
Form Approved Through 11/30/2010 

PF 
12152040 >plication 

PI: KOSOROK, MICHAEL R 

I 1 POI CA142538-01 

Dual: 

.^i^Ai^vaiJuiiatcicuirlength r e s t r i c t i o ^ ^ ^ i i ^ S . o n t \RG. Z C A I SRC(99) 

Counci l : 10/2009 

Received: 01/28/2009 

1. TITLE OF PROJECT (Do not exceed 81 characters, including spaces and punctuation.) 

Statistical Methods for Cancer Clinical Trials 

2. RESPONSE TO SPECIFIC REQUEST FOR APPLICATIONS OR PROGRAM ANNOUNCEMENT OR SOLICITATION D NO ^ YES 

(If "Yes," state number and title) 

Number: P A R - 0 9 - 0 2 5 Title: N a t i o n a l C a n c e r Inst i tu te P r o g r a m Pro jec t ( P 0 1 ) A p p l i c a t i o n s 

3. PROGRAM DIRECTOR/PRINCIPAL INVESTIGATOR New Investigator No Yes 

3a. NAME (Last, first, middle) 

Kosorok, Michael R. 
3b. DEGREE(S) 

PhD MS MM 
3h. eRA Commons User Name 

MKOSOROK 

3c POSITION TITLE 

Professor and Chair 
3e. DEPARTMENT, SERVICE, LABORATORY, OR EQUIVALENT 

Biostatistics 

3f. MAJOR SUBDIVISION 
School of Public Health 

3g. TELEPHONE AND F/0< (Area code, number and extension) 

TEL: ( 9 1 9 ) 9 6 6 - 8 1 0 7 FAX: ( 9 1 9 ) 9 6 6 - 3 8 0 4 

3d. MAILING ADDRESS (Street, city, state, zip code) 

Department of Biostatistics 
CB #7420, McGavran-Greenberg Hall 
University of North Carolina at Chapel HillChapel 
Hill, NC 27599-7420 

E-MAIL ADDRESS: 

Kosorok@bios.unc.edu 

4. HUMAN SUBJECTS RESEARCH 

• No 13 Yes : 

4a. Research Exempt 

13 No • n Yes 

If "Yes," Exemption No. 

4b. Federal-Wide Assurance No. 

FWA-4801 

4c. Clinical Trial 

lEI No n Yes 

4d. NIH-defined Phase I 

Kl No n Yes 

Clinical Trial 

5. VERTEBRATE ANIMALS | 3 No D Yes 5a. Animal Welfare Assurance No. 

6. DATES OF PROPOSED PERIOD OF 
SUPPORT (month, day. vear—MM/DOr/Y) 

From 

12/01/09 

Through 

11/30/14 

7. COSTS REQUESTED FOR INITIAL 
BUDGET PERIOD 

7a, Direct Costs ($) 

$2,444,504 

7b. Total Costs (S) 

$2,865,864 

8. COSTS REQUESTED FOR PROPOSED 
PERIOD OF SUPPORT 

8a. Direct Costs ($) 

$12,350,257 

8b. Total Costs ($) 

$14,408,618 
9. APPLICANT ORGANIZATION 

Name University of North Carolina at Chapel Hill 

Address Office of Sponsored Research 

Administrative Office Building 

Suite 2200 

104 Airport Drive, CB #1350 

Chapel Hill, NC 27599-1350 

10. TYPE OF ORGANIZATION 

Public: -y D Federal |EI State D Local 

Private: - • L J Private Nonprofit 

For-profit: - * L J General L J Small Business 

I I Woman-owned L j Sociaily and Economically Disadvantaged 

11. ENTITY IDENTIFICATION NUMBER 
1 5 6 - 6 0 0 1 3 9 3 A 1 

DUNS NO. 6 0 8 1 9 5 2 7 7 ICong. District 4 

12. ADMINISTRATIVE OFFICIAL TO BE NOTIFIED IF AWARD IS MADE 

Name John Gallagher 

Title Interim Director 

Address Office Of Sponsored Research 
Administrative Office Bldg., Suite 2200, GB #1350 
104 Airport Drive, Chapel Hill, NC 27599-1350 

13. OFFICIAL SIGNING FOR APPLICANT ORGANIZATION 

Name T o n y G. W a l d rop 

Title Vice Chancellor for Research & Econ. Dev. 

Tel: (919)966-3411 

E-Mail: resadminosr(gunc.edu 

FAX: (919)962-3352 

Address Office of Sponsored Research, UNC-CH 
AOB, Suite 2200, CB #1350 
104 Airport Dr, Chapel Hill, NC 27599-1350 

Tel: (919)966-3411 FAX: (919) 962-3352 

E-Mail: resadminosr@unc.edu 
14. APPLICANTORGANIZATION CERTIFICATION AND ACCEPTANCE: Icertifythat 
the statements herein are true, complete and accurate to the best of my knowledge, and 
accept the obligation to comply with Public Health Services terms and conditions If a grant 
is awarded as a result of this application. I am aware that any false, fictitious, or fraudulent 
statements or claims may subject me to criminal, civil, or administrative penalties. 

SIGNATURE OF OFFICIAL NAMED IN 13. 
(/nTN/c, "Per" signature not acceptable.) 

PHS 398 (Rev. 11/07) 
d 

Face Page 

Actinal'or 
TonyG. 

DATE , 

laS/o^ 
ig -or 

Page 1 

mailto:Kosorok@bios.unc.edu
mailto:resadminosr@unc.edu


Use only if preparing an application with Multiple PDs/Pls. See http://qrants.nih.qov/arants/multi pi/index.htm for details. 

ContactProgramDirector/Principailnvestigator(Last, First. Middle): KoSOrok, M ichae l R., e t a l . 

3. PROGRAM DIRECTOR/PRINCIPAL INVESTIGATOR 

3a. NAME (LasL firsL middle) 

Davidian, Marie 
3c. POSITION TITLE 

Professor 
3e. DEPARTMENT, SERVICE, LABORATORY, OR EQUIVALENT 

Statistics 
3L MAJOR SUBDIVISION 

College of Physical and Mathematical Sciences 
3g. TELEPHONE AND FAX (Area code, numberand extension) 

TEL: (919)515-1940 FAX: 919)515-7591 

3b. DEGREE(S) 

PhD MS 
3h. NIH Commons User Name 

davidian^ 

3d. MAILING ADDRESS (Street, city, state, zip code) 
Department of Statistics 
Campus Box 8203 
2501 Founders Drive 
Raleigh, NC 27695-8203 

E-MAIL ADDRESS: 

davidian@stat.ncsu.edu 

3. PROGRAM DIRECTOR / PRINCIPAL INVESTIGATOR 

3a. NAME (LasL first, middie) 

George, Stephen L. 
3c. POSITION TITLE 

Professor 
3e. DEPARTMENT, SERVICE, LABORATORY, OR EQUIVALENT 

Biostatistics and Bioinformatics 
3f. MAJOR SUBDIVISION 

School of Medicine 
3g. TELEPHONE AND FAX (Area code, numberand extension) 

TEL: 919)681-2224 FAX: (919)668-9335 

3b. DEGREE(S) 

MD MES 
3h. NiH Commons User Name 

georgOOl 

3d. MAILING ADDRESS (Sfreef, city state, zip code) 

2424 Enwin Road, Suite 802, Room 8037 
Duke University Medical Center 
Durham, NC 27705 

E-MAIL ADDRESS: 

stephen.george@duke.edu 

3. PROGRAM DIRECTOR / PRINCIPAL INVESTIGATOR 

3a. NAME (Last, first, middle) 

3c. POSITION TITLE 

3e. DEPARTMENT, SERVICE, LABORATORY, OR EQUIVALENT 

3f. MAJOR SUBDIVISION 

3g. TELEPHONE AND FAX (Area code, numberand extension) 

TEL: FAX: 

3b. DEGREE(S) 3h. NIH Commons User Name 

3d. MAILING ADDRESS (Street, city, state, zip code) 

E-MAIL ADDRESS: 

3. PROGRAM DIRECTOR / PRINCIPAL INVESTIGATOR 

3a. NAME (LasL first, middle) 

3c. POSITION TITLE 

3e. DEPARTMENT, SERVICE, LABORATORY. OR EQUIVALENT 

3f. MAJOR SUBDIVISION 

3g. TELEPHONE AND FAX. (Area code, numberand extension) 

TEL: FAX: 

3b. DEGREE(S) 3h. NIH Commons User Name 

3d. MAILING ADDRESS (Sfreef, city, state, zip code) 

E-MAIL ADDRESS; 

PHS 398 (Rev. 11/07) Face Page-continued Form Page 1-continued 

http://qrants.nih.qov/arants/multi
mailto:davidian@stat.ncsu.edu
mailto:stephen.george@duke.edu


Program Director/Principal Investigator (Last, FirsL Middle): KoSOrok, M ichae l R., et a l . 

PROJECT SUMMARY (See instructions): 

The overall scientific goal of this ambitious program project is to develop highly innovative methods for 
cancer clinical trials that can hasten successful introduction of effective new therapies into practice. The 
method of approach is to leverage recent advances in statistical and computational science to create new 
clinical trial designs and data analysis tools that resolve many of the key scientific limitations of current 
clinical trial methodology. The projects focus on practical design and analysis problems in Phase II and 
Phase 111 clinical trials, the problem of missing data and efficient use of prognostic information, post
marketing surveillance and comparative effectiveness research using clinical trial data, pharmacogenetics 
and individualized therapies, and the potential of dynamic treatment regimens to improve cancer treatment. 
The proposed clinical trial design and analysis innovations have the potential to change the prevailing clinical 
trial paradigm and greatly increase the rate of discovery and translation of new treatments into clinical 
practice. Our multi-institutional approach includes an effective and energetic process for intense, 
coordinated implementation, communication and dissemination of results, including developing new software 
for practical implementation of the newly developed methods. Our comprehensive and novel approach will 
lead to significant improvements in cancer clinical trial practice that will result in improved health of cancer 
patients. 

RELEVANCE (See instructions): 

The proposed program project aims to dramatically improve the efficiency of the cancer clinical trial process 
in order to improve the health and longevity of cancer patients. This is extremely important to public 
health since almost all biomedical advances in cancer treatment must pass through the clinical trial process 
before becoming accepted clinical practice. 
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PROGRAM OVERVIEW 

1 INTRODUCTION TO RESUBMISSION/REVISION APPUCATION - N/A 

2 SPECIFIC AIMS 
The overall scientific goal of this ambitious program project is to develop highly innovative methods for cancer 
clinical trials that can hasten successful introduction of effective new therapies into practice by exploiting recent 
advances in statistical and computational science. The key questions to be addressed are: 

1. How can we leverage new statistical and computational techniques to yield major improvements in the 
performance of Phase II and Phase III cancer clinical trials? 

2. How can we use new statistical and computational methods to solve missing data problems in clinical 
trials and to maximize effective use of prognostic information to improve efficiency? 

3. How can we fully utilize existing clinical trial data to effectively monitor for rare adverse events and to find 
candidate treatment rules that can lead to improved care of cancer patients? 

4. How can we use new statistical and computational techniques to incorporate and leverage genetic and 
genomic information in both pre-clinical studies and clinical trials? 

5. How can we design new clinical trials that both discover and evaluate individualized treatment strategies 
that factor in past treatment experience and prognostic information to yield optimal patient outcomes? 

Each of these five questions forms the basis for one of the five proposed individual, interrelated research 
projects. While these questions are not specific clinical hypotheses, they are questions about how to test 
hypotheses in the clinical trial framework. The proposed program project seeks to develop statistical and com
putation techniques for efficiently and validly testing many kinds of hypotheses that can arise in cancer clinical 
science. This includes discovering both new possibilities and clearer limitations on the kinds of hypotheses that 
can be evaluated using clinical data. For each question, we will use cutting edge statistical and computational 
techniques to create new design and analysis tools that are theoretically valid for a broad and practical range of 
clinical trial hypotheses. These new tools will be evaluated for practical utility in both comprehensive simulation 
studies and analyses of existing clinical trial data. Theoretical validity is important because this provides assur
ance of both the internal and external validity (reproducibility) of the new tools in a general context to all potential 
future studies that may or may not be comparable to the simulated or existing data used for evaluation. The tools 
will be modified and refined until they pass all of these tests and will then be implemented in a user-friendly man
ner on several widely available software platforms and disseminated to the public with accompanying training 
documentation. Two cores will provide services to facilitate the simulation studies, analyses, and dissemination 
of software and training materials. A third core will provide overall leadership and administration to coordinate 
and optimize the many interactions between projects and cores. Although the program project cannot address 
all aspects of cancer clinical trials, the proposed research is comprehensive and integrated and maximizes 
the combined biostatistical methods skills represented in this trans-institutional collaboration. The proposed 
research will advance cancer clinical trial methodology in a fundamental and paradigm-changing manner that 
has the potential to improve significantly the health and well-being of cancer patients. 

