Drawbacks of Integer Scoring of Ordered Categorical Data
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SUMMARY
Linear rank tests are widely used when testing for independence against stochastic order
in a 2 x J contingency table with two treatments and J ordered outcome levels. For this
purpose, numerical scores are assigned to the outcome levels. When the choice of scores
is not apparent, integer (equally-spaced) scores are often considered. We show that this
practice leads to unnecessarily conservative tests. The use of slightly perturbed scores

will result in a less conservative and more powerful test.
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1. Introduction

Contingency tables with ordered categories are common in biostatistics. For example,
Moses, Emerson, and Hosseini (1984) reported that ordered categorical data occurred in
32 out of 168 articles in Volume 36 (1982) of the New England Journal of Medicine. It
is known that collapsing categories will result in a loss of power (Emerson and Moses,
1985). Tests which ignore the ordering among the categories may also lack adequate
statistical power. To make use of the ordering, numerical scores are often assigned to
the outcome levels, sometimes based on subject matter considerations (e.g., midpoints of
the category intervals). When there is no indication of what scores to assign, Graubard
and Korn (1987) argued for considering equally-spaced scores. In this paper we show
that this choice makes the test excessively conservative, and slightly perturbed scores
often lead to a uniformly more powerful test. In Section 2 we start with an example of a
2 x 3 table with ordered categories. In Section 3 we show that certain sets of scores
result in excessive conservatism. In particular, the test is generally conservative when
equally-spaced scores are chosen. We illustrate the point using the example, and then
present power comparisons. In Section 4 we discuss the Wilcoxon rank-sum test, and
other tests whose reliance on assigning scores is rarely made explicit. In Section 5 we
generalize to R x C tables. In Section 6 we propose a new test that is an improvement of
the Smirnov test in the same sense that the linear rank test with slightly perturbed scores

is an improvement of the linear rank test with integer scores.

2. Example

Consider a response variable with three ordered outcome levels. Pneumonia status
following treatment in a two-arm randomized clinical trial, e.g., may be classified as

cured, improved, or failed, and summarized as a 2 x 3 contingency table with two



treatments and three ordered outcome levels. Table 1 presents a hypothetical data set of
this form.
Table 1

Hypothetical pneumonia status data.

Failed Improved Cured  Total

Control Chi=5 Cip=3 Cn-= 2 n =10
Treatment Cu=1 Cp=4 Cn-= 5 ny =10
Total T, =6 T, =7 T =7 N=20

Consider the problem of testing the null hypothesis of independence between rows
and columns against the one-sided alternative of stochastic order. Let the vectors of cell
probabilities (each summing to one) be m = (r11,m12,m13) and m = (M1, 722, 723),
respectively. The corresponding trinomial random vectors (summing to n; and nz,
respectively) are C1 = (Ci1,C12,Ci13) and Cz = (Ca1,Cn2,C23). Let w= (m,m). The
row margins n = (n1,n,) are fixed by design (product multinomial sampling). We
condition on T = (Ty,T2,T3). The sample space T is the set of 2 x 3 contingency tables
with non-negative integer-valued cell counts with row totals n and column totals T.
Given T,n, and ¢ = (Ci1,C12), we reconstruct the entire 2 x 3 contingency table as
Ci3 =ni—Ci1—Crand C; = T —Cy, so we let ¢ denote a point of I". For the data in
our example, I" consists of 44 tables. Figure 1 displays C. plotted against C1; for each
of these 44 tables. The conditional null probability of each table can be calculated using
the hypergeometric distribution. The exact conditional linear rank test with scores
(vi,v2,v3), vi < vy <vj, will order tables in the reference set according to the

difference, A; — A3, between two weighted sums:

A1 =Cpyvi+Cppva + C13v3 and A, = Cyivi + Cnva + Crvs,



rejecting Hy for tables with large values of A; — A;. Without loss of generality the scores
can be chosen as (0,v,1), with v = (v2 —v1)/(v3 —v1), 0 < v < 1. It can be shown that
the linear rank test above is equivalent to test ¢,, that rejects Ho for large values of
z(€) = Ci1+(1-v)Cra. In the sequel we consider the class of exact level-a linear
rank tests with different scores: {¢, : 0 < v < 1}, oreven {p, : v € R'}. For example,
if the three categories are assumed to be equally-spaced, then ¢@qs, the test with
equally-spaced (integer) scores (1,2,3), or (0.0,0.5,1.0), is considered. The test

statistic is C1; + 0.5C13.

