
BIOS 600 – Fall 2010 Lab 4a

Reading Datasets Into SAS

In this activity, we will learn how to use SAS to read, store and modify data in various
formats. The data we receive for analysis will often not be in the format of a SAS dataset
(.sas7bdat) – it’s more likely to be in Excel (.xls) or Notepad (.txt) formats, among others.

Data: We will be using the Heart Rate data from problem 4.10 (p. 83) in the course text-
book. The data has been posted on Blackboard Lab Week 4 in several different formats.
Please download these files and place them on your H: drive in a location you can easily
remember. My directory path is ‘H:\bios600\Data’, so any SAS code that I give will cor-
respond to this location. You may choose your own location, but you may not be able to
directly use parts of my code.

1 Data Step Structure

In order to read datasets into SAS and modify them appropriately, we make use of the data
step type of SAS code referred to previously. Data steps are used to create new SAS datasets
and modify them accordingly. The basic setup of a data step is given in Figure 1.

DATA your data ;

Statement 1 ;

Statement 2 ;

. . .
RUN ;

Figure 1: Basic structure of a data step.

Things to remember about data steps:

• First line starts with SAS Keyword DATA (opens data step).

• Second word of first statement is the name of your SAS dataset

- Dataset in Figure 1 is named “your data”

- Names can include letters, numbers and ‘ ’ (i.e., your data2).

- Names must start with a letter, and are no more than 32 characters long.

• Last line is SAS Keyword RUN ; (closes data step).

• Statements in between first and last lines are instructions for reading and manipulating
dataset your data.

- Not all of these statements will begin with a SAS Keyword (unlike PROC code.)

- Many functions available in SAS for data manipulation.

1

BIOS 600 – Fall 2010 Lab 4a

2 Reading Datasets - Data Step

There are a variety of ways to read datasets into SAS. There is no single preferred method,
but certain situations may call for one method over another.

2.1 SAS Variables - Name, Type

SAS Variables have names so that we may refer to and use them in operations and/or
analysis. Usually, it is up to you to create these names, so you can call variables what you
like. Rules for naming SAS variables include the following.

1. Names consist of a combination of letters, numbers, and the underscore (‘ ’).

2. Names must start with a letter.

3. Names must be 32 characters in length or less.

There are two types of variables that are recognized by SAS.

Numeric – Values consisting of numbers only
– Right-justified in dataset
– BMI, Weight, Age, Stage of Cancer (1,2,3,4)

Character – Values consist of letters and/or numbers
– Left-justified in dataset
– Race, Gender, Stage of Cancer (‘1’,‘2’,‘3’,‘4’)

2.2 Input Statement

The INPUT statement is used when we are reading in data within a data step. Specifically,
we’ll use the INPUT statement to describe the variables in our dataset by name and by
type.

When declaring our variables, order is important! Whether we are typing in the data
manually (§2.3) or reading it from an external file (§2.4), we must list the variables in the
correct order of appearance. Distinct variable names must be separated by a space.

We must also declare variable type in the INPUT statement. For numeric variables, we
simply write their names and add a space. For character variables however, we must include
the modifier ‘ $’ directly after the variable name, so that SAS knows to treat it as a
character variable. This must be done for every single character variable! Include a space
between the name and the ‘ $’.

Examples are given in §2.3 and §2.4 below.

2

BIOS 600 – Fall 2010 Lab 4a

2.3 Method 1 – Manual Entry

For a small dataset, we can simply enter the data by hand within a data step using a
CARDS statement (appears on line 3 of Figure 2). The SAS Keyword CARDS tells SAS, “I
am about to enter the data”. Everything that appears after “CARDS ;” is considered data,
until the first semi-colon (;) is typed.

DATA Heart ;

INPUT Trtmt $ Rate ;

CARDS ;

Before 65

Before 85
...

...

Before 60

After 68
...

...

After 72

;

RUN ;

Figure 2: Read in Heart Rate data from problem 4.10 (p. 83) using a CARDS statement.

Notice that the last observation’s data is on a different line from the semi-colon. If they
are on the same line, then SAS will delete the data from your last observation! SAS interprets
the first semi-colon (;) to be the end of the data, so anything to the left of this semi-colon
(;) is ignored.