3 BACKGROUND AND SIGNIFICANCE 

3.1 Global Significance Of Program 
One of the major challenges of clinical research in cancer is the bottleneck between laboratory research and 
clinical practice. Only a very few candidate treatments make it to human clinical trials and only 10% of treatments 
making it to trials demonstrate enough efficacy to be approved for marketing (see Food and Drug Administration, 
2004; Hogberg, 2005). Given the vast resources required to conduct clinical trials, this disconnect between 
laboratory and clinic is a serious economic as well as scientific roadblock. This issue does not appear to be the 
result of limitations in basic science or technology for drug discovery. Astonishing progress in basic science in 
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the past few decades and new technologies such as high throughput screening have resulted in the production 
of > 20,000 new compounds annually (Hogberg, 2005); however, this, has not yielded a proportional growth 
in new drugs approved for humans. In the opinion of the Food and Drug Administration (FDA), "the applied 
sciences needed for medical product development have not kept pace with the tremendous advances in the 
basic sciences... In many cases, developers have no choice but to use the tools and concepts of the last century 
to assess this century's candidates" (Food and Drug Administration, 2004). This statement highlights the urgent 
need for innovations in methods for the design and analysis of clinical trials that address the opportunities 
presented by the rapidly evolving scientific landscape. 

Through their significant involvement in cancer research (see Section 5.2), much of which is with the Cancer 
and Leukemia Group B (CALGB), investigators on this project are well-acquainted with and inspired by both 
specific studies and general settings where new design and analysis approaches would have a profound impact. 
For example, as pharmcogenomics is increasingly incorporated into CALGB trials such as protocols 80303 
(pancreatic cancer), 40101 (breast cancer), and 90401 (prostate cancer), the resulting insights on the genetic 
basis for drug disposition and response carry enormous potential for individualizing therapy. However, the 
volume, complexity, and types of data arising from emerging technologies in these studies present statistical 
and computational challenges that cannot be addressed with current methods. New techniques for design 
and analysis are critical if the promise of pharmacogenomics is to be realized. Similarly, collection of both 
time to death or relapse and longitudinal biomarkers such as prostate specific antigen (PSA) and measures 
such as quality of life (QOL) has become commonplace in CALGB trials such as protocol 90401 and 49907 
(breast cancer), and characterizing the relationship between the event time and the longitudinal progression is 
an important objective. Statistical techniques are required that specifically address this goal in the cancer trial 
context. As a final example, there is growing recognition that treatment of cancer is an ongoing process involving 
a sequence of treatment decisions; e.g., Grossi et al. (2008) refer to the successive choices of first-, second-, 
and third-line therapy based on evolving patient characteristics in non-small cell lung cancer as a "treatment 
algorithm" and call for research to identify the best such algorithm yielding the greatest overall benefit. Study 
of the entire sequence of treatment decisions requires a fundamentally new approach to design and analysis; 
the design of CALGB studies such as protocol 19808 in acute myelogenous leukemia, which involves a series 
of randomizations at treatment decision points, offers a promising starting point. 

The research projects that comprise this proposed program respond directly to these and other key chal
lenges posed by this new era of cancer research. The overarching theme of the program is to effect a paradigm 
shift in cancer clinical trial methodology by exploiting recent advances in the statistical and computational basic 
sciences to yield a new generation of clinical trial tools for discovering and evaluating promising new cancer 
treatments. Key such advances include the genomics revolution, high throughput screening tools such as mi
croarrays, individualized therapy and personalized medicine, dynamic treatment regimes, statistical learning 
methodologies such as machine and reinforcement learning, Bayesian statistical methods, methods for time-
to-event data, and statistical advances in high dimensional data analysis and modeling using semiparametric 
methods and empirical process theory. The assembled collaborators in this program, spanning three institu
tions, have collectively contributed to most, if not all, of these recent advances. The importance and need 
for the proposed new statistical methods for cancer clinical trials in public health is tremendous and will im
prove the lives of patients with many kinds of cancer and will be applicable to many other diseases, including 
cardiovascular disease and HIV infection. 

3.2 Prior Collaborations 
The project investigators have a number of existing collaborations on topics related to the proposed research 
that have resulted in either publications or funded grants. Examples of collaborations among University of North 
Carolina at Chapel Hill (UNC-CH) personnel in biostatistical methodology areas related to the project include 
Drs. Cai and Kosorok on semiparametric methods and time-to-event data (Song et al., 2008a); Drs. Cai and 
Zeng on joint modeling of longitudinal and time-to-event data (Zeng and Cai, 2005); Drs. Ibrahim and Zeng on 
missing data (Chen et al., 2007); Drs. Chu, Ibrahim, and Sandler on statistical methodology in cancer (Qu et 
al., 2008); Drs. Fine and Kosorok on semiparametric methods (Lee et al., 2005) and on microarray methods 
(Ma et al., 2006); and Drs. Lin and Zeng on statistical genetics (Lin and Zeng, 2006). At North Carolina State 
University (NCSU), such collaborations include Drs. Davidian and Stefanski on longitudinal data (Huang et al., 
2009), Drs. Davidian and Tsiatis on joint modeling of longitudinal and time-to-event data (Tsiatis and Davidian, 
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2004) and clinical trials (Tsiatis et al., 2007; Zhang et al., 2008), and numerous other joint publications. Duke 
University collaborations include Drs. George and Jung on clinical trial methods (Jung and George, 2009); Drs. 
Wang and Pang on cancer biomarkers (Wang et al., 2009); and many others. 

There are also significant collaborations related to the proposed program among personnel across two or 
more of the three institutions, including Drs. Fine (UNC-CH) and Tsiatis (NCSU) in the areas of semiparametric 
methods and time-to-event data (Fine and Tsiatis, 2000), Drs. Liu (UNC-CH) and Zhang (NCSU) on statistical 
model selection (Zhang et al., 2008), and Drs. Zhou (UNC-CH) and Wang (Duke) in the area of semiparametric 
methods (Wang and Zhou, 2006). Drs. Davidian and Tsiatis (NCSU) are adjunct faculty in the Duke Department 
of Biostatistics and Bioinformatics and collaborate regularly with Duke faculty on ongoing research projects. 
Moreover, Drs. Kosorok, Cai, Fine, Ibrahim, Wright, and other investigators at UNC-CH teamed up with Drs. 
Davidian and Tsiatis at NCSU to formulate the Biostatistics Core of the recently funded TraCS Institute at UNC-
CH, established by the NIH Clinical and Translational Science Award (CTSA, 1 ULI RR025747-01) to UNC-CH 
and partners (including NCSU). Overall, there exist many strong research collaborations among the program 
investigators across the three institutions. 

UNC-CH, NCSU, and Duke are all within a 25-mile radius and together form the Research Triangle of North 
Carolina. Research Triangle Park (RTP), centrally located to all three universities, is home to numerous re
search organizations, businesses, and institutes, several of which are collaborative ventures involving two or 
more of the universities, including the National Institute of Statistical Sciences (NISS). NISS shares its RTP 
building with the Statistical and Applied Mathematics Sciences Institute (SAMSI), a partnership between the 
three universities and NISS funded by the National Science Foundation that sponsors numerous research pro
grams attracting top international researchers. SAMSI programs are a unique resource that project personnel 
have and will continue to exploit. For example, Drs. Davidian and Tsiatis (NCSU) and Drs. Kosorok, Lin, and 
Zeng (UNC-CH) participated in a 2007 SAMSI summer program on "Dynamic Treatment Regimes and Multi
stage Decision-Making," where they initiated collaborations on dynamic treatment regimes and reinforcement 
learning in clinical trials that form the basis for Project 5 of the proposed program project. With the National In
stitute of Environmental Health Sciences in RTP and statistical software company SAS Institute in nearby Cary, 
the region has many important resources and opportunities that facilitate statistical research collaboration. 

3.3 Sequence of Events Leading to Program Application 
Some of the main events, in approximately chronological order, leading up to the proposed program project are 
listed below. This is not an exhaustive list of all of the scientific precursors to the application, as there are far 
too many of these to enumerate explicitly, but rather is an overview of the key material developments: 
June 2007: Drs. Davidian and Tsiatis (NCSU) and Drs. Kosorok, Lin, and Zeng (UNC-CH) participate in the 
above SAMSI program and initiate collaborations that formed the basis for Project 5. 
July 2007: The UNC Center for Innovative Clinical Trials (CICT) in the Gillings School of Global Public Health 
is formed, with Dr. Ibrahim as Director and initial funding and support provided by the School as part of the 
Gillings Innovation Laboratories initiative. Dr, Ibrahim initiates meetings with FDA officials and others to identify 
current key problems in clinical trial methodology. Drs. Kosorok, Cai, Lin and others at UNC-CH, Drs. Davidian 
and Tsiatis (NCSU), and Drs. George and Jung (Duke) are members of the CICT. Resulting collaborations form 
the basis for aims in Projects 1,2 and 3. 
October 2007: Inspired by the SAMSI program, Drs. Kosorok and Zeng (UNC-CH) form the "Reinforcement 
Learning Group," which meets weekly to work on reinforcement learning, dynamic treatment regimes, statistical 
learning, and related high dimensional problem in biostatistics. Participants include Drs. Kosorok, Fine, Liu, 
Wang and Zeng. Research from this collaboration has yielded key components of Project 3,4, and 5. 
March 2008: Dr Ram Tawari from the National Cancer Institute (NCI) approaches Drs. Davidian and Tsiatis 
(NCSU) to encourage the Research Triangle universities to collaborate on a statistical methods program project 
because of the strong research and NCI funding records of investigators at UNC-CH, NCSU, and Duke. Dr. 
Davidian discusses this with Dr. Kosorok (UNC-CH). Drs. Ibrahim and Kosorok from UNC-CH meet with Dr. 
George and others at Duke to discuss collaborations in clinical trials methodology. 
April 2008: Drs. Davidian and Tsiatis (NCSU) and Drs. Cai, Ibrahim, Kosorok, and Lin (UNC-CH) meet at 
NISS to begin work on a program project in cancer clinical trials. Drs. Kosorok and Zeng (UNC-CH) attend with 
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Drs. Davidian and Tsiatis (NCSU) the "Atlantic Coast Symposium on the Mathematical Sciences in Biology and 
Biomedicine" organized by Dr. Davidian. The resulting collaboration contributed to the aims of Project 5. 
May 2008: The proposed five individual research projects are identified and outlined. Dr Eric Feuer, Chief 
of the NCI Statistical Research and Applications Branch, is contacted and begins advising the group. After 
additional discussions with NCI, the program project concept is assigned to the Cancer Therapy and Evaluation 
Program under the direction of Dr. Heng Xie, who becomes our primary NCI contact and adviser. 
June 2008: Drs. George and Jung (Duke) are invited to join the group because of their interest and expertise 
in clinical trial methods as identified during the March 2008 meeting and through previously established col
laborations between NCSU and Duke. The Steering Committee as currently proposed is formed. A program 
project wiki is established at NCSU and is used for organizing research activities. This wiki is the prototype for 
the proposed program wiki to be housed at UNC-CH. 
July-October 2008: Extensive research and planning meetings of the Steering Committee occur to formulate 
a more complete program project proposal with its aims fleshed out as well as the three proposed cores. Writing 
is initiated, and additional investigators are identified. Arrangements are made to present the program project 
plans to NCI for feedback. 
November 2008: The program project concept is presented to NCI on November 10,2008. Constructive feed
back and positive encouragement is provided by Dr. Xie and his associates at NCI. Writing continues. 
December 2008: The letter-of-intent is submitted and approved at NCI. Writing continues. Drs. Kosorok, Da
vidian, and George obtain significant institutional commitments of support for the project. 
January 2008: The grant proposal is completed and submitted to NIH for review. 

3.4 Advantages of a Group Effort 
While most of the investigators have common interests in clinical trial methodology, there is tremendous diversity 
in resiearch areas, modes of problem solving, and resources among this group of scientists at UNC-CH, NCSU, 
and Duke. This simultaneous unity of purpose and diversity of skills, along with our geographic proximity, 
make us uniquely qualified to solve the extremely challenging technical and applied problems identified in the 
proposed research and thereby to make a significant contribution to clinical trial methodology. The extensive 
practical scientific expertise at Duke through experience with the CALGB brings valuable focus and wisdom to 
the program. The extensive experience in model selection, dynamic treatment regimes, and related areas of 
applied statistics and biostatistics at NCSU is crucial to the success of the program. The extensive expertise at 
UNC-CH in clinical trial methodology, time-to-event analysis, empirical processes, and genomics also plays a 
critical role. These topics represent only a small subset of the many areas of biostatistical expertise represented 
on this project. Each individual and each institution bring something to this program that is important to the 
program's success. The combined strength of this group effort is essential to achieve high-impact, paradigm-
changing advances—rather than only incremental improvements—in statistical methods for cancer clinical trials. 