[Figure 1]

3. The conservatism of the linear rank test with integer scores

Let M,(c) = {c* €T | z,(c*) > z,(c)} denote the ¢, extreme region of ¢, with
py(e) = Po{M,(c)|T} the corresponding p-value, where Py is the probability under the
null hypothesis.  Clearly p,(+) is a monotonic set function for any v, so if
M,(c) < M,(c*), then p,(c) < p,(c*). In the first panel of Figure 1, M¢s(5,3) is shown
by dark dots. Fix ¢ = (C11,C12), and consider ¢* = (C};,CT;) € [ —¢. Then
z(c*) =z,(c) if and only if v=v.+=1-(Cn—-Ci)I(C}-Cn). Let
V(e) = {vi(c),va(c),...,vk.(c)} be the ordered set of values v..+, as ¢* ranges over

I' — ¢. In our example, if ¢ = (5,3), then k(s 3y = 25 and

= {— _ 3 4.2 _1_1_1
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If v € V(c), then there exists ¢* € I" — ¢ such that z,(¢) = z,(c*), soc* € M(c). Ifv

were changed slightly to v* = v+e¢€ or v* = v—¢€ so that z,(¢) > zy+(c*), then ¢~



would not be in M,+(c), and would not inflate p,<(c). We see that p,(c) is maximized

locally when v € V(c).

THEOREM: If vilc) <v <vin(c) for some k, then p,(c)>pi(c) and

Pria@(€) 2 py(e).

Proof. We first show that if vi(¢) < v < vi1(c), then M,(c) is independent of v and
M,(c) is a subset of both M, (c) and M, (c). By the monotonicity of p, this
suffices. The line through ¢ with slope 1/(v — 1) separates M, (¢) — ¢ from I" — M, (c),

and intersects with neither (because v ¢ V(c)). See the second panel of Figure 1.
Decreasing v will not change the sets My(c)—c or I'—M,(c) until v = vi(c). If
wi(e) = {e*e T —¢ | 2,,0(€*) = 2,,0(€)}, then My, (c) = My(€) Uwy(c), and
W (€) N {T = M,(c)} represents the set of points that migrated into the extreme region
when v became v, (¢), making M, (c) strictly larger than M,(c). Clearly, then,

P (€) = py(c). The same argument applies as v increases to vi1(c). O

Because 0.5 = v14(5,3) € V(5,3), while 0.49 ¢ V(5,3) and 0.51 & V(5,3), @os
assigns the same value of the test statistic to several points in the reference set, so each
counts in the calculation of the p-value of all others with which it is tied. This makes the
@0 critical region, and p-value, larger than those of @o49 and @os1 (Figure 1). Notice
that Mo49(5,3) © Moso(5,3) and Mosi(5,3) € Moso(5,3) (the points  in
Mos0(5,3) —Mo4e(5,3) are marked by crosses). In fact, poso(5,3) = 0.0503,
P049(5,3) = 0.0490, and pos1(5,3) = 0.0383, so the conservatism of @os is enough to
prevent statistical significance from being reached at a = 0.05. The (null) expected
p-values of these tests are Eo[pos|T] = 0.576 and Eq[po49|T] = Eo[posi|T] = 0.538. The

larger critical region of @¢s means that there are fewer points for which the ¢os p-value



is below 0.05 (or any other a-level). This makes the @qso critical region a proper subset
of the @o49 and @gs; critical regions. Consequently, @os is more conservative and less
powerful than ¢g49 and @os;. Table 2 shows exact unconditional power comparisons of
®os 10 Qogo and @os1. We considered all 4356 tables with n; = ny = 10, and let
w1 = (0.3,0.4,0.3), while 7, varies.
[Table 2]

