under Hy. Because the test statistics of ¢ comr)
and @cy are defined not algebraically but relationally, in terms of the position of ¢ relative to

other points of T, the rejection regions need to be constructed recursively, layer by layer.

5. ADAPTIVE TESTS

Hogg (1974, page 917) and Edgington (1995, pages 371-373) defined adaptive tests as tests
with data-based test statistics (this is distinct from another definition used, e.g., by Rukhin and
Mak, 1992). Gross (1981, Section 5) suggested that such an “analysis based on...data-dependent
scores may yield procedures that compare favorably to fixed-score procedures...”, and Gastwirth
(1985) stated "when the MERT for a particular problem has a low r2, adaptive procedures are
needed”. Partition I' into regions sharing a common test statistic. Donegani (1991) and Good
(1994, page 122) suggested conditioning on the region. Because the region need not be even
nearly ancillary, such conditioning may entail a loss of power, so we prefer comparing the value
of the test statistics across regions. The intuitive objection to “comparing apples to oranges”
notwithstanding, such an approach is “good” or "bad” only to the extent to which it produces a

”good” or "bad” test. We will find this approach to result in tests with excellent properties.

5.1. Adaptive tests for this problem

Without knowing 6 a priori, we do not know where to maximize the power. We could
estimate (@) from ¢, say as &, perhaps using maximum likelihood, and use the LMP test ¢ 5.0

While the p-value of ¢; evaluated at observed outcome ¢, pj (c), will be stochastically too



small to serve as a valid p-value, p;_(c) can be used as a test statistic, to be compared to its null
distribution (Rohmel and Mansmann, 1999, page 165). Variation in ¢ is reflected in p; (c)
through both the argument and the subscript. Another possible test statistic would be z; (c),
suitably normalized (see Section 5.2). Using either pj (c) or z3 (c) as a test statistic, any

estimator &, of 5(0) induces an adaptive test, with regions I', = 3“1(1/) ={c € F]S(. = V).

5.2. The Smirnov test and other binary adaptive tests for which I', = @ forv ¢ {0,1}

While the nonlinear tests described in Section 4 are not typically defined by an adaptive
mechanism, the Smirnov test ¢s can be defined as a binary adaptive test, with I, = @ for
v ¢ {0,1}. Specifically, let g = {c € ' | C1o > miTo/(ni+n2)y and 'y = =Tp. On T,
@s uses the ¢, test statistic z,(¢), with Cy; + C12 (v = 0) and C1; (v = 1) normalized to D, and
D, (from Section 4.2), respectively, to facilitate the comparison of points from I'; (D; > D») to
those from I'g (D> > D;). Other binary adaptive tests include defining I'g and Iy by whichever

of po and @, yields a smaller p-value [i.e., To = {¢ € I' : po(c) < pi(c)}] or alarger x>

5.3. Berger’s (1998) adaptive test, @4

To judge the extremity of outcome ¢ by how small a p-value it can yield when all LMP tests
are applied, use p,«)(€c) = Min _e<,<opy(c) as the test statistic. That is, estimate §(¢) non-
uniquely as 5. = v for any value v € v*(c), so I', = {¢ €[|v € v*(¢)} are the regions. As the
critical region of @4 is Re(@a) = Uycon Rar(v)(@y) for some set of a*(v) < a, @4 is intuitively
similar to union-intersection tests (Roy, 1953; Marden, 1991). Despite being constructed
non-recursively, @4 is a convex hull type test (Berger, 1998), and hence ¢4 is admissible. Also,

@4 tends to be an omnibus test, because D[I'] < Rq(¢@4) for reasonable a-levels.