4 LIST OF PROJECT AND CORE COMPONENTS 
The following are the five individual research project titles and leadership proposed in this program project: 
Project 1: innovative Clinical Trial Design and Analysis. Project Leader: Dr. Ca[ (UNC-CH). Project co-
Leaders: Drs. George (Duke) and Ibrahim (UNC-CH). Project co-Investigators: Drs. Blackwell (Duke), Craw
ford (Duke), Goldberg (UNC-CH), Jung (Duke), Kosorok (UNC-CH), Pang (Duke), Tsiatis (NCSU), Wang (Duke), 
Zeng (UNC-CH), Zhang (NCSU), and Zhou (UNC-CH). 
Project 2: Methods for Missing and Auxiliary Data in Clinical Trials. Project Leader: Dr. Davidian (NCSU). 
Project co-Leaders: Drs. Ibrahim (UNC-CH) and Tsiatis (NCSU). Project co-Investigators: Drs. Bondell (NCSU), 
Boos (NCSU), Cai (UNC-CH), Fine (UNC-CH), Jung (Duke), Spector (Duke), Stefanski (NCSU), and Zhang 
(NCSU). 
Project 3: Methods for Post Marketing Surveillance and Comparative Effectiveness Research. Project 
Leader: Dr. Ibrahim (UNC-CH). Project co-Leaders: Drs. Chu (UNC-CH), Kosorok (UNC-CH) and Zhang 
(NCSU). Project co-Investigators: Drs. Bondell (NCSU), Carpenter (UNC-CH), Fine (UNC-CH), and Sandler 
(UNC-CH). 
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Project 4: Methods for Pharmacogenomics and Individualized Therapy Trials. Project Leader: Dr. Lin 
(UNC-CH). Project co-Leaders: Drs. Jung (Duke), Kosorok (UNC-CH) and Owzar (Duke). Project co-Investiga
tors: Drs. Auman (UNC-CH), Bondell (NCSU), Febbo (Duke), Harpole (Duke), Liu (UNC-CH), McLeod (UNC-
CH), Pang (Duke), Tzeng (NCSU), Wang (UNC-CH), Wright (UNC-CH), Zeng (UNC-CH), and Zhang (NCSU). 
Project 5: Methods for Discovery and Analysis of Dynamic Treatment Regimes. Project Leader: Dr. 
Tsiatis (NCSU). Project co-Leaders: Drs. Davidian (NCSU) and Kosorok (UNC-CH). Project co-Investigators: 
Drs. Bondell (NCSU), Boos (NCSU), Socinski (UNC-CH), Stefanski (NCSU), Zeng (UNC-CH), and Zhang 
(NCSU). 
These projects are supported by three cores: 
Core A: Administrative Core. Core Director: Dr. Kosorok (UNC-CH). Core co-Directors: Drs. Davidian 
(NCSU), George (Duke), Ibrahim (UNC-CH), Jung (Duke) and Tsiatis (NCSU). Core Contributors: Drs. Cai 
(UNC-CH), Lin (UNC-CH), and Owzar (Duke). 
Core B: Data Compilation Core. Core Director: Dr George (Duke). Core co-Directors: Drs. Cai (UNC-CH), 
Chu (UNC-CH), Davidian (NCSU), Owzar (Duke), and Tsiatis (NCSU). 
Core C: Computational Resource and Dissemination Core. Core Director: Dr. Davidian (NCSU). Core 
co-Directors: Drs. Lin (UNC-CH) and Owzar (Duke). 

5 PRELIMINARY STUDIES 

5.1 Qualification of Investigators 
Michaei R. Kosorok, PhD, lead PD/PI, Core A Director, co-Leader for Projects 3, 4 and 5, and co-

lnvestigator for Project 1. Dr. Kosorok is Professor and Chair df Biostatistics and Professor of Statistics 
and Operations Research at UNC-CH. He is also Director of the Biostatistics Core of the UNC-CH TraCS In
stitute (CTSA). His expertise is in clinical trials, survival analysis, microarrays, statistical learning, empirical 
processes, and semiparametric inference, and he has written a text on the last two topics (Kosorok, 2008). He 
is an elected Fellow of the American Statistical Association (ASA) and the Institute of Mathematical Statistics 
(IMS). 
Marie Davidian, PhD, PD/PI, Project 2 Leader, Core C Director, Project 5 co-Leader, and co-Director for 
Cores A and B. Dr Davidian is William Neal Reynolds Professor in the Department of Statistics and Director of 
the Center for Quantitative Sciences in Biomedicine at NCSU and Adjunct Professor of Biostatistics and Bioin
formatics at Duke. She also serves as Executive Editor of Biometrics, regarded by many to be the top journal in 
the field of biostatistics. Her expertise is in longitudinal data, missing data, biomedical modeling, clinical trials, 
and semiparametric methods. She is an elected Fellow of the ASA and IMS. 
Stephen L, George, PhD, PD/PI, Core B Director, Project 1 co-Leader, and Core A co-Director. Dr. George 
is Professor of Biostatistics and Bioinformatics at Duke and Director of Biostatistics for the Duke Comprehen
sive Cancer Center (DCCC) and for the CALGB. His expertise is in clinical trials, translational science, and 
prognostic and predictive models. He is an elected Fellow of the ASA. 
Joseph G. Ibrahim, PhD, co-PD/PI, Project 3 Leader, co-Leader for Projects 1 and 2, and co-Director 
for Cores A and B. Dr Ibrahim is Alumni Distinguished Professor of Biostatistics at UNC-CH, the Lineberger 
Comprehensive Cancer Center (LCCC) Director of Biostatistics, and the Director of the UNC CICT. His exper
tise is in Bayesian methods, missing data, clinical trials, and cancer genomics. He has published two texts on 
Bayesian methods (Ibrahim et al., 2001; Chen et al., 2008). He is an elected Fellow of the ASA and IMS. 
SIng-Ho Jung, PhD, co-PD/PI, co-leader for Projects 1, 2, and 4, and co-Director for Core A. Dr. Jung is 
Professor of Biostatistics and Bioinformatics at Duke. Dr. Jung serves as the Director of the CALGB Biostatis
tics unit. His expertise is in survival analysis, various types of clustered and longitudinal data analysis, design 
and analysis methods for Phase II cancer clinical trials, microarrays, and proteomics. 
Anastasios A. Tsiatis, PhD, co-PD/PI, Project 5 Leader, Project 2 co-Leader, co-Director for Cores A and 
B, and co-lnvestigator for Project 1. Dr. Tsiatis is Drexel Professor of Statistics at NCSU and Adjunct Pro
fessor of Biostatistics and Bioinformatics at Duke. His expertise is in survival analysis, causal inference, clinical 
trials, and semiparametric methods, and is author of a text on semiparametric methods (Tsiatis, 2006). He is 
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an elected Fellow of the ASA and IMS. 
Jianwen Cai, PhD, Project 1 Leader, Project 2 co-lnvestigator, and Core A Contributor. Dr. Cai is Pro
fessor and Associate Chair of Biostatistics at UNC-CH. Her expertise is in clinical trials, survival analysis, and 
semiparametric methods. She is an elected Fellow of the ASA. 
Danyu Lin, PhD, Project 4 Leader, Core C co-Director, and Core A Contributor. Dr. Lin is Dennis Gillings 
Distinguished Professor of Biostatistics at UNC-CH. His expertise is in clinical trials, survival analysis, genomics, 
and semiparametric methods. He is an elected Fellow of the ASA and IMS. 

The above investigators constitute the Steering Committee, which provides overall scientific leadership. 
Table 1 gives the complete list of program project investigators with percent effort by institution, project and 
core. The statistical methodology experts in addition to the Steering Committee members are Drs. Chu, Fine, 
Liu, Wright, Zeng, and Zhou (UNC-CH); Drs. Bondell, Boos, Stefanski, Tzeng, and Zhang (NCSU); and Drs. 
Owzar, Pang, and X. Wang (Duke). Dr. W. Wang (UNC-CH) is a computer scientist, Dr Carpenter (UNC-
CH) is a health policy and management expert, and Drs. McLeod and Auman (UNC-CH) are pharmacologists. 
Investigators with cancer clinical and translational expertise include Drs. Goldberg, Sandler, and Socinski (UNC-
CH) and Drs. Blackwell, Crawford, Febbo, Harpole and Spector (Duke). Details on the qualifications of these 
investigators are presented elsewhere in the project and core narratives. 

5.2 Cancer and Clinical Trial Experience and Collaborations 
The investigators at UNC-CH have considerable experience in clinical trials, both in cancer and in other dis
eases. With over 15 years of experience in cancer clinical trials, Dr Ibrahim is currently Biostatistics Core 
Director at the LCCC at UNC-CH, Biostatistical Core Leader of the Gl SPORE grant and the melanoma pro
gram project at the LCCC, and co-director of the Biostatistics Core of the UNC-CH Breast SPORE grant. Dr. 
Ibrahim has been heavily involved in the design and analysis of Phase I and Phase II clinical trials at LCCC. 
Previously, He worked for 8 years at the Dana-Farber Cancer Institute (DFCI) and with the Eastern Cooperative 
Oncology Group (ECOG) and was the senior and lead statistician on the Gastrointestinal Committee and the 
Melanoma Committee in ECOG. Dr. Ibrahim was instrumentally involved in the design and analysis of the piv
otal melanoma Phase 111 clinical trials El684, El690, El 697, and El694, which ultimately led to FDA approval 
for the use of high-dose interferon as the standard treatment in high-risk melanoma. Drs. Kosorok, Cai, Chu, 
and Fine also have extensive clinical trials methods experience in cancer and in other diseases. Dr. Kosorok 
was chair of the Data Safety Monitoring Committee for th? intramural program of the National Institute of Child 
Health and Human Development from 2001 -2006. 

Dr. George (Duke) has nearly 40 years experience in cancer clinical trials, including 7 years in the Depart
ment of Bioinformatics at the MD Anderson Cancer Institute; 1 year at the European Organization for Research 
on the Treatment of Cancer (EORTC) in Brussels, where he established and was first Director of the EORTC 
Data Center; 12 years as Director of Biostatistics at St. Jude Children's Research Hospital; and 20 years as 
Director of Biostatistics at the DCCC, the last 18 years also as Group Statistician and Director of the Statistical 
Center for the CALGB. He has served on several advisory committees and study sections for the NCI, on numer
ous Data and Safety Monitoring Boards (DSMBs) for government and industry sponsored cancer clinical trials, 
and for 4 years on tfie FDA Oncology Drug Advisory Committee (ODAC). Dr George has also been active in the 
Society for Clinical Trials, including serving a term as President. Dr Jung (Duke) has worked at NCI-designated 
cancer centers at Mayo Clinic, Duke, and Indiana University, serving as Director of the Biostatistics Core at the 
latter. He has also worked in the North Central Cancer Treatment Group; the American College of Surgeons 
Oncology Group, for which he was acting group statistician; and CALGB, for which he is currently Director of 
the Biostatistics Unit as well as faculty statistician for the Lymphoma and Imaging Committees and the Can
cer Prevention Subcommittee. Dr Owzar is Director of the CALGB Bioinformatics Unit, faculty statistician for 
Pharmacology and Experimental Therapeutics and Transplant committees and represents the Statistical Center 
on the CALGB Correlative Science Advisory Committee. He is also involved in design and analysis of phar
macogenomics studies in cancer and is a member of the Pharmacogenetics of Anticancer Agents Research 
Group of the Pharmacogenetics Research Network. Dr. Wang is faculty statistician for the Respiratory Com
mittee and the Cancer Control and Health Outcome Committee in CALGB, and Dr. Pang is faculty statistician 
on the Respiratory and Oncology Nursing committees in CALGB and currently serves as a statistical reviewer 
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Table 1: Percent effort of all investigators by institution, project and core: * denotes Steering Committee mem
bers and project and core leadership, f denotes PD/PIs and co-PD/PIs, and t denotes Executive Committee 
members. 