The last line of Table 2 shows that the actual sizes of @g49 (0.034) and g5 (0.034) are
closer to the nominal size of 0.05 than the actual size of @os (0.026). This excessive
conservatism of @5 is reflected in the power calculations: Specifically, both ¢¢.49 and
@051 are uniformly more powerful than @os. Note that 0 = v1;1(5,3) and 1 = v16(5,3)
are also in V(5,3), making binary tests on collapsed categories (¢o is the analysis of cure
rates and ¢@; is the analysis of failure rates) overly conservative. Specifically,
Eolpooo|T] = 0.628,  Eo[p-0m|T] = Eo[pooi|T] = 0.538, and  pooo(5,3) = 0.175,
2-001(5,3) = 0.173, pooo(5,3) = 0.055; Eo[p1.00|T] = 0.633, Eo[pow|T] = Eo[p10|T] =
0.538, and p1.00(5,3) = 0.070, poge(5,3) = 0.038, p1.01(5.3) =0.062. In practice, when
linear rank tests are used, v is almost always chosen from V = Ucr V(¢), making ¢,
overly conservative. Now 0.5 € V for most, but not all sets of margins. If, e.g.,
T:T,T3 = 0, then at least one column margin is zero, and there exists k such that
C11 + kC1; is constant on I'. In this case, ¢, is the same test as ¢+ provided that v — k

and v* — k have the same sign.

4. Tests that surreptitiously use scores

For the Cochran-Mantel-Haenszel test, scores are defined to be the row numbers and
column numbers by default and hence are overly conservative integer scores. The

uncritical data analyst may not even be aware of the fact that scores have been assigned



by default. Other tests that rely on assignment of scores (that the user is rarely prompted
to supply) include those based on correlation coefficients or ridits. The Wilcoxon
rank-sum test (Emerson and Moses, 1985), when applied to this problem, is equivalent to
a linear rank test with scores equal to midranks. In our example, the scores will be
vi = 3.5 (since six observations are tied in the failed’ category), v2 = 10 (the midrank
of ranks 7 — 13 for the improved’ category), and v3 = 17. The standardized midscore is
v = (10 — 3.5)/(17 — 3.5) = 0.482. Graubard and Korn (1987) did not recommend the
use of midrank scores for this problem because “midrank scores can be unreasonable in
applications when the column margin is far from uniform”. Of greater concern to us is
that when the column margin is exactly uniform, i.e. Ty = T2 = T3, the midrank scores
will be exactly equivalent to the integer scores, and hence the test will be overly

conservative.

5. RxJ contingency tables

We showed, in the case of a 2 x 3 contingency table with ordered responses, that the
linear rank test with integer scores, or any middle score v from V, is overly conservative.
The test based on a score close to v, but not exactly v, has a larger critical region, and is
less conservative. Similar results hold for R x J contingency tables, for which the
reference set I is (R — 1)(J — 1) dimensional (to match the degrees of freedom), and the
standardized v is a vector with J — 2 components. The reason is the same: Tests with
integer scores assign the same value of the test statistic to several points in the reference
set, so each counts in the calculation of the p-value of all others with which it is tied.
The StatXact manual (1995, page 602) has, as an example, a comparison of five
chemotherapy regiments in a small clinical trial. Tumor response was measured with

three ordered response categories, *None’, ’Partial’, and ’Complete’. The data are



arranged as a 5 x 3 contingency table, with rows (2,0,0), (1,1,0), (3,0,0), (2,2,0), and

(1,1,4). The manual suggests assigning scores (0,100, 150), or equivalently (0, vy 1),

because these scores are “reasonable estimates of the number of weeks in remission

following a response of the specified type”. But % € V(c), and a slight change in the

middle score (in either direction) can reduce the p-value slightly: p 2 (c) = 0.0450,
Poss(c) = 0.0436, and po¢7(c) = 0.0446. Note that the choice of scores should be made
in advance and not on the basis of which set of scores will yield the smallest p-value. In

this example we argue that either (0,0.66,1) or (0,0.67,1) should be chosen but not