6. ACCOMMODATING A FAVORED ALTERNATIVE

We have seen that ¢, is LMP on Q,, while ¢, is a good omnibus test. Suppose that we want



the best of both, and believe a priori that §(8) = §p. Let 7 > 0 be a measure of strength in the
belief that §(8) = p. The dual objectives are ensuring nearly LMP power on (s, and
reasonable power on Q4 — Q;,, with relative importance dictated by 7. One might use ¢, for
large 7, or @4 for small 7, but none of the aforementioned tests would suffice for intermediate
values of 7. We bridge this gap by starting with ¢4 and then penalizing those ¢ whose

minimizing LMP p-value is obtained by v far from §p. To this end, let

A(6p,1,¢) = min [Pminm(€)(1 +|6p — VD7),

—oo<y<oo

and let 5,4 (@5, When the a —level is clear) be the level-a adaptive test based on test statistic
A(6p,t,c).  Because A(Sp,0,¢) = py(c), @s,0=pa for any op. Let vp.n(c) =
{V | pmin(v)(c)(l + |6P — Vl)T = A(5P,T,C)}. Clearly pmin(v)(c)(l + |5P — V|)T < lifv e V[fs,,,r](c).

Lemmas 2-4 confine v(s,-(c) to a finite subset of an interval that shrinks to ép as 7 gets large.
Lemma 2. For any 6p, T > 0, v« € V5p7(c), and v* € v*(c), [6p — v4| < [0p — v*.

Proof. 1If there exist v* € v*(¢) and v. € v[5,(c) such that |5p —v*| < |6p — v.|, then

pv(©)(A +(0p = V)" <Pminen(€)(1 +|6p — v4|)7, and v, cannot be in vis,1(c). o
Lemma 3. Forany op, 7 > 0, andc € I', vj5,5)(c) < V(c) U dp.

Proof. Assume that there exists v # dp in vis,.(c) — V(c), say vi(c) < v < vii(c). Let
v o= Vk(C) if 51) < vk(c), v = 51) if vk(c) < 5p < Vk+1(C), ory* = vk+1(c) if Vk+1(C) < 513. Now

v* C V(C) Uodp andpmin(v)(c)(l + |5p — Vl)T > pmin(v*)(c)(l + |5p - v*|)’. ]
Lemma 4. For any 6p and ¢ € I, vs5,7)(c) = {6p) for sufficiently large 7.

Proof. Let D:(6p) = minyey()|0p — v|, and for any 7 > 0, let v € vj5,(c) — p. By Lemma

3ve V(c)-38p,0|6p—v| = Dc(6p) >0, and for 7 > —In(pmines)(€c))/In(1 + Dc(5p)) we have

10



Prminy (€)1 + |67 = V)™ = Prminny(€)(1 +|Dc(6p)|)7 > 1, acontradictiontov € vis,.(c). ©

By Lemma 4, @5, induces the same ordering on I" as ¢, does, thereby optimizing power
on Qs,. Yet the @5, test statistic iS pmines,)(c), and not necessarily ps.(c), SO @s,» 1S a
refinement of ¢s, (Section 4.2). In fact, py(11,2) < pyo(11,2) < prminey(11,2) for all v (Table
1), and pos(11,2) = 0.0385, but Mys.(11,2) excludes (10,4), so @os« attains statistical
significance at a = 0.025 (one-sided) with pos«.(11,2) = 0.0249. We now establish the

admissibility of @s,14.
Theorem 1. For any triple 6p € 2!, 7 > 0, and a € [0, 1], @5, is admissible.

Proof. By Theorem 3.3 of Berger (1998), it suffices to show that for any B < I, if ¢*
minimizes A(6p,7,c) over B, then ¢* € D[B]. If ¢* ¢ D[B], then ¢* cannot, for any v, uniquely
minimize p, over B, and for every v there exists ¢ € B—c¢* such that p,(c) < p,(c*). If
v ¢ V(c*), then o,(c*) =1, so p,(c) # p,(c*), and p,(c) < py(c*) — min.r Po{c[T}. Let
Vi € vis,.(c*). By the continuity in v of the function (1 + |6, —v|)?, we can, for any & > 0,

choose v, € V(c*) suitably close to v, to satisfy p,,(€*) = pminwv;)(€™), and, thus,

A(Sp,7,¢) = min [priney(€)(1 +[0p = V)7] < pi, ()(1 +[6p = v2])"

< [pu,(c*) - rzleirnPo{c|F}}(1 +16p —v2|)" = [Pminpy(€™) = r(neirnPo{c|F}](1 +1]0p —va])*

< A(Sp,T,c*) — %pPo{c|F}(l +]6p —va|)" +€ < A(dp,T,*),
the last inequality holding for € < mincer Po{c|[I"}. This is a contradiction. 0

Unless |[6p — vs| (Section 3) is small, the larger 7 is, the less ¢, focuses on omnibus power.