1 Institution 

UNC-CH 

Name 

Dr. Michael R. Kosorok*" 
Dr. J. Todd Auman 
Dr. Jianwen Cai* 
Dr. William R. Carpenter 
Dr. Haitao Chu 
Dr. Jason P. Fine 
Dr. Richard M. Goldberg 
Dr. Joseph G. Ibrahim*l 
Dr. Danyu Lin* 
Dr. Yufeng Liu 
Dr. Howard L. McLeod 
Dr. Robert S. Sandler 
Dr. Mark A. Socinski 
Dr. Wei Wang 
Dr. Fred A. Wright 
Dr. Donglin Zeng 
Dr. Haibo Zhou 
UNC-CH Total 

NCSU Dr. Marie Davidian*^' 
Dr. Howard D. Bondell 
Dr. Dennis D. Boos 
Dr. Leonard A. Stefanski 
Dr. Anastasios A. Tsiatis*'' 
Dr. Jung-Ying Tzeng 
Dr. H. Helen Zhang 
NCSU Total 

Duke Dr. Stephen L. George*" 
Dr. Kimberly L. Blackwell 
Dr. Jeffrey Crawford 
Dr. Philip G. Febbo 
Dr. David H. Harpole 
Dr, Sin-Ho Jung*i 
Dr. Kouros Owzar 
Dr Herbert Pang 
Dr Neil L. Spector 
Dr. Xiaofei Wang 

Duke Total 
Grand Total 

Project 
1 
5 

15* 

5 
10 

5 
5 

45 

5 

5 
10 
10 
5 
5 

10 

5 

10 
45 

100 

2 

10 

10 

5 

25 

15* 
10 
5 
5 

10 

5 
50 

5 

5 

10 
85 

3 
10 

5 
10 
5 

15* 

5 

50 

5 

5 
10 

60 

4 
10 
5 

15* 
5 
5 

5 
10 
5 

60 

5 

10 
5 

20 

5 
5 

10 
5 
5 

30 
110 

5 
10 

5 

5 

20 

5 
5 
5 
5 

15* 

5 
40 

60 

Core 
A 

15* 

5 

10 
5 

35 

10 

10 

20 
10 

10 

20 
75 

B 

5 

5 

10 

5 

5 

10 
15* 

10 

25 
45 

C 

10 

10 

15* 

15 

10 

10 
35 

Total 

50 
5 

30 
5 

15 
15 
5 

45 
30 
5 
5 
5 
5 
5 

10 
15 
5 

255 

50 
25 
10 
10 
45 
10 
25 

175 

35 
5 
5 
5 
5 

35 
25 
10 
5 

10 
140 
570 
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for the Cancer Protocol Committee at Duke. 
Dr. Tsiatis (NCSU) has extensive experience in cancer clinical trials and cancer research. From 1979-

1981, he worked with Dr George at St. Jude Children's Research Hospital on the design and analysis of 
childhood leukemia trials. Dr. Tsiatis was on the faculty at DFCI from 1981-1990, where he collaborated on 
design and analysis of trials in lymphoma and multiple myeloma; in addition, he was affiliated with ECOG, for 
which he served as Coordinating Statistician from 1982-1984. Dr Tsiatis was the primary statistical consultant 
for the World Health Organization Breast Self Examination Study, a group randomized trial conducted in the 
former Soviet Union. From 1999-2004, he was a member of the DSMB for the CALGB. Dr. Tsiatis also has 
considerable experience in clinical trials in HIV infection, cardiovascular disease, and diabetes, and has served 
on numerous DSMBs. Dr. Davidian served as Senior Statistician on numerous HIV clinical trials through her 
affiliation with the AIDS Clinical Trials Group in 1994-1996, she currently collaborates regularly on design and 
analysis of cardiovascular disease trials at Duke Clinical Research Institute (DCRI). 

5.3 Preliminary Results 
Project 1: Innovative Clinical Trial Design and Analysis. The team of investigators has made extensive 
progress in developing statistical methods for novel clinical trial and analysis issues that provides an ideal 
starting point for developing the proposed new methodology. This includes development of joint models of 
longitudinal and time-to-event data (Brown and Ibrahim, 2003a, 2003b, 2005; Ibrahim et al., 2004; Tsiatis and 
Davidian, 2004; Zeng and Cai, 2005; Chi and Ibrahim, 2006, 2007) and development of methods for study 
designs with case-cohort sampling or correlated outcomes for time-to-event data. See, for example, Cai and 
Zeng (2004, 2007), who developed sample size and power methodology for a case-cohort design; Wang and 
Zhou (2006), who developed methods of using prognostic data to improve designs of clinical studies; and Jung 
and Jeong (2003), who studied the weighted rank test under cluster randomization and Jeong and Jung (2006) 
under subunit randomization. Gangnon and Kosorok (2004) proposed closed form sample size formulae for gen
eral clustered data. See also Song et al. (2008a). Other related preliminary work by our team includes methods 
for comparing multiple arms obtained from multistage randomized Phase II trials (Jung and George, 2008) and 
a new semiparametric method for covariate adjustment that separates modeling of covariate relationships from 
estimation of the treatment effect (Tsiatis et al., 2008). 
Project 2: Methods for Missing and Auxiliary Data in Clinical Trials. In Zhang et al. (2008), Drs. Davidian 
and Tsiatis outline a broad framework for covariate adjustment in clinical trials for general types of outcomes 
and two or more treatments based on taking a semiparametric perspective that places minimal restrictions on 
the nature of the data. A general strategy for deriving estimators for parameters of interest when data are miss
ing due to censoring using the theory of semiparametrics has been outlined in Sections 9.3 and 10.4 of Tsiatis 
(2006). Dr. Ibrahim and co-workers have developed case-deletion measures for assessing the influence of sev
eral observations for a variety of statistical models for missing data (Cho et al., 2009). Dr Fine has proposed 
sensitivity analysis methods in the special case of longitudinal analysis of a binary outcome, as in El 684, where 
there is potentially informative drop-out (Todem and Fine, 2008). These innovative results, along with the other 
preliminary results described in more detail in Project 2, are collectively a very advantageous starting point for 
the proposed research of Project 2. 
Project 3: Methods for Post Marketing Surveillance and Comparative Effectiveness Research. Dr 
Ibrahim and colleagues have developed powerful Markov chain Monte Carlo approaches for models with la
tent effects such as those arising in meta-analyses of clinical trials (Chen et al., 2006). Investigators have also 
made preliminary progress on developing statistical methods for diagnostic accuracy studies in meta-analysis 
using random effects models in the presence of a gold standard (Chu and Cole 2006; Chu and Guo 2009). Dr 
Kosorok developed two new technical tools in empirical processes that pave the way for developing methods of 
inference for semiparametric techniques for rare time-to-event data: a more flexible central limit theorem (see 
Theorems 11.16 and 11.18 in Kosorok, 2008) and a novel compound Poisson process methodology (Kosorok 
and Song, 2007; Song etal., 2008b). These preliminary results, and others described in more detail in Project 
3, will greatly facilitate progress on the proposed research. 
Project 4: Methods for Pharmacogenomics and Individualized Therapy Trials. The investigators have been 
at the forefront of developing statistical methods to detect haplotype-disease associations in cross-sectional, 
case-control, and cohort studies (e.g., Lin et al., 2005; Lin and Zeng, 2006; Zeng et al., 2006) and to analyze 
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untyped SNPs in case-control studies (Lin et al., 2008). Dr. Lin's software interface HAPSTAT and SNPMStat 
have been downloaded and utilized by many researchers. The team also has considerable experience in vari
able selection and model building in various contexts. Lu and Zhang (2007), Zhang and Lu (2007), and Johnson 
et al. (2008) studied moderate-scale variable selection under semiparametric regression models for censored 
event times data, while Zhang et al. (2008) proposed a new shrinkage method based on the supnorm penalty 
for variable selection in multiclass support vector machines for high dimensional data. Dr. Wright has developed 
a novel approach to handling significance in high dimensional data, recently described in the context of genetic 
association testing (Ghosh et al., 2008), that is generally applicable. Although the approach shares some sim
ilarities with an approach simultaneously published by Zhong and Prentice (2008), simulations showed that a 
standard confidence interval procedure of Zhong and Prentice has incorrect confidence coverage in some set
tings, while the proposed approach appears to be uniformly correct. 
Project 5: Methods for Discovery and Analysis of Dynamic Treatment Regimes. 

Drs. Davidian and Tsiatis have developed 
methods for estimation of mean outcomes for dy
namic treatment regimes from sequentially ran
domized studies (Lunceford, Davidian, and, and 
Tsiatis, 2002; Wahed and Tsiatis, 2004, 2006), 
and have developed other methods for infer
ence on dynamic treatment regimes (Johnson 
and Tsiatis, 2004, 2005; Zhang et al., 2009). 
Drs. Kosorok and Zeng have undertaken a pre
liminary assessment of the proposed reinforce
ment learning methods for discovering optimal 
dynamic treatment regimes using a simple com
puter model for a generic cancer (Zhao et al., 
2008) based on a simple difference equation that 
balances a chemotherapeutic agent's efficacy 
and toxicity. Based on data from 1000 patients 
simulated from the model in a clinical trial of the 
type proposed in Project 5, they used the meth
ods to determine the optimal timing and dosing 
of the agent over a 6 month period. Figure 1 
presents the disease severity of 200 new sim
ulated patients receiving the optimal treatment 
rule (dark solid line) compared to them receiving 
10 different fixed dose regimens (dotted lines), 

showing how the optimal rule determined by the proposed methods is clearly superior after 6 months of treat
ment. These results demonstrate the considerable promise of the methods proposed in Project 5. 
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Figure 1: Disease severity (lower is better) as a function of 
time (in months) for the optimal treatment based on rein
forcement learning (dark solid line) versus fixed dose options 
(dotted lines). 

6 OVERALL RESEARCH DESIGN AND METHODS 

The overall research strategy is to discover, create, evaluate, validate, and disseminate new statistical method
ology to solve important design and analysis problems related to cancer clinical trials in order to significantly 
advance cancer public health. Our group of scientists from UNC-CH, NCSU, and Duke is uniquely experienced 
and prepared to take on this challenge. The discovery and creation stages of the proposed research will be ac
complished through individual and collaborative problem solving and sharing of ideas. This aspect is a natural 
extension of our strong track record in developing novel statistical methods to solve important health science 
problems, combined with our close attention to cancer clinical trial practice and experience. The discovery and 
creation stages will both feed into and benefit from the evaluation and validation stages in order to produce 
new statistical design and analysis tools that work in practice. The evaluation and validation stages of our 
research will involve theoretical assessment, simulation studies, and analyses of existing data. These three 
phases are of necessity inter-dependent, because discoveries made in one phase will influence and illuminate 
lines of attack for another phase. The theoretical assessment phase is extremely important, as this provides 
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insight into internal and external validity of the proposed methodology that transcends any conclusions obtain
able from simulation studies or data analyses. The reason for this is that theoretical results can provide insight 
into how a methodology will perform in broad generality for future clinical data sets, trials, and analyses, not 
just for observed data. In contrast, simulation and data based evaluations can only provide insight into perfor
mance for an observed data set or an observed collection of data sets. Nevertheless, simulation studies and 
analyses of existing data are also crucially important, because they both calibrate the theoretical results and 
provide a critical reality check. They also provide motivation and direction in methodological development, as 
mentioned above, as well as practical insights that can prevent spending too much time on false leads. We wish 
to emphasize, however, that the collective experience and ability of our research team to provide theoretical 
rigor in combination with simulation and data evaluations is uniquely strong and is a key feature of our proposal. 
The fact that we have researchers spanning theoretical, computational, and clinical perspectives enables the 
strongest possible research thrust and greatest likelihood of success in achieving the proposed research goals. 

The dissemination stage consists of developing, refining, and testing software implementing the new design 
and analysis tools and creating tutorials and methods of dissemination using our program project web site. We 
are committed to putting our new technology into the hands of practitioners to improve public health. 

We next present a description of several cross-cutting biostatistical research themes that run through at least 
two or more of the proposed projects. Part of our overall research strategy is to collaborate across projects on 
these themes for increased efficiency; our critical mass of expertise across the three combined institutions on 
these themes is a powerful and unique strength of the project. We will then present brief summaries of the 
methods for the individual research projects and cores, including descriptions of opportunities for intra-program 
collaboration and relevant cross-cutting research themes, as well as core support applicable to that project or 
core. 