Some other things to note from Figure 2:

1. Data are highlighted in yellow to emphasize that they are values, instead of SAS coding
instructions.

2. Each observation is written on its own line.

3. Nothing else goes in the CARDS ; statement.

4. Can also use DATALINES instead of CARDS .

This is useful for small datasets, but obviously we would not want to use it for datasets
with lots of variables or a large number of observations.

3

BIOS 600 – Fall 2010 Lab 4a

2.4 Method 2 – Infile Statement

Within a data step, we can use an INFILE statement to directly read data from an exter-
nal file of another format. The INFILE statement usually comes before using the INPUT

statement to declare our variables. We use it to tell SAS

1. the path or location of our file (H:\bios600\Data\)

2. the filename (heartrate edit)

3. the file extension (.txt)

Directories composed of these three parts must always be given to SAS in quotes (either
single ‘’ or double “”). Furthermore, any quoted text in the Editor will appear in purple
font. In Figure 3, we create the dataset Heart.sas7bdat by reading in the data from our text
file.

DATA Heart ; ∗create dataset Heart in Work folder ;

INFILE ‘H:\bios600\Data\heartrate edit.txt’ FIRSTOBS=2;

INPUT Trtmt $ Rate ; ∗list var’s in same order as .txt file ;

RUN ;

Figure 3: Read in Heart Rate data using an INFILE statement.

There are various options available to the INFILE statement. For instance, the option
FIRSTOBS=2 tells SAS to begin reading data on line 2 instead of line 1, allowing me to pass
over the variable labels in the .txt file.

Note that the INFILE statement will NOT work with SAS datasets in other folders. To
access permanent SAS datasets, refer to §4.2. It also will not work for an Excel file (.xls).

3 Importing Files Manually

You can also manually import data files of various extensions using the SAS Import Wizard.
The Import Wizard uses a Graphical User Interface (GUI), meaning that you interact with
it, rather than typing and running code. There is SAS code being created and run behind
the scenes, but we won’t worry about that.

While the Import Wizard is easy to use and very versatile and requires no programming,
you will have to redo the process every time you log into SAS. One way around this is to
assign the dataset to a permanent SAS library (see §4.2). Also, the Import Wizard names
your variables for you. This feature does not always work well and can create some awkward
variable names (or blank variables).

The following steps describe how to import an Excel (.xls) dataset into SAS using the
interactive SAS Import Wizard.

4

BIOS 600 – Fall 2010 Lab 4a

1. From the File menu in SAS, select ‘Import Data . . .’.

2. Check ‘Standard Data Source’ and select ‘Microsoft Excel 97/2000/2002/2003 Work-
book’ from the pulldown menu.

3. When the window pops up, click Browse and locate your file (‘H:\bios600\Data\heartrate edit.xls’).
Click Open and then OK.

4. Select the table you want to work with (Sheet title) from the pulldown menu and hit
OK.

5. Select the library where you want to save the file and then name your SAS dataset in
the Member: box (Heart).

6. Click Finish.

Similarly, a SAS Export Wizard is available for exporting files manually. This allows you
to manage your data in SAS and then export it in another format to give to an investigator
who doesn’t know SAS.

4 SAS Libraries

So far, we have only discussed temporary SAS datasets, which are deleted once you end your
SAS session. However, we can create permanent SAS datasets that will still be available to
you the next time you use SAS. To do this, we will use SAS libraries.

SAS Libraries are folders located on our hard drive in which we can save SAS datasets.
We basically tell SAS where these folders are and give them specific names, called librefs.
Permanent SAS datasets must be referenced with both their libref (name of the library where
the dataset is located) and their filename, using the form

libref.dataset name

For example, if I want to use a SAS dataset named ‘Heart’ that is located in the library
‘MyLibrary’, then I must refer to the dataset as ‘MyLibrary.Heart’. This convention tells
SAS, “go get the dataset Heart out of the library MyLibrary”.

4.1 Work Library

The Work Library is the only SAS library in which we do not need to worry about this naming
convention. Datasets in Work are technically named ‘Work.dataset name’ , however if the
libref is not included, SAS assumes you mean the Work Library. All datasets in Work are
temporary, which means they will be deleted when you close SAS.