Hence, the a-level required for Ry(¢s,:¢) to contain D[I'] tends to increase in 7.

11



7. MARGIN-BASED SELECTION OF 6p AND 7

It may turn out that there is no solid prior information with which to select dp or 7. Graubard
and Korn (1987) suggested that ¢os be used in the absence of a reason to use a different test.
While all linear rank tests, including @5, may have poor overall power profiles in some cases
(BPI, 1998; Berger and Ivanova, 2001), we do feel that it may be reasonable to focus power on
Qos, by using @os.. Only if one uses 7 = o is one betting everything on the belief that
5(8) = 0.5, but even in this case @qs. is still preferable to @5, because Qo5 is a refinement of
®os. If 8p and « are both fixed, but one is unsure of the value of 7 to use, then one could use the
margins (n and T, summarized by T') to select 7. Specifically, use the largest 7 that allows
Ro(@s,+4) to contain D[I']. If a range of a-levels would be considered, say 0.01 < a < 0.1, then
use the smallest a-level in selecting 7. Restricting attention to the integer values of 7, and using
Sp = 0.5, we note that for {(11,2,2),(7,7,6)}, D[I'] = {(6,9);(15,0)} is contained by
Ro01(@os,18), Roozs(9osz0), Roos(@oszz), and Roi(@osze); but none of Rooi(@os,i9),

Ro.025(00521), Roos(90523), or Ro1(@os2s) contain (6,9). Consequently, we would use ¢os,13.

8. COMPARISONS OF TESTS

We compare the exact unconditional power of @0, Qos, @10, @5, PcHs Pcomc), and some
adaptive tests, considering all possible 2 x 3 tables with row margins n; = ny = 10. Figure 2
presents I'-plots. Because I is not fixed in this computation, we consider only adaptive tests for
which neither §» nor 7 depends on I. We fix m = (0.3,0.4,0.3) and consider 23 different
vectors m, such that 7 stochastically dominates 7». We are interested in maximizing the power
for each of these 23 scenarios, while preserving the type I error rate for the 24th, 71 = m,. For
each pair (i, 7,) we obtain 0 and 5(6) = 1 — 0,/61, the optimal score for the linear rank test.
Bold entries represent the best power, for given 6(6), among the tests we consider. Because the

linear rank tests o0, Qos, and @10 are excessively conservative, per the bottom row of Table 2,

12



they are dominated (at a = 0.05) by their corresponding adaptive tests 900,100, Qo.5,100, and
®1.0,100. This is not surprising and will be the case quite generally. In addition, ¢ dominates
@ com(c)- Notice that ¢os, comes close to dominating each other omnibus test (¢4, @ comc), ¢,

and @cy). In fact, only where 6(6) < =2 is @4 or @ comc) more powerful than ¢os ;1.
[Figure 2], [Table 2]
9. DISCUSSION

In an effort to improve the comparison of two treatments on the basis of ordered categorical
data, we defined a new class of adaptive tests. We showed each of these tests to be admissible,
while providing unambiguous p-values and a non-iterative construction. There is nothing
particular about ordered trinomial distributions that makes this problem especially amenable to
treatment with our adaptive approach. For any hypothesis testing problem with a composite
alternative hypothesis, one can enumerate the alternatives and the corresponding LMP test for
each. One can then apply each of these LMP tests to a given outcome, and find the smallest of
the resulting p-values. Using this minimized LMP p-value as a test statistic produces a test
analogous to @4, and reduces to the uniformly most powerful test if one exists. One can then
bridge the gap between @4 and the LMP tests as we have done, with adaptive tests tailored to fit

a favored direction. We would expect this approach to yield good tests in a variety of contexts.
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Table 1. Linear rank tests, v € [0,2] for {(11,2,2);(7,7,6)}.