6.1 Cross-Cutting Statistical Research Themes 
Statistical Learning. Statistical learning methods, including machine learning and reinforcement learning, are 
powerful data mining methods for classification and regression that can be used to develop high dimensional 
rules for making decisions about, for example, what treatment to give what patient. Statistical learning methods 
play an important role in Aim 3.ii of Project 1, Aim 5 of Project 3, Aims 2 and 4 of Project 4, and all Aims of 
Project 5. Investigators with expertise in statistical learning include Drs. Kosorok, Lin, Wright, Liu, and W. Wang 
(see the book by Wang and Yang, 2005) of UNC-CH; Drs. Bondell, Davidian, Tsiatis, Tzeng, and Zhang at 
NCSU; and Drs. Jung, Owzar, Pang, and X. Wang at Duke. 
Model and Variable Selection. Model and variable selection is a challenging but ubiquitous concern in many 
areas of biostatistics. The consequences of ignoring the model or variable selection process in statistical in
ference can lead to serious biases and misleading conclusions. This general area plays an important role in 
at least two aims or sub-aims in all of the research projects. Investigators with expertise in model and variable 
selection include Drs. Cai, Ibrahim, and Fine at UNC-CH; Drs. Bondell, Boos (see the book by Boos and Ste
fanski, 2006), Stefanski, and Zhang at NCSU; and Drs. Jung and X. Wang at Duke. 
Statistical Genetics and Genomics. This is an extremely exciting and dynamic area and is especially chal
lenging because of the very high dimensional data involved. The general area plays an important role in Aim 1 
of Project 2 and in two or more aims in Projects 3, 4 and 5. Investigators with expertise in Statistical Genetics 
and Genomics include Drs. Kosorok, Lin, Wright, and Zeng at UNC-CH; Dr. Tzeng at NCSU; and Drs. Owzar 
and Pang at Duke. 
Semiparametric Inference and Empirical Processes. Semiparametric models are statistical models with 
both a parametric component for scientific interpretability and a nonparametric component for robustness to 
biological complexities such as can arise in medical data. Empirical processes are high dimensional statis
tical summaries of data associated with many important and complex statistical settings, including inference 
for semiparametric models. This general research area plays fundamental roles in almost all of the aims in 
the program project and is arguably the most ubiquitous cross-cutting theme. Investigators with expertise in 
semiparametric inference and empirical processes include Drs. Cai, Fine, Ibrahim, Kosorok (see the book by 
Kosorok, 2008), Lin, Liu, Zeng, and Zhou at UNC-CH; Drs. Davidian, Tsiatis (see the book by Tsiatis, 2006), 
and Zhang at UNC-CH; and Drs. Jung and X. Wang at Duke. 
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Bayesian Methods. Bayesian methodology is an important and fundamental branch of statistics that con
tributes broadly to many medical research areas and is beginning to have an impact in cancer clinical trials 
because of its ability to handle complicated data models. This general research area plays fundamental roles 
in Aim 4 of Project 2, Aims 1-3 of both Projects 3 and 4, and Aim 1 of Project 5. Investigators with expertise in 
Bayesian Methods include Drs. Chu, Ibrahim (see the books by Ibrahim et al., 2001; Chen et al., 2008), and Lin 
at UNC-CH; Dr. Tzeng at NCSU; and Drs. Owzar and Pang at Duke. 

