(LECTURE #3 ON REGRESSION ANALYSIS)

BRIEF REVIEW

In Lecture 1 we considered the simple linear model 




Y = (0 + (1X + E,

and showed how it could be fitted using least squares.

In Lecture 2, assuming independence, normality, and homoscedasticity, we found the distributions of  
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X,  and thence various inference procedures. 


Today we shall consider in more detail

Pearson's product-moment correlation coefficient

r  =
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In a regression context, this is the correlation between the observed and fitted values.  But in general, this standard formula is unintuitive.  We do know that 




r2  =  1  (  SSE  =  (
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which happens only if all the data fall exactly on a line 

(of positive slope if  r = + 1 or negative if  r = – 1.)

But the best way to gain an intuition 

about smaller values of  r2 

may be to calibrate our eyes to some examples.

“CORRELATION MADE VISIBLE”

(Moore, Statistics: Concepts & Controversies)
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r = 0.01
r = 0.28
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r = 0.43
r = 0.73
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r = 0.91
r = 0.99

What about Galton's data?

TESTING  FOR  ZERO  CORRELATION

We know that ( = 0  if and only if  (1 = 0.

If  (1 = 0  then    
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Thus
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For Galton's data we had  n = 12,  r = .703, so
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  =  3.12      (as before)

But this doesn't help us test   



Ho:  (  =  (o     if  (o  (  0 .

DISTRIBUTION  OF  R

The population value of the correlation  r  is





( = (XY / (X (Y
and  r  is a consistent estimator of this parameter.

The distribution of  r  extends from  –1  to  +1, 

skewed (unless ( = 0), and is quite complicated.
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Fisher derived the  “z-transformation”  of  r :

Z  =  tanh-1(r)  =  
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where  (  =  tanh-1(()  =  
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This normal approximation is particularly convenient 

since its variance does not depend on the value of  (.

CONFIDENCE  INTERVAL  ON  RHO

To obtain a confidence interval on (,

form an interval for  (,  then transform back, 

using  (  =  tanh(()  =  
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tanh[    ]  (  (  (  tanh[    ]

EXAMPLE:

For Galton's data, with  n = 12 and r  = .703,
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  =  .8725  and  Z*  =  1.96  if  (  =  .05,

so

.8725 – 1.96/
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.8725 – .6533  (  (  (  .8725 + .6533

  .2192  (  (  (  1.5258

  tanh(.2192)  (  (  (  tanh(1.5258)

.216  (  (  (  .910

This also says that values of  (  between .216  and  .910 would be accepted at  5%  if tested, 

while other values would be rejected.

WHAT  IS  “PERFECT”  CORRELATION?

Consider Galileo's data again.

Height in “points”    1000     828     800     600   300

Horizontal distance  1500   1340   1328   1172   800 
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I have added another point, at (0,0).  

Galileo didn't do this, but he certainly could have.

Now  r = .967  (it was .994 without the added point).

But D is related to H by a physical law: D = ((H .

(The constant  is estimated from the data to be 47.)

If correlation measures the strength of this relationship, why is its value not equal to 1, the maximum possible?

SPEARMAN'S RANK CORRELATION

Convert the data to ranks:


let Ti  be the rank of Xi  and  Ui the rank of Yi .

Then correlate the ranks, obtaining

rS =  
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If the ranks are (T,U) = (1,1), ..., (n,n)


    then U =      0 
+  1 ( T
and  rS =  + 1

If the ranks are  (T,U)  =  (1,n), ..., (n,1)


    then U =  (n+1)
(  1 ( T
and  rS =  ( 1

For “well-behaved” data, r and rS are about the same,

but Spearman’s correlation is much less affected

by outliers than Pearson’s.

For Galileo's data, with or without (0,0), rS = 1.

For Galton's data, we have

X   62   63   64   65   66   67   67   68   68   69   70   71

Y   66   66   65   68   65   67   68   69   71   68   68   70

T    1     2     3     4     5    6.5  6.5  8.5  8.5  10    11   12

U  3.5  3.5  1.5  7.5  1.5    5   7.5   10   12  7.5   7.5   11

r = .70      rS = .74

Tests and confidence intervals for rS are obtained 

just as for  r,  if  n  is reasonably large (at least 10, say).

THE  (D2  FORMULA
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Now consider   (
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However, this formula is incorrect if there are ties.

Then we should use “average ranks”

with the ordinary correlation formula.
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