0,(11,2) Endpoints of:

- +
pV pv pv

Po{B,"} Po{By} Pvew MiMyw

B, B, (minimum is underlined)
ve (-1/7,0) 1 0.2262 0.2262 0.2262 0.2262
v=0 10 4,9) (12,1) 0.2277 0.2262 0.0661 0.1615 0.0015 0.0726 (7,6)-
-(10,3) -(13,0) (10,3)
v e (0,1/7) 1 0.0661 0.0661 0.0661 0.0661
v=1/7 2 (5,9) 0.0661 0.0661 0.0661 2.1%107 0.0661
v e (1/7,1/6) 1 0.0661 0.0661 0.0661 0.0661
v=1/6 2 (6,8) 0.0661 0.0661 0.0657 0.0004 0.0661
v e (1/6,1/5) 1 0.0657 0.0657 0.0657 0.0657
v=1/5 2 (7.7) 0.0657 0.0657 0.0629 0.0028 0.0657
v e (1/5,1/4) 1 0.0629 0.0629 0.0629 0.0629
v=1/4 2 (8,6) 0.0629 0.0629 0.0538 0.0091 0.0629
ve (1/42/7) 1 0.0538 0.0538 0.0538 0.0538
v=2/7 2 (6,9) 0.0538 0.0538 0.0538 5.7%10°° 0.0538
ve (2/7,1/3) 1 0.0538 0.0538 0.0538 0.0538
v=1/3 3 (7,8) 0.0538 0.0538 0.0387 0.0152 0.0387 (9,5)
-(9.5)
v e (1/3,2/5) 1 0.0387 0.0387 0.0387 0.0387
v=2/5 2 8,7) 0.0387 0.0387 0.0382 0.0005 0.0387
ve (2/5,1/2) 1 0.0382 0.0382 0.0382 0.0382
v=1/2 4 (9,6) (12,0) 0.03850.0382 0.0237 0.0148 0.0003 0.0249 (104)
-(10,4)
ve (1/2,2/3) 1 0.0237 0.0237 0.0237 0.0237
v=2/3 2 (10.,5) 0.0237 0.0237 0.0220 0.0017 0.0237
ve (2/3,1) 1 0.0220 0.0220 0.0220 0.0220
v=1 5 (11,4 (11,1) 0.0276 0.0220 0.0198 0.0078 0.0056 0.0276
-(11,3) -(11,0)
ve (1,3/2) 1 0.0198 0.0198 0.0198 0.0198
v=3/2 2 (10,0) 0.0205 9.0198 0.0205 0.0008 0.0205
ve (3/2,2) 1 0.0205 0.0205 0.0205 0.0205
v=2 4 (12,3)  (10,1) 0.0294 0.0205 0.0289 0.0005 0.0089 0.0294
-(9.0)
ve (2,52) 1 0.0289 0.0289 0.0289 0.0289

Note that all the values are calculated at (11,2); py.o 2nd M, . are the p-value and extreme region,

respectively, of the adaptive test based on v and T =co.



Table 2. Exact unconditional power of the conservative (nonrandomized) versions of linear rank
tests (@o, @1, Pos), adaptive tests (¢o,100. @ 1,100, P0.5,100, Po5,1), omnibus adaptive test @4, the
@ com(c) test, Smirnov test s, and convex hull test ¢ ¢y, with @ < 0.05, and ten observations

per row. Bold entries represent best power among these tests for given 6.

(6 % Qo Qo100 O1 Prioo Pos Posio0 Posi  Pa Pcomwy Ps Pou

-o0 (2.20, ) 0.825 0.895 0.142 0.569 0.6820.794 0.865 0.874 0.866 0.820 0.657
-o0 (1.39, =) 0.623 0.782 0.0530.289 0.399 0.547 0.715 0.7520.741 0.604 0.495
-c0 (0.85, =) 0.420 0.643 0.018 0.130 0.201 0.325 0.567 0.6350.622 0.3890.410