5

BIOS 600 – Fall 2010 Lab 4a

4.2 Creating Libraries

By now, you have created the dataset Heart in SAS multiple ways, but we have only used
it within Work. If we want to use the dataset later, we’ll have to re-read it into SAS and
modify it all over again. To avoid this, we can create a new SAS Library in which we can
save our permanent SAS datasets.

We will use a LIBNAME statement to create a SAS Library. The LIBNAME statement is
free-standing - that is, it is not contained in either a data step or a procedure. We generally
include them near the top of our program.

There are three parts to a LIBNAME statement: 1) SAS Keyword LIBNAME , 2) Library
Name (libref), 3) Location on Hard Drive. In SAS, this format looks like

LIBNAME libref ‘Folder Path or Directory’ ;

Example: To create a library named ‘MyLibrary’ out of the folder ‘C:\Elena\SASstuff’,
then I run the following code.

LIBNAME MyLibrary ‘C:\Elena\SASstuff’ ;

Note that the folder ‘C:\Elena\SASstuff’ must already exist on your computer before SAS
will make it into a library!

I have created a permanent SAS Library on my H: drive named bios600 to store my SAS
datasets for this class. If you want create the same library to use throughout the semester
(and you want it to match mine), first create the necessary folders on your hard drive for
the path ‘H:\Bios600\Data\SAS’. Then run the following code in SAS.

LIBNAME bios600 ‘H:\Bios600\Data\SAS’ ;

If you’d rather name your SAS library something else, or point it to a different folder,
then just create the folders and change the above code accordingly.

4.3 Saving To SAS Libraries

Now that we have created a SAS Library, we would like to store datasets in it so that we
may use them later. For instance, now that I have read in the dataset Heart using one
of the ways described in earlier sections (and have finished manipulating it), I would like to
save it permanently to my bios600 library. To do so, I will use the code in Figure 4.

6

BIOS 600 – Fall 2010 Lab 4a

DATA bios600.Heart ; ∗name of new dataset to be stored in bios600 library;

SET Heart ; ∗old dataset from which new dataset is created ;

RUN ;

Figure 4: Creating dataset bios600.Heart in bios600 library from original dataset Heart

in Work library. Note that bios600.Heart is exactly the same as Heart.

Note that the name of my new permanent dataset (in library bios600) is the same as
the name of my old dataset (in Work). This is NOT necessary - I’m free to name my new
permanent dataset whatever I want (e.g., HeartRate). But the name of the old temporary
dataset needs to match the dataset that I have been working with.

4.4 Using Work and SAS Libraries

Any changes you directly make to a permanent SAS dataset will be permanent. For this
reason, we often use the Work library and permanent SAS libraries (e.g., bios600) together.

Generally, you will want to create a temporary SAS dataset from a permanent one. Then
you can just work with (manipulate, analyze) the temporary dataset in your program, so as
to avoid making accidental changes to the permanent dataset. For example, if you have the
permanent dataset bios600.Heart, you can make a new temporary version called tempHeart

using the following code.

DATA tempHeart ; ∗name of new temporary dataset saved in Work;

SET bios600.Heart ; ∗old dataset from which new dataset is created ;

RUN ;

Figure 5: Creating temporary dataset tempHeart in Work library from original permanent
dataset bios600.Heart in bios600 library. Note that tempHeart is exactly the same as
bios600.Heart.

Again, we chose the name tempHeart arbitrarily. I could have used Heart2 or newHrt

just as easily.

5 Modifying SAS Datasets

Once we have read in our dataset, we usually need to manipulate it a bit. This manipulation
is broadly referred to as data management, and takes place within a data step. Among other
things, data management can include

• looking for errors (e.g., negative ages)

• reshaping a dataset (horizontal vs. vertical format)

• deleting certain subjects (remove subjects with BMI< 17)

7

BIOS 600 – Fall 2010 Lab 4a

• creating new variables based on old ones (average blood pressure across visits 1-3)

• creating character variables out of numeric (BMI category from BMI)

• deleting variables

• renaming variables

5.1 SAS Functions

To do most data management tasks, we can use SAS functions. SAS functions work within
data steps only (i.e., only when the dataset is still under construction). These are operations
within SAS that can perform a task more easily and efficiently than if you wrote out the
code to perform the steps of that function.