6.2 Individual Research Project and Core Methods 
Project 1: Innovative Clinical Trial Design and Analysis. In this project, we will develop new statistical 
methodology to address issues in the design and analysis of clinical trials and investigate their analytical and 
empirical behavior. Related software will be developed. We have three specific aims; 
1. Develop methods for design and sample size calculation for longitudinal and joint models for longitudinal and 
survival data. We will develop methods for design issues, such as sample size and power considerations, for 
investigating treatment effect on both time-to-event and longitudinal processes and the effect of a longitudinal 
process on time-to-event. For example, in many cancer clinical trials, both time to death (or relapse) and longi
tudinal QOL measures are collected. If treatment has an effect on the longitudinal process, and the longitudinal 
process has an effect on the survival time, then the longitudinal biomarker is in the casual pathway and can 
potentially be used as a surrogate endpoint for the death time. We will consider settings ranging from a single 
univariate longitudinal process and a univariate time-to-event process to the complex case of multivariate lon
gitudinal and time-to-event processes. 
2. Develop statistical methodology for the design and analysis of group randomized cancer prevention trials 
with survival and recurrent event outcomes. We will develop sample size and power calculations for treatment 
effect on time-to-event and recurrent event outcomes in a group randomized trial setting. 
3. Develop statistical methodology for cancer drug development. We will address important statistical issues in 
the oncology drug development pathway, including three specific sub-aims: (i) Develop methods for the design 
and analysis of clinical trials of targeted therapy. We will develop new targeted therapy clinical trial designs and 
analysis methods, including "enrichment" designs in which some, but not all, of the patients without the target 
are randomized, and compare the operating characteristics and costs of these designs to fully targeted designs, 
(ii) Develop designs for Phase II trials that are predictive of Phase III trial success. We will develop new methods 
for Phase II trials, particularly randomized Phase 11 trials, and Phase ll/lll clinical trials, and assess their oper
ating characteristics, costs, and predictive ability for subsequent phase 111 trials. We will also gather information 
on both combination and non-combination therapies in Phase II studies and subsequent Phase III studies to 
build prediction models using machine learning and other nonparametric classification methods, (iii) Develop 
methods for the design and analysis of partially randomized clinical trials. We will develop new semiparametric 
empirical likelihood methods for the analysis of such trials to adjust for selection bias and to improve efficiency. 
We will also work closely with collaborators on Aim 1 of Project 2 on an alternative approach. 
Intra-Program Collaboration. Because missing data are routine in clinical trials, the proposed research for 
Project 1 will benefit from the missing data methodology developed in Project 2. The design results of Projeel 1 
will be useful for developing trials for evaluating candidate treatments obtained from the methodology developed 
in Projects 4 and 5. Project 1 will need Core C to assist with development of efficient code for simulation studies. 
Core B will be needed to provide the existing data sets for evaluation. Core C will prepare and disseminate the 
software that implements the new methods. Cross-cutting research themes include Statistical Learning for Aim 
3.ii; Model and Variable Selection for both Aims 1 and 3.ii; and Semiparametric Inference and Empirical Pro
cesses for Aims 2, 3.ii and 3.iii. Core A will facilitate the various modes of interaction needed between Project 
1 and the other projects and cores. 
Project 2: Methods for Missing and Auxiliary Data in Clinicai Trials. We will develop statistical method
ologies to exploit prognostic auxiliary information and to provide frameworks for analyses in the presence of 
missing data that will affect notably the strength and impact of inferences possible from current cancer clinical 
trials. Our approach both acknowledges and takes advantage of the recent advent of novel biomarkers and 
emerging genomic technologies that may yield important new baseline predictors of primary clinical outcomes, 
the increasing emphasis on analyses of longitudinal progression of markers such as measures of QOL, recent 
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advances in semiparametric methods, and the routine complications of missing information and subject drop
out. We have the following four aims: 
/. Develop methods to improve efficiency of inferences in randomized cancer clinical trials using auxiliary 
covariates. Although auxiliary baseline information is routinely collected on trial participants in addition to clin
ical endpoints, "adjusting" for auxiliary covariates has engendered considerable controversy because of the 
temptation under the usual regression approach to inspect different model fits and choose that leading to the 
most dramatic estimated treatment effect, resulting in potentially misleading conclusions. We will address this 
difficulty by developing new approaches based on state-of-the art semiparametric methods that properly incor
porate model uncertainty in this setting to obtain correct inferences, including for the case where key auxiliary 
information is missing for some subjects. We will also extend the methods to analysis of the more complex 
partially randomized trial design studied in Aim 3 of Project 1. 
2. Develop methods for primary and longitudinal analyses in the presence of drop-out. A routine feature of can
cer trials is drop-out, where subjects are lost prior to the end of follow-up, so that data intended to be collected 
are missing subsequent to the time of drop-out. We will extend the methods in Aim 1 to this setting. Many 
cancer trials also involve analyses of longitudinal measures such as QOL and PSA, which are complicated by 
drop-out. A promising, recent development in semiparametric methods is the concept of "doubly rotjust" meth
ods, which uses models for both the longitudinal data and the drop-out mechanism but requires only one of the 
two models to be correct. We will utilize this new technology to develop both efficient and robust methods for 
longitudinal analysis under these conditions. 
3. Develop diagnostic measures for joint models for longitudinal and survival data in the presence of nonig
norably missing data. Cancer trials may involve studies of the association between longitudinal markers and 
clinical outcomes such as relapse-free survival or death, and a popular framework for analysis is that of "joint 
models" for the longitudinal data and time-to-event outcome, also studied in Aim 1 of Project 1. Because of their 
complexity, however, these frameworks rely heavily on the correctness of models for the full data. In order to 
help data analysts facing this issue, we will develop new, previously unavailable diagnostic techniques for these 
models when there may be nonignorable missing outcome and/or covariate data. 
4. Develop inference methods for sensitivity analyses of missing data. A major challenge when intended data 
are missing is that it is impossible to evaluate whether or not the missing at random assumption is justified 
based on the observed data, and models for nonignorable missingness mechanisms cannot be entirely veri
fied based on observed data. Because analyses may be predicated on such models, misleading inferences 
may result. We will develop rigorous inferential methods that formally acknowledge this non-identifiability of the 
missingness model as well as the need to explore a range of plausible models to gauge sensitivity of infereiices. 
Intra-Program Collaboration. Because missing and auxiliary data arise in many clinical trial contexts, the results 
of this project, especially the general foundational approach developed in Airii 4, will impact and be of benefit to 
all of the other projects. Aims 2 and 3 of Project 2 will directly benefit Aim 1 of Project 1. As mentioned above. 
Aim 1 of Project 2 will be directly useful in the trial methodology studied in Aim 3 of Project 1. Project 2 will need 
Core C to assist with efficient code for the extensive simulation studies. Core B will provide existing data sets 
for calibration and evaluation of the new methods. Core C will also be needed to prepare and disseminate the 
software implementing the new methods. Cross-cutting research themes are Model and Variable Selection for 
all of the aims; Statistical Genetics and Genomics for Aim 1; Semiparametric Inference and Empirical Processes 
for Aims 1, 2 and 3; and Bayesian methods for Aim 3. Core A will facilitate the various modes of interaction 
needed between Project 2 and the other projects and cores. 
Project 3: Methods for Post Marketing Surveillance and Comparative Effectiveness Research. We will 
develop, test, and evaluate new statistical methodology for Bayesian meta-analysis of cancer clinical trials; 
design, sample size, and power approaches for future studies using meta-analytic models; meta-analysis of 
diagnostic tests; regression analysis of rare adverse events; and identifying optimal individualized therapies. 
We will pursue the following five specific aims; 
/. Develop methodology for Bayesian meta-analysis of cancer clinical trials. We will develop Bayesian para
metric and semiparametric models for meta-analysis for aggregated data, time-to-event data, discrete data, 
and longitudinal data. To this end, we will consider: 1) Normal random effects models and a novel Bayesian 
derivation of the Q function for assessing heterogeneity across different studies for aggregated data; 2) Ran-
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dom effects generalized linear models for continuous or discrete data; 3) Mixed effects models for longitudinal 
data; and 4) Random effects Cox models with gamma process priors for time-to-event data. We will incorporate 
missing covariates and/or responses in all these models for various data types. 
2. Develop methodology for Bayesian trial design using meta-analytic models. We will develop a new Bayesian 
approach of sample size determination (SSD) for design of non-inferiority clinical trials using the models devel
oped in Aim 1. First, we will extend the fitting and sampling priors of Wang and Gelfand (2002) to Bayesian 
SSD using meta-analytic models with a focus on controlling type I error, type II error, and power. Secondly, we 
will develop simulation-based Bayesian SSD using meta-analytic random effects generalized linear and linear 
mixed models, and random effects Cox models with gamma process priors. 
3. Develop meta-analytic methodology for diagnostic tests without a gold standard. We will first develop statis
tical methods for estimating accuracies of two and multiple (i.e., >3) diagnostic tests in a meta-analysis in the 
absence of a gold standard using maximum likelihood and full Bayesian methods. We will then reanalyze the 
meta-analysis data of 17 studies to evaluate the accuracy of microsatellite instability testing (MSI) and mutation 
analysis (Chen et al., 2005), and a multi-center data set from NCI Colorectal Cancer Family Registry Study to 
evaluate the accuracy of 10 biomarkers in predicting Lynch syndrome as well as other data sets. 
4. Develop methodology for regression analysis of rare adverse events for post-marketing safety evaluation. 
First, we will develop semiparametric methods of inference for evaluating drug and risk factor effects for rare 
time-to-event outcomes in cancer clinical trials and cancer epidemiological studies. Secondly, we will develop 
semiparametric methods of inference for extremely rare time-to-event outcomes. Thirdly, we will extend both of 
the results to the adjudicated endpoint setting. Fourthly, we will extend these results to the meta-analytic setting 
involving collections of clinical studies, registry data and health insurance claims data. 
5. Develop methodology for identifying optimal individualized therapies from existing clinical trial data using 
meta-analysis, utility functions, classification and regression. We will develop a general inferential tool for deter
mining optimal individualized therapies for cancer based on meta-analysis of cancer clinical trials. The approach 
involves a novel multi-attribute utility function for accommodating complex time-to-event information, as well as 
cost and quality of life considerations. We will develop rigorous inferential procedures for finding optimal treat
ments as a function of genomic as well as other prognostic factors. To achieve this, we will use both traditional 
modeling and high dimensional statistical learning and regression techniques. 
Intra-Program Collaboration. Aim 2 of this project can provide insights into the clinical trial design methods de
veloped in Aim 3 of Project 1. The candidate therapies studied in Aim 5 of Project 3 can be applied to the design 
methodology developed in Aim 3 of Project 1 as well as to the dynamic treatment regimes studied in Project 
5. The multi-attribute utility function concept developed in Aim 5 of Project 3 can be useful in the individualized 
therapy discovery methodology studied in Aim 4 of Project 4. Both the missing data methodology of Project 2 
and the genomic techniques developed in Project 4 could provide useful for Aims 1,2 and 3 of Project 3. Project 
3 will need Core C to assist with code for the needed simulation studies. Core B will be needed to provide some 
of the existing data sets for evaluation of the new methods. Core C will also be needed to prepare and dissem
inate the software which implements the new methods. Cross-cutting research themes are Statistical Learning 
for Aim 5; Model and Variable Selection for Aims 1, 3 and 5; Statistical Genetics and Genomics for Aims 1, 2 
and 3; Semiparametric Inference and Empirical Processes for Aims 4 and 5; and Bayesian methods for Aims 
1-3. Core A will facilitate interaction between Project 3 and the other projects and cores. 
Project 4: Methods for Pharmacogenomics and Individualized Therapy Trials. There is great current 
interest in pharmacogenomic studies for identifying genetic determinants of inter-individual differences in the 
efficacy and toxicity of cancer medications and in individualized therapy trials for tailoring treatment regimens to 
each patient's genomic profile. The four specific aims of this project focus on developing novel and high-impact 
statistical and computational methods for design and analysis of such studies: 
1. Construct robust and efficient statistical methods for assessing the effects of single nucleotide polymor
phism (SNP) genotypes and haplotypes on drug response. We will develop statistical methods that can handle 
any phenotypes, including binary and continuous efficacy and toxicity measures, right-censored time-to-event 
outcomes, interval-censored time to disease progression, and informatively censored PSA levels and adverse 
events; accommodate population stratification and clinical factors correlated with genetic variables; and allow 
association analysis at the gene/pathway, haplotype or SNP level (even for SNPs not on the genotyping chip). 
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2. Develop statistical and data-mining techniques for predicting drug response based on high-dimensional and 
highly correlated genomic data. We will develop efficient variable selection procedures for ultra-high dimen
sional SNP and gene expression data under a variety of parametric and semiparametric regression models for 
all possible measures of drug response, allowing a hierarchical structure in selecting main effects and interac
tions and the inclusion of genetic variables at a group level. We will also develop machine learning techniques 
for classification with variable selection capabilities. 
3. Investigate statistical procedures for providing low-bias estimation of effect sizes with complex and highly 
multivariate genetic data far follow-up and confirmation studies. We will explore a novel, conditional likelihood 
approach for producing low-bias estimation of effect sizes for follow-up and confirmation of effects and predic
tors. We will also pursue methods for a large number of simultaneous tests and penalized regression techniques 
for clinical outcomes. 
4. Explore machine learning techniques for identifying candidate individualized therapies in both pre-clinical 
and clinical studies. We will provide a unified framework that combines the discovery power of data mining with 
the stabilizing influence of statistical inference by creating a new form of machine learning, called 'latent super
vised learning". We will utilize empirical process methods and advanced computational technology to develop 
and validate latent supervised learning for use in both pre-clinical and clinical studies for discovery of candidate 
individualized therapies for cancer 
Intra-Program Collaboration. All of the aims of this project have potential missing data challenges, and so the 
results of Project 2 will be useful here, especially Aim 4 of Project 2. The output of Aim 3.1 of Project 1 will 
both benefit and be benefited by results from Aims 1-3 of Project 4. The results of Aim 5 of Project 3 will both 
contribute to developments in Aims 1-3 of Project 4 and benefit from techniques developed in Aim 4 of Project 
4. The candidate therapeutic regimens derived in Project 4 can also serve as useful building blocks for the more 
complex dynamic treatment regimes involving multiple decision times developed in Project 5. Project 4 will need 
Core C to assist with code for the potentially complex simulation studies needed. Core B will be needed to pro
vide some of the existing data sets for evaluation of the new methods. Core C will also be needed to prepare 
and disseminate the software that implements the new methods. Cross-cutting research themes are Statistical 
Learning for Aims 2 and 4; Model and Variable Selection for Aims 1-3; Statistical Genetics and Genomics also 
for Aims 1-3; Semiparametric Inference and Empirical Processes for all of the Aims; and Bayesian methods for 
Aims 1-3. Core A will facilitate interaction between Project 4 and the other projects and cores. 
Project 5: Methods for Discovery and Analysis of Dynamic Treatment Regimes. In clinical practice, treat
ment of cancer is a dynamic process involving a series of therapeutic decisions over time. However, most cancer 
clinical trials focus on effects of treatments given at a single decision point in the course of the disease, e.g., 
the selection of a first-line chemotherapeutic option for patients with Stage IIIB/IV non-small cell lung cancer. 
Conclusions on the best overall strategy over the series of key decision points in the disease are consequently 
cobbled together from the results of many such single-decision studies, and, due in part to the possibility that 
the treatment given at one point in time may have delayed effects on the efficacy of future treatment, may 
be misleading and, indeed, possibly even harmful. This perspective has led to considerable recent interest in 
methodology for developing and studying dynamic treatment regimes. A dynamic treatment regime is a set of 
sequential decision rules dictating at each decision point the selection of the next treatment for a patient based 
on information on the patient, including measures of disease progression, biomarkers, and previous treatment, 
thereby individualizing each step of treatment to the patient. We propose four specific aims; 
1. Develop and evaluate learning methods for optimal dynamic treatment regimes. Because of the complexity 
of the problem, standard statistical methods are not useful for identification of the optimal regime from data. 
Reinforcement learning methods from computer science, adapted to incorporate statistical inference, are a 
promising and powerful approach to this problem. In this aim, we will carry out the first, comprehensive study 
of reinforcement learning and other statistical learning methods in the context of cancer research. 
2. Develop methods for identifying optimal dynamic treatment regimes from a restricted, feasible set. A key 
challenge in identification of the optimal dynamic treatment regime is that, with many decision points, treatment 
options, and high-dimensional patient information, the number of possible regimes can be enormous. An alter
native, practical approach is to restrict the candidate regimes to a smaller, feasible set based on considerations 
including current clinical practice, cost, and complexity. We will develop methods for estimating mean outcome 
for regimes within a feasible set in order to facilitate identifying the best regime. 
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3. Develop and evaluate inferential methods for dynamic treatment regimes. Methods for making inference on 
optimal dynamic treatment regimes derived from the learning techniques in Aim 1 pose a signiffcant challenge 
in that parameters in the statistical models that characterize these regimes are often constrained to lie on the 
boundary of the parameter space. Standard inferential approaches, including bootstrap methods, break down 
under these conditions, and a fundamentally new statistical framework is needed. We will address this chal
lenge directly by using empirical process techniques to develop methods for constructing hypothesis tests and 
confidence intervals for optimal dynamic treatment regimes. 
4. Develop methods for the design of sequentially randomized trials for dynamic treatment regimes. We will 
develop a new model for cancer clinical trials, clinical reinforcement trials, which involve sequential randomiza
tion, allow for a continuum of treatment options, and have the goal of developing optimal regimes using learning 
techniques. We will apply these first to non-small cell lung cancer and generalize to other cancers. A key chal
lenge in the design of sequentially randomized studies for deducing optimal regimes is that, as the number of 
decision points and treatment options grows, the greater the sample size requirements can be. We will develop 
new approaches to evaluating the properties of these designs that will enable sufficient precision for finding 
optimal regimens with realistic sample sizes. 
Intra-Program Collaboration. Because all of the aims of this project have potential missing data challenges, the 
results of Project 2 may shed some light here, especially the results from Aim 4 of Project 2. The candidate 
therapeutic regimens derived in Project 4 and those developed in Aim 5 of Project 3 can also serve as useful 
building blocks for the more complex dynamic treatment regimes here. The latent learning technology developed 
in Aim 4 of Project 4 will also be useful for Aim 1 of Project 5. Candidate dynamic treatment regimes developed 
in Project 5 could potentially be evaluated using techniques from Project 1, especially techniques from Aim l.i. 
Project 5 will need Core C to assist with code for the the potentially complex simulation studies needed. Core B 
will be needed to provide some of the existing data sets for evaluation of the new methods. Core C will also be 
needed to prepare and disseminate the software which implements the new methods. Cross-cutting research 
themes are Statistical Learning for Aims 1 and 4; Model and Variable Selection for Aims 1-3; Statistical Genet
ics and Genomics also for Aims 1 and 2; Semiparametric Inference and Empirical Processes for all of the Aims; 
and Bayesian methods for Aim 1. Core A will facilitate the various modes of interaction needed between Project 
4 and the other projects and cores. 
Core A: Administrative Core. The Administrative Core will provide administrative support to the program 
project and be responsible for organizing the program investigators and staff into an effective and well-coordi
nated team to develop and implement the statistical methods for cancer clinical trials proposed in the research 
projects and supported by Cores. B and C. The program leadership will be integrated across the three institutions 
with a lead PD/PI at one institution (UNC-CH) and two additional PD/PIs at the the other two institutions (NCSU 
and Duke). These three PD/PIs will form an Executive Committee with overall responsibility for the management 
and administration of the program. Each PD/PI will also be responsible for intra-institutional administration of 
the program. Each institution will have an additional co-PD/PI to assist the PD/PIs with both the overall and 
intra-institutional administration of the program project. The Executive Committee, three co-PD/PIs, and indi
vidual project leaders will form a Steering Committee providing overall scientific guidance for the program. An 
External Advisory Committee (EAC) of experts will provide feedback to the Steering Committee on the goals 
and progress of the program during an annual retreat. Communication and collaboration between project in
vestigators will be facilitated with a program project wiki. Communication and dissemination of new results and 
software will be aided with a program project web page. The matrix leadership structure of Core A maximizes 
the scientific integration of this multi-disciplinary and trans-institutional collaboration. See Section 7.1. 
Core B: Data Compilation Core. The Data Compilation Core will develop and maintain a central resource 
of analysis-ready, annotated and documented data sets from cancer clinical trials and related studies to be 
used by the investigators in each of the individual research projects. These data sets will be used to evaluate 
and illuminate the methods developed in this program as well as to demonstrate the software developed in 
the Computational Resource and Dissemination Core (Core C). The primary sources of the data will be the 
clinical trials and related studies of the CALGB and data from cancer research studies conducted at the two 
large NCI-designated Comprehensive Cancer Centers at UNC-CH (Lineberger Comprehensive Cancer Center, 
LCCC) and at Duke (Duke Comprehensive Cancer Center, DCCC). This is a major advantage for the program 
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in that the data sets provided can be exceptionally well annotated and documented. 
Core C: Computational Resource and Dissemination Core. The Computational Resource and Dissemina
tion Core will assist with computational aspects and creation and dissemination of software implementing the 
new methods developed in each individual research project. Sound, tested implementations; simulation studies 
of performance; and demonstrations of use in applications are fundamental aspects of statistical methodological 
development to ensure that new techniques are reliable, accessible to, and adopted by the research commu
nity. Core C will be an essential part of the program project by achieving the following specific objectives: 1) 
Providing programming expertise in efficient and robust implementation of methodology; 2) Developing shared 
computational resources in support of project methodology; and 3) Creating and disseminating software and 
associated tutorials for methodology developed by the project in an accessible form to practitioners. 