-2.00  (0.69,2.08) 0.247 0.370 0.018 0.089 0.137 0.208 0.308 0.327 0.3190.225 0.201
-1.35 (0.51, 1.20) 0.126 0.195 0.019 0.062 0.0850.122 0.158 0.1580.1540.114 0.100
-1.00  (0.29,0.58) 0.054 0.093 0.0190.045 0.0459 0.067 0.077 0.0750.072 0.051 0.052
-0.78 (1.25,2.23) 0.418 0.516 0.054 0.214 0.3000.394 0.441 0.434 0.4290.402 0.270
-026  (1.10, 1.39) 0.247 0.317 0.054 0.161 0.2110.267 0.267 0.246 0.243 0.2400.161
-0.14  (2.08,2.37) 0.622 0.684 0.143 0.455 0.5620.641 0.624 0.589 0.584 0.619 0.409
0.00 (2.08,2.08) 0.569 0.632 0.148 0.437 0.536 0.604 0.573 0.532 0.526 0.568 0.369
0.13 (0.92, 0.80) 0.126 0.181 0.0540.124 0.1380.171 0.158 0.1400.137 0.1300.107
0.21 (1.95,1.54) 0.419 0.492 0.144 0.366 0.4380.491 0.446 0.399 0.391 0.427 0.286

0.30 (1.89,1.33) 0.354 0432 0.144 0.340 0.396 0.443 0.395 0.349 0.339 0.367 0.260
0.40 (1.83, 1.11) 0.2870.369 0.144 0.313 0.349 0.392 0.343 0.300 0.289 0.306 0.238
0.45 (1.80,0.98) 0.248 0.333 0.144 0.297 0.321 0.361 0.314 0.273 0.262 0.272 0.226
0.50 (1.76, 0.88) 0.220 0.305 0.144 0.286 0.300 0.338 0.293 0.2550.243 0.247 0.218
0.58 (0.69,0.29) 0.054 0.095 0.054 0.103 0.084 0.106 0.099 0.089 0.086 0.069 0.078
0.68 (1.61,0.51) 0.127 0.210 0.144 0.251 0.220 0.257 0.224 0.197 0.187 0.167 0.191

0.80 (1.52,031) 0.089 0.165 0.144 0.238 0.1820.219 0.197 0.1770.168 0.136 0.178
0.90 (1.54,0.15) 0.067 0.142 0.157 0.249 0.164 0.204 0.195 0.1790.1700.1250.182
0.95 (1.39,0.07) 0.054 0.120 0.144 0.230 0.1400.179 0.177 0.1650.1570.111 0.164

1.00 (o0, 1.67) 0.629 0.735 0.360 0.744 0.779 0.788 0.722 0.68! 0.647 0.657 0.544
1.00 (oo,1.14) 0.4250.583 0.360 0.641 0.636 0.661 0.588 0.542 0.502 0.482 0.475
1.00 (o0, 0.69) 0.252 0.431 0.361 0.560 0.488 0.534 0.471 0.4300.396 0.342 0.436
1.00 (oo, 0.29) 0.128 0.292 0.361 0.509 0.3490.418 0.390 0.360 0.335 0.248 0.401
1.00 (02,-0.12) 0.055 0.177 0.361 0.495 0.2330.321 0.362 0.344 0.323 0.201 0.363
1.00 (oo, -0.56) 0.0190.093 0.360 0.522 0.1450.245 0.399 0.389 0.3600.192 0.335

1.37 (1.10, -0.41) 0.019 0.060 0.144 0.239 0.0830.126 0.178 0.174 0.166 0.090 0.143
1.55 (0.41, -0.22) 0.019 0.044 0.054 0.101 0.047 0.065 0.079 0.077 0.075 0.043 0.061

(0.00, 0.00) 0.019 0.039 0.019 0.039 0.026 0.035 0.042 0.041 0.040 0.023 0.030
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Figure 1. Permutation sample space for {(11,2,2); (7,7,6)}.

v=1/7, p=0.066, 0=2
''''' - v=0, p=0.228, 0=10
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Figure 2. Rejection regions and p-values for several tests for {(11,2,2);(7.7, 6)).

Linear rank test @qs, and adaptive tests ¢os1, ©053, Qo.s,100, the omnibus adaptive test, @4,

the Smirnov test ¢s, and the convex hull test ¢ ¢y, and the ¢ comc) test.
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