For instance, suppose we have a dataset named SBP of 20 subjects who had their systolic
blood pressure (SBP) taken at three visits.

Subject SBP1 SBP2 SBP3
1 120 125 124
2 130 129 130
3 114 124 119
4 135 136 129
...

...
...

...
20 110 108 108

Table 1: Example dataset SBP

Let’s say we want to create a copy of this dataset named SBP2, but we are interested in
each person’s average systolic blood pressure. Both Figures 6 and 7 achieve this, but the
code in Figure 7 is actually more efficient, in terms of SAS computing time.

DATA SBP2 ;

SET sbp;

meanSBP = (SBP1 + SBP2 + SBP3)/3 ;

RUN ;

Figure 6: New dataset with manually created variable meanSBP.
DATA SBP2 ;

SET sbp;

meanSBP = mean(SBP1, SBP2, SBP3) ;

RUN ;

Figure 7: New dataset with SAS-function-created variable meanSBP.

8

BIOS 600 – Fall 2010 Lab 4a

Table 2 shows what the dataset SBP2 looks like based on either of the above sets of code.
In this very simple example, it might not matter which one you choose. But there are times
when you need to modify a dataset in a way that only a SAS function can do correctly.

Subject SBP1 SBP2 SBP3 meanSBP
1 120 125 124 123
2 130 129 130 129.66667
3 114 124 119 119
4 135 136 129 133.33333
...

...
...

...
...

20 110 108 108 108.66667

Table 2: New dataset SBP2

SAS functions work across rows. The general format of a SAS function is

variable=function-name(argument1, argument2,. . .);

Types of SAS functions:

• Arithmetic (absolute value, square root, mean, variance,. . .)

• Trigonometric (cosine, sine, arc cosine,. . .)

• Other mathematical and statistical (natural logarithm, exponential,. . .)

• Pseudo-random number generators

• Character string functions

A table of selected SAS functions and their arguments is posted on Blackboard.

6 Exercises

1. Create a SAS dataset from the file skinfold edit.xls using manual entry.

(a) Create a new variable mm 2 to represent half of each person’s measurement.

(b) Create a new variable mm plus30 to represent each person’s measurement plus 30.

2. Create a SAS dataset from the file cholesterol edit.txt using the INFILE statement.

(a) Create a new variable chol 10 to represent the average of each person’s measure-
ment and the number 10 (use the MEAN function).

9

BIOS 600 – Fall 2010 Lab 4a

(b) Create a new variable chol group to represent the product of the variables choles-
terol and group.

3. Use the SAS Import Wizard to import the file bph samp edit.xls.

(a) Create a new variable qol delta to represent the absolute difference between qol base
and qol 3mo (use ABS function).

(b) Create a new variable qol sum to represent the sum of qol base and qol 3mo.

(c) Create a new variable log qol to represent the natural log of each person’s qol delta
(use LOG function).

4. Save these modified datasets permanently in a SAS Library named bios600 (can use
the path identifier described in §4).

7 References

1. UNC ITS Introduction to SAS http://help.unc.edu/4433

2. UCLA SAS Resources http://www.ats.ucla.edu/stat/sas/

3. UCLA SAS FAQ http://www.ats.ucla.edu/stat/sas/faq/default.htm

4. BIOS511 Notes (Fall 2007)

10

http://help.unc.edu/4433
http://www.ats.ucla.edu/stat/sas/
http://www.ats.ucla.edu/stat/sas/faq/default.htm

	Data Step Structure
	Reading Datasets - Data Step
	SAS Variables - Name, Type
	Input Statement
	Method 1 -- Manual Entry
	Method 2 -- Infile Statement

	Importing Files Manually
	SAS Libraries
	Work Library
	Creating Libraries
	Saving To SAS Libraries
	Using Work and SAS Libraries

	Modifying SAS Datasets
	SAS Functions

	Exercises
	 References