7 ORGANIZATION, ADMINISTRATIVE, AND PROGRAM MANAGEMENT STRUCTURE 
7.1 Leadership Structure and Chain of Authority 
The leadership structure for this pro
gram project consists of three interwo
ven components: overall program admin
istration, intra-institutional administration, 
and projeel and core leadership. This 
is represented in Figure 2. In this fig
ure, boxes delineate administrative units, 
dotted lines denote a supportive or ad
visory relationship, solid lines denote a 
supervisory relationship, and double ar
rows denote two-way support or joint su
pervisory roles. Dr. Kosorok at UNC-
CH is lead PD/Pl and will provide over
all leadership for the program project. 
Dr Kosorok's overall leadership respon
sibilities will be shared by two additional 
PD/PIs, Dr. Davidian at NCSU and Dr 
George at Duke, who, together with Dr 
Kosorok, will form the Executive Commit
tee. Each member of the Executive Com
mittee will be assisted by an additional 
co-PD/PI at his/her institution with both 

Dr Murphy, U. Michigan 

Di.ParinlglBnl.Jol 

{nlsr- lnit l tul ional 
Computlr^B Comml i i i 

Dr. Davidian. NCSU. Ch i i i 

Figure 2: Program project leadership structure. 

overall and intra-institutional leadership: Dr. Ibrahim at UNC-CH, Dr. Tsiatis at NCSU, and Dr. Jung at Duke. 
The PD/PI and co-PD/PI at each institution will constitute an intra-institutional Administrative Office to provide 
intra-institutional administrative support and leadership. The Executive Committee and the three Administrative 
Offices will provide administrative support to the Steering Committee, composed of the Executive Committee, 
the three co-PD/PIs, and individual project and core leaders: Drs. Kosorok, Davidian, George, Ibrahim, Tsiatis, 
Jung, Cai, and Lin. The Steering Committee will provide scientific oversight for the entire program project. This 
is shown in the figure by solid arrows from the Steering Committee pointing to the individual research project 
and Cores B and C. The leadership functions of the Executive Committee and Administrative Offices will be 
coordinated through the Administrative Core (Core A), led by Dr. Kosorok and the Executive Committee. This 
is indicated by double arrows between the Executive Committee and Core A. Core A will plan and coordinate 
the annual retreat and meeting with the EAC (External Advisory Committee), who will provide feedback and 
guidance to the Steering Committee. Core A also provides an Inter-Institutional Computing Committee to co
ordinate inter-institutional computing issues for the individual research projects and Cores B and C. The Data 
Compilation Core (Core B) and Computational Research and Dissemination Core (Core C) will support each 
other and all of the individual research projects. Only the top level of the individual research project and core 
leadership is given in Figure 2 for simplicity. Each project and core also will have co-Leaders and co-Directors 
as presented in Section 4. The leadership structure within project and core is more-or-less traditional, while 
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the overall leadership structure has a non-traditional matrix organization. This organization will create effective 
framework for scientific advances requiring multiple modes of attack and areas of expertise. 

7.2 Procedures for Planning, Coordinating and Evaluating 
The planning, coordination, and evaluation components include: meetings of the Executive Committee and 
Administrative Offices; Steering Committee meetings; project and core operations; an annual retreat, which 
includes the EAC (External Advisory Committee), and a program project web site and a wiki accessible to all 
investigators on the project. 

The Executive Committee will meet monthly and additionally as needed, mostly via phone conference but 
also in person at least quarterly. Dr. Kosorok will chair the committee, which is responsible for the day-to-day 
management of the overall program. Overall program management activities include organizing regular meet
ings of the Executive and Steering Committees; organizirig the annual retreat and meeting with the EAC; ad
dressing inter-institutional computing issues; and preparation of annual reports, financial records and progress 
reports. Each institutional Administrative Office will also meet monthly and additionally as needed for day-to-day 
management of the intra-institutional components of the program. 

The Steering Committee will provide scientific oversight for the program project, continuing assessment of 
project and core objectives, and articulation of program-wide objectives that involve interaction and integration 
across projects and cores. Dr. Kosorok will chair the Steering Committee, assisted by Drs. Davjdian and 
George. The Steering Committee has been meeting in the process of preparing for this grant for at least 
six months and will continue to meet monthly throughout the program project period. Most of these monthly 
meetings will be via teleconference, but once a quarter the meetings will be face-to-face at the NISS facilities in 
RTP, where we have already met several times. Once a year, one of these face-to-face meetings at NISS will be 
part of the the program project annual retreat. Minutes from all of these meetings will be placed on the program 
project wiki for tracking and communication. 

A traditional weekly meeting structure for each project and core is in general unlikely to be flexible enough 
to maximize the synergistic opportunities presented by the project. Thus we will modify the traditional structure 
by including weekly and ad-hoc scientific group meetings dictated by cross-cutting research. These weekly and 
ad-hoc scientific group meetings will be organized and directed as needed by project and core leaders and 
investigators and will be tracked and minutes recorded on the program project wiki, 

An annual retreat will be held once a year at NISS. The retreat will include the Steering Committee and 
all project investigators and staff as well as a review by the EAC. The EAC will consists of three international 
experts in clinical trial methodology. Dr. Susan A. Murphy, H. E. Robbins Professor of Statistics, Professor of 
Psychiatry, and Research Professor in the Institute for Social Research at the University of Michigan, is the 
foremost world authority on dynamic treatment regimes and will serve as Chair of the committee. Drs. Colin 
B. Begg and Giovanni Parmigiani, both internationally recognized experts in cancer statistical methodology, will 
serve as additional members of the committee. This distinguished group will provide feedback to the Steering 
Committee on the progress and goals of the program project. 

A dedicated web site for the program project will be developed and housed on a server at UNC-CH. The 
purpose of this web site is to be a single point of contact for all interested parties. The main page will be 
accessible to the general public and will include links to both an external set of pages also available to the 
general public as well as internal pages available only to program investigators. The external pages will include 
general information about the program projects, links to published papers, software developed by the program 
project, along with instructions and tutorials and other items for outreach. The internal pages will include a 
program project wiki for tracking and communicating among investigators, sharing data, developmental software 
and other digital information for investigators. The wiki will include pages for each project and core as well 
as other resources for the investigators. Each page has the capacity for editing and adding, deleting and 
changing additional pages as well as minutes, papers, figures and short comments used to track progress and 
communicate between investigators. We have been successfully using a prototype of the proposed wiki since 
June 2008, and we are certain it will continue to facilitate the matrix and cross-cutting aspects of the project. 

7.3 Multiple PD/PI Leadership Plan 
As noted previously, the proposed program project will employ a multiple PD/PI structure, the rationale for 
which follows naturally from the fact that the three institutions will all play significant scientific roles across 

PHS 398/2590 (Rev. 11/07) Page 167 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

multiple research projects and cores. Accordingly, a strict hierarchy, with exclusive leadership at one of the 
three institutions, would be inconsistent with the extensive trans-institutional collaborative nature of the project. 
Rather, the proposed matrix structure, with both intra- and inter-institutional components, is more suitable. Dr. 
Kosorok will serve as the lead PD/PI, with Drs. Davidian and George as PD/PIs at NCSU and Duke, respectively. 
While in his lead role Dr. Kosorok will have some unique responsibilities, overall administrative and scientific 
leadership of the project as a whole will be shared by Drs. Kosorok, Davidian, and George, and no major 
decisions affecting the project will be made without consensus of all members. Simultaneously, each PD/PI will 
have responsibility for administration of project functions at his/her own institution as well as trans-project issues 
consistent with his/her additional roles as core and/or project leader. 

The full Multiple PD/PI Leadership Plan is presented in detail in Item G. 

7.4 Consultants 
The only consultants on this program project are the members of the EAC (External Advisory Committee), who 
will be paid an honorarium for their service during the annual retreat: 

• Dr. Susan A. Murphy, PhD, H. E. Robbins Professor of Statistics, Professor of Psychiatry, and Research 
Professor in the Institute for Social Research at the University of Michigan (Chair of the EAC). 

• Dr. Colin B. Begg, PhD, Attending Biostatistician and Chair of the Department of Epidemiology and 
Biostatistics at the Memorial Sloan-Kettering Cancer Center in New York. 

• Dr. Giovanni Parmigiani, PhD, Professor of Biostatistics at Johns Hopkins University. 

7.5 Relationship with Other Units 
The proposed program project is a joint venture of three institutions, UNC-CH, NCSU and Duke, with a PD/Pl 
at each institution. The program will be administered in the Department of Biostatistics of the Gillings School 
of Global Public Health at UNC-CH, with Dr. Kosorok as lead PD/PI. The program subcontract to NCSU will 
be administered by the CQSB (Center for Quantitative Sciences in Biomedicine) in the College of Physical and 
Mathematical Sciences at NCSU, which has close ties to the Department of Statistics, with Dr. Davidian as 
PD/PI. The subcontract to Duke will be administered in the Department of Biostatistics and Bioinformatics in the 
School of Medicine, with Dr George as PD/PI. 

At UNC-CH, most of the investigators are housed in the Department of Biostatistics, but several investigators 
at UNC-CH are located in other departments. The UNC-CH Collaborative Studies Coordinating Center, housed 
in the Department of Biostatistics, is a large coordinating center involved in many clinical studies, most of which 
are non-cancer. While this center has a shared interest in clinical trials with the proposed program project, there 
is no overlap in scientific aims or shared resources. Many of the program investigators, with representation from 
all three institutions, are members of UNC-CH CICT (Centerfor Innovative Clinical Trials) in the Gillings School, 
the LCCC, and the TraCS Institute at UNC-CH (CTSA), with Dr. Ibrahim as Director of the CICT and Director 
of the Biostatistics Core of the LCCC and Dr. Kosorok as the Director of the Biostatistics Core of the TraCS 
Institute. Moreover, Drs. Davidian and Tsiatis at NCSU are also investigators on the UNC-CH TraCS Institute. 
The theme of clinical trial methodology is a shared emphasis for both the proposed program and the CICT, 
and some of the data obtained through Core B of the proposed program will be provided by the Biostatistics 
Core of the LCCC, however, there is no duplication of services nor scientific overlap of the program projeel 
with either the CICT or LCCC. Both the TraCS Institute and the proposed program project have some mutual 
interest in the development of biostatistical methodology, but there is no overlap in the aims of the program 
project. The Department of Statistics and Operations Research in the College of Arts and Sciences at UNC-CH 
has a cooperative relationship with the Department of Biostatistics in the Gillings School, and two investigators 
have joint appointments with that department (Drs. Ibrahim and Kosorok) and one investigator has a primary 
appointment there (Dr. Liu). Both departments have a strong national reputation with a long history and enjoy 
a productive and synergistic relationship. 

All of the NCSU investigators are housed in the Department of Statistics in the College of Physical and 
Mathematical Sciences. Several of the NCSU investigators also have affiliations with other research entities, 
both on campus and at the other two campuses. Many of the program investigators, including Dr. Kosorok at 
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UNC-CH, are members of the CQSB, for which Dr. Davidian serves as Director, which is jointly supported by 
the NCSU Colleges of Physical and Mathematical Sciences and Agriculture and Life Sciences. Drs. Davidian 
and Tsiatis are adjunct faculty in the Department of Biostatistics and Bioinformatics at Duke, and in this capacity 
they spend one day per week at the DCRI (Duke Clinical Research Institute), where they have adjunct appoint
ments on the DCRI Faculty and collaborate with DCRI biostatisticians and clinicians on cardiovascular disease 
research. Dr. Davidian is a member of the Executive Committee of the Center for Comparative Medicine and 
Translational Research (CCMTR) in the College of Veterinary Medicine, which has formal ties to the TraCS 
Institute. The CQSB, DCRI, and CCMTR research in biostatistical methodology does not overlap with the aims 
of the proposed program, but all four efforts share a common interest in methods for discovering and evaluat
ing treatment strategies. In addition, the Department of Statistics at NCSU houses the NCSU Bioinformatics 
Research Center (BRC) which focuses specifically on computational and statistical methods for genetics and 
genomics studies and is thus related to Project 4 research; however, there is no overlap with the aims. 

All of the biostatistical investigators at Duke are faculty members in the Department of Biostatistics and 
Bioinformatics and all are heavily involved in cancer research through the CALGB Statistical Center and the 
DCCC. The clinical co-investigators at Duke are all members of the DCCC with appointments in the Depart
ments of Medicine or Surgery. These two organizations plus the Duke Translational Medicine Institute (DTMI,5 
ULI RR024128-03), established by the Duke CTSA, and the Department of Statistical Science at Duke are rel
evant to the project, although there is no duplication of core resources nor scientific overlap with the proposed 
program project aims. Some Department of Statistical Science faculty members have secondary appointments 
in the Department of Biostatistics and Bioinformatics, and vice-versa. Secondary appointments are also held 
by several faculty in the Center for Human Genetics, whose primary appointments are in the Department of 
Medicine, or in the Department of Community and Family Medicine. The CALGB Statistical Center located at 
Duke is directed by Dr. George; members include Drs. Jung, Owzar, Wang and Pang. Dr George is also the 
Director of the DCCC shared resource in biostatistics as well as in the SPORE programs in breast, brain and 
lung cancers. The other investigators are all part of one or more of the shared resources and/or collaborate 
with individual members of the DCCC on other projects. There is a DTMI biostatistics core resource, directed 
by Dr. George and including Dr. Jung, as well as an internal biostatistics methodology research program within 
the DTMI, but there is no overlap with the proposed program project. 

Dr. Kosorok is a member of the NISS Board of Trustees. While the mission of NISS is to identify, catalyze, 
and foster high-impact cross-disciplinary research involving the statistical sciences, there is no duplication of 
aims or core resources between the program project and NISS. Dr. Kosorok is a member of the Chairs Com
mittee at SAMSI, and Dr. Davidian has been a research program organizer. There is no duplication of aims or 
core resources between the program project and SAMSI. 

