BIOS 150  QUIZ #6: 3 December 2002  FALL 2002

with sketch of solutions

Part A.
(25 pts.)  Hand in your cribsheet for Regression.

Part B
 (25 pts. total)  A common regression application in a laboratory is the ‘calibration curve’.  Typically two methods are available to determine a (blood level) concentration of some nutrient/exposure.  One method may be a gold standard (= expensive, time consuming, but precise) and another (new) method is a short-cut

(= quick, cheap, but more variable and possibly biased).

1. (8 pts.)    The gold standard measurement is often viewed as the correct result and known without error.  Taking it as the xi, and the new method as Yi, explain the following model:

Yi = (xi + Ei
especially the model components, and briefly critique this regression application, especially with regard to variance assumptions and possible bias of the new method.  (Set aside concerns for the variance parameter, (2 = V[Yi|Xi] = V[Ei], until part #6.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Yi = (xi + Ei, a linear model with intercept = 0,



is known as “regression through the origin”.


Yi = response for the new method (observable random variable)


( = (regression) slope; 


xi = “exact” result for the gold standard method


Ei = “error” (unobservable random variable

 Critique

 V[xi] = 0?
(i.e., is the standard really “gold”?)




V[Yi|Xi] constant? or increasing with xi?




E[Yi|Xi] = (0 + (1Xi
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2. (4 pts.)    Set up the least squares criterion for estimating any regression parameter(s) in the part #1 model.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SSE = ((Yi-(xi)2 is to be minimized with respect to (.

3. (2 pts.)    Find the least squares estimator(s) for the regression parameter(s) in the part #1 model.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(SSE/(( = (2(Yi–(xi)(–xi)= 0  (  
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4. (4 pts)    State the usual parametric assumptions for the part #1 model and write down the definitional likelihood.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


Yi ~ N{(xi, (2};      mutual independence of the Ys



         (              (

normality         constant variance (homoscedasticity)

L((, ()  =
    n

(
 i=1
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5. (3 pts.)    Looking at, and working very little with, your part #4 likelihood, show that the maximum likelihood estimator(s) for the part #1 regression parameter(s) is (are) the same as in part #2 (and #3).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

To maximize L((),we need to minimize SSE = ((Yi-(xi)2,



so the MLE is the least squares estimate.

6. (4 pts.)    Briefly describe the variance parameter, (2 = V[Yi|Xi] = V[Ei], and write down (or derive from part #5’s setup) an estimator for 
(2.  Comment briefly. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(2 = V[Yi|Xi] means V[Yi] at fixed Xi, a conditional constant variance.

MLE is 
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;  unbiased version is 
[image: image6.wmf]å

-

-

2

)

ˆ

(

1

1

i

i

X

Y

n

b

.







_1131198424.unknown

_1131211172.unknown

_1131211868.unknown

_1131212249.unknown

_1131200139.unknown

_1131197957.unknown