2
O, 3 1),

6. The Smirnov test

Because of some general deficiencies of linear rank tests, Berger, Permutt, and Ivanova
(1998) suggested using nonlinear rank tests for this problem. The Smirnov test is the
simplest nonlinear rank test, and uses as the test statistic the larger of
Dy = Cu/ny —Ca/lny and Dj; = (C11 + Cr2)/ny — (Ca1 + C2)/ny,  or  equivalently
Di = Cy—Tini/nand Dy = C11 + C12 — (T + Ta)ni/n. The test is a combination of ¢
and ¢@o, and retains the excessive conservatism of both of these components. A
combination of @99 and @oo instead, with the test statistic the larger of
Dy =C1 +0.01Cy; = Tini/n and Dy = C11 +0.99C12 = (T1 + T2)ni/n, will be less

conservative, and therefore more powerful.

7. Discussion

Berger, Permutt, and Ivanova (1998) provided conditions on the margins for which

suitable nonlinear rank tests are preferable to linear rank tests. Nevertheless, linear rank



tests remain popular and are often used. We confine attention to ordinal, and not
interval-scaled, data so by definition there is no basis for the selection of scores and any
set of scores must inherently be arbitrary. The column scores are neither data
(observable from the sample) nor parameters (observable from the population), yet are
said to be “correct” when they reflect the subject matter (Graubard and Korn, 1987). For
example, suppose that the response to the question "How much would you pay, out of
your own pocket, to be improved instead of experiencing a treatment failure?” would
meet with an unqualified response of $M. Likewise, suppose that one could assign a
possibly different monetary value ($M>) to shifting from improved to cured. If M; >0
and M, > 0 were known, then they would provide a clear basis for spacing the three
outcome levels relative to each other, with column scores of (0,M{,M; + M>), or,
equivalently, (0,M/[M; + M,],1). It would then be logical to select as preferable
whichever treatment provides a larger mean score. The problem is that the monetary
values, and consequently the sets of column scores, would vary both across individuals
and within each individual over time. So the only reason to choose integer
(equally-spaced) scores is that they "look good”. We argue that, though somewhat less
attractive, slightly perturbed integer scores will lead to better results. The scores should
be chosen prospectively, but not as integer-scores. If a nonlinear rank test is to be used,
then the Smirnov test with slightly perturbed scores, discussed in Section 6, might be
considered, on the basis that is more powerful than the Smirmnov test, but easier to
compute than the uniformly improved Smirnov test (Berger and Sackrowitz, 1997),

adaptive test (Berger, 1998), or convex hull test (Berger, Permutt, and Ivanova, 1998).
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Table 2

Exact power comparisons of three linear rank tests with ny = ny = 10,

with alternative w1 = (0.3,0.4,0.3) and ©, varying, at nominal ¢ = 0.05.

The last row of the table represents the actual size of the test.

2 Pos Do.49 Po.51
(0.1,0.0,0.9) 0.683 0.797 0.683
(0.1,0.1,0.8) 0.562 0.641 0.569
(0.1,0.2,0.7) 0.437 0.489 0.456
(0.1,0.3,0.6) 0.320 0.354 0.354
(0.1,0.4,0.5) 0.219 0.240 0.267
(0.1,0.5,0.4) 0.139 0.151 0.195
(0.1,0.6,0.3) 0.082 0.088 0.139
(0.3,0.4,0.3) 0.026 0.034 0.034

11



S1S9 | Yuey Jesaul] 8aiy| "} ainbi4

LD

o N
o o -
(e] (o] O -
o o} o (ol o
(o] O (@] [0} o

\ (o]
(€8€0°0=d)
I 1G°0 0 1S9 Muey Jesur

[A%0)

3 %0)

-

(o} (o) (o]
(6¥0°0=d)

| 6%°0 01591 YUBY Jeaul]

[420]

1O

-

(€050°0 =d)

L G'0 0 1S9 Yuey Jeaur]

(420