8 INSTITUTIONAL ENVIRONMENT AND RESOURCES 

The Department of Biostatistics, located in the UNC Gillings School of Global Public Health, is one of the largest 
and highest ranked Biostatistics Departments in the U.S. The Department has over 35 full time faculty members; 
130 graduate students pursuing MPH, MS, DrPH and PhD degrees; and 15 undergraduate students. The 
Department occupies a total of 26,333 square feet and boasts outstanding computer support for all students, 
faculty and staff and a state of the art 400 square-foot conference room which seats 20 people and has a 
drop-down projector, wireless capabilities and conference calling facilities. The Department is very supportive 
of the program project and will do all in its power to ensure its ongoing success; in particular, the Department 
will contribute $30,000 per year to the project for all five years of the grant. Dr Kosorok, as lead PD/Pl 
of the program project, is the Chair of the Department and will ensure that the needed support is provided. 
UNC-CH is one of the nation's foremost research universities, with top rankings in many disciplines. The UNC-
CH Gillings School of Global Public Health is the top ranked public school of public heafth and has seven 
academic departments, including the Department of Biostatistics, and several centers, programs and institutes. 
The School also has several high-tech conference rooms, including the Blue Cross and Blue Shield of North 
Carolina Foundation Auditorium. Both the Gillings School and UNC-CH have pledged their support, including 
contributing $8,000 and $20,000, respectively, annually to the program project. 

The NCSU CQSB, the administrative home for the NCSU component of the project, shares a state-of-
the-art conference facility and two smaller conference rooms, each seating 10-15, people with the Center for 

PHS 398/2590 (Rev. 11/07) Page 169 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., Gt a l . 

Research in Scientific Computing (CSRC) on the third floor of Cox Hall. The main conference facility seats 
24-30 people in different configurations for conferences, seminars, and instructional events, and has the latest 
technology, including LCD projection equipment to display presentations on screens at the front and back of 
the room, Smart Board and Symposium technology, and video-conferencing capabilities. Almost all NCSU 
project investigators have offices in the NCSU Department of Statistics, which is one of the largest and oldest 
departments of statistics or biostatistics in the world, with approximately 70 undergraduate and 170 graduate 
students, and enjoys excellent office and meeting room facilities and excellent computer support for all of its 
faculty, students and staff. With UNC-CH, NCSU is one of the two flagship research institutions of the University 
of North Carolina system, with major colleges and schools of Agriculture and Life Sciences, Design, Education, 
Engineering, Humanities and Social Sciences, Management, Natural Resources, Physical and Mathematical 
Sciences, Textiles, and Veterinary Medicine. The College of Physical and Mathematical Sciences, which houses 
CQSB and the Department of Statistics, and the College of Agriculture and Life Sciences, which also supports 
CQSB, are very supportive of the proposed program project, and each will contribute $17,500 to the project in 
each of the five years of the grant. The University's Vice Chancellor for Research and Graduate Studies will 
contribute an additional $25,000 in each of the five years. 

All of the biostatistical investigators at Duke are faculty members in the Department of Biostatistics and 
Bioinformatics, and the clinical co-investigators at Duke are all members of the DCCC with appointments in the 
Department of Medicine or the Department of Surgery at Duke. The Biostatistics and Bioinformatics Department 
currently consists of two divisions: Biostatistics (38 faculty members) and Computational Biology (7 faculty 
members) and has excellent office and meeting facilities and computational support for all of its faculty, students, 
and staff. The Department of Biostatistics and, Bioinformatics at Duke is very supportive of this program project 
and will contribute $15,000 per year to the project for all five years of the grant. Duke University, founded in 
1924, is a top ranked private school with many schools and colleges that are highly ranked nationally. The 
College of Arts and Sciences houses the nationally recognized Department of Statistical Science and the Duke 
University School of Medicine houses the Biostatistics and Bioinformatics Department. The Duke University 
School of Medicine is ranked in the top ten with schools twice its age, and is committed to socially relevant 
education, translational research, compassionate patient care and global healthcare solutions. There is ample 
meeting space for all program project investigators. The School of Medicine is very supportive of the program 
project and will contrikjuted $15,000 per year in addition to the contribution from the Department of Biostatistics 
and Bioinformatics. 

Dr Alan F. Karr, NISS Director, has provided space to us during the past several months and has agreed to 
continue providing meeting space to the program project without charge. The NISS building in RTP, shared with 
its sister institute, SAMSI, has 28,000 square feet of state-of-the-art office and meeting space. The meeting 
space includes traditional conference rooms, a fully-equipped video conference room, and a lecture and con
ference room that supports web streaming. 

Key to Acronyms: For convenience, we provide a key to some of the major acronyms used in the foregoing 
narrative. 

CALGB Cancer and Leukemia Group B 
CICT UNC-CH Center for Innovative Clinical Trials 
CQSB NCSU Center for Quantitative Sciences in Biomedicine 
DCCC Duke Comprehensive Cancer Center 
DCRI Duke Clinical Research Institute 
DTMI Duke Translational Medicine Institute 
EAC External Advisory Committee 
ECOG Eastern Cooperative Oncology Group 
LCCC Lineberger Comprehensive Cancer Center 
NCSU North Carolina State University 
NISS National Institute of Statistical Sciences 
RTP Research Triangle Park 
SAMSI Statistical and Mathematical Sciences Institute 
TraCS UNC-CH Translational and Clinical Sciences Institute 
UNC-CH University of North Carolina at Chapel Hill 
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The following publications are results of the preliminary studies discussed in Section 5.3. 
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observational study, where duration may be informatively censored. Biometrics 60, 315-323. 

Johnson, B. A. and Tsiatis, A. A. (2005). Semiparametric inference in observational duration-response studies, 
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Jung, S. H. and Jeong, J. H. (2003). Rank tests for clustered survival data. Lifetime Data Analysis 9,21-33. 

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. NewYork: Springer 

Kosorok, M. R., and Song, R. (2007). Inference under right censoring for transformation models with a change-
point based on a covariate threshold. Annals of Statistics 35, 957-989. 

Lin, D. Y, Hu, Y, and Huang, B. E. (2008). Simple and efficient analysis of disease association with missing 
genotype data. American Journal of Human Genetics 82, 444^52. 

Lin, D. Y, and Zeng, D. (2006). Likelihood-based inference on haplotype effects in genetic association studies 
(with discussion). Journal of the American Statistical Association 101, 89-118. 

Lin, D. Y, Zeng, D., and Millikan, R. (2005). Maximum likelihood estimation of haplotype effects and haplotype-
environment interactions in association studies. Genetic Epidemiology 29,299-312. 

Lu, W. and Zhang, H. H. (2007). Variable selection for proportional odds model. Statistics in Medicine 26, 
3771-3781. 

Lunceford, J., Davidian, M., and Tsiatis, A. A. (2002) Estimation of the survival distribution of treatment regimes 
in two-stage randomization designs in clinical trials. Biometrics 58,48-57. 

Song, R., Kosorok, M. R., and Cai, J. (2008a). Robust covariate-adjusted log-rank statistics and corresponding 
sample size formula for recurrent events data. Biometrics 64, 741-750. 

Song, R., Kosorok, M. R., and Fine, J. R (2008b). On asymptotically optimal tests under loss of identiflability 
in semiparametric models. Annals of Statistics, In press. NIHMSID; 75080. 

Todem, D., and Fine, J.R (2008). Global sensitivity testing for longitudinal data subject to potentially informative 
dropout. Biometrics, invited revision, 

Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. New York: Springer. 

Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: an overview. 
Statistica Sinica 14, 809-834. 

Tsiatis, A. A., Davidian, M., Zhang, M., and Lu, X. (2008). Covariate adjustment for two-sample treatment 
comparisons in randomized clinical trials: a principled yet flexible approach. Statistics in Medicine 27, 
4658-4677. 

Wahed A. S. and Tsiatis A. A. (2004). Optimal estimator for the survival distribution and related quantities for 
treatment policies in two-stage randomization designs in clinical trials. Biometrics 60,124-133. 

Wahed A. S. and Tsiatis A. A. (2006). Semiparametric efficient estimation of survival distribution for two-stage 
randomization designs with censored data. Biometrika 93,163-178. 

Wang, X., and Zhou, H. (2006). A semiparametric empirical likelihood method for biased sampling schemes 
in epidemiologic studies with auxiliary covariates. Biometrics 62,1149-1160. 

Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimates in joint analysis of repeated 
measurements and survival time. The Annals of Statistics 33, 2132-2163. 

Zeng, D., Lin, D. Y, Avery, C. L., North, K. E., and Bray, M. S. (2006). Efficient semiparametric estimation of 
haplotype-disease associations in case-cohort and nested case-control studies. Biostatistics 7,486-502. 

Zhang, H. H., Liu, Y, Wu, Y, and Zhu, J. (2008). Variable selection for multicategory SVM via sup-norm 
regularization. Electronic Journal of Statistics 2, 149-167. 

Zhang, H. and Lu, W. (2007). Adaptive lasso for Cox's proportional hazards model. Biometrika 94, 691-703. 
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trials using auxiliary covariates. S/ome r̂/cs 64, 707-715. PMCID:PMC2574960. 

Zhang, M., Tsiatis, A. A., Davidian, M., Pieper, K., and Mahaffey, K. (2009) Inference on treatment effects from 
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Giovanni Parmigiani, PhD, Johns Hopkins University, Member of Program Project External Advisory Com
mittee. 
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UNC 
L I N E B C R C G R COMPREHEIMSIVE 
C A N C E R C E N T E R 

N.C. CANCER HOSPITAL 

December 19, 2008 

Michael R. Kosorok, PhD 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
University of North Carolina at Chapel Hill 
Chapel Hill, NC 27599-7420 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Michael: 

The strong partnership between UNC Lineberger Cancer Center and the Department of Biostatistics is 
decades old but the events ofthe last five years have taken it to another level. Recmitment has assembled 
an extraordinary group of statistical methodologic researchers, including Joe Ibrahim, Danyu Lin, Fred 
Wright, and Jason Fine, who contribute substantially to our cancer research. Under your leadership, an 
impressive era of scientific productivity is underway that will measurably improve clinical trials 
methodology. 

As Director ofthe UNC Lineberger Comprehensive Cancer Center, I am writing to express my great 
enthusiasm and support for your application for an NCI Program Project (POl) entitled "Statistical 
Methods for Cancer Clinical Trials" at the University of North Carolina at Chapel Hill. This is certainly 
an important initiative for the UNC Lineberger, the Gillings School of Global Public Health, and for the 
University of North Carolina at Chapel Hill. With all ofthe recent advances in biomedicine, there 
remains a serious bottleneck between laboratory discoveries and their utilization in clinical practice. New 
clinical trials methodology is needed to keep abreast of and take advantage of molecular genetic 
discovery. I believe that the innovative program you have outlined will make important breakthroughs in 
solving this fundamental problem and have broad applicability for breast, colon and lung cancer as well as 
for other cancers and other diseases. I am very supportive of you and your research group utilizing 
existing clinical trial data sets housed in the Lineberger Comprehensive Cancer Center. 

An important aspect of this program project is the collaboration with North Carolina State University and 
Duke University. This brings together a diverse group of investigators not only in biostafistics but also in 
medical oncology, health policy, pharmacogenomics, and computer science. 

In summary, your program project application has my highest level of support and commitment. I will do 
all that I can to help you and your colleagues achieve the goals of this forward-looking POl and, in the 
process, to help UNC become a leader in the field of cancer clinical trials. 

Sincerely yours, 

/ J ^^ . . 
H. Shelton Earp III, MD 
Director and Lineberger Professor 
Professor of Medicine and Pharmacology 
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G I L U N G S S C H O O L OF 
G L O B A L P U B L I C H.EALTH 

THE U N I V E R S I T V 
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BARDARA K. RIMER, n n P I t , MPII 

liean anil Aluiiitii Oijtiiif;ilisIied I'ro/rssor 

December 20, 2008 

T 919.966..121$ 

p 919.966.7678 

brii i icr(^unc.i 'du 

Michael R. Kosorok, PhD 
Chair and Professor, Biostatistics 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
UNC Gillings School of Global Public Health 
The University of North Carolina at Chapel Hill 
Chapel Hill, North Carolina 27599-7420 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Michael: 

I write to express enthusiastic support for your National Cancer Institute Program Project 
(POl) application entitled "Statistical Methods for Cancer Clinical Trials" at the University of 
North Carolina at Chapel Hill. This is an important initiative for our School, the Lineberger 
Comprehensive Cancer Center and the University of North Carolina at Chapel Hill. 

This is an interdisciplinary effort that brings together researchers from biostatistics, health 
policy, pharmacogenomics, medicine and computer science. The innovative program you 
have outlined in this proposal will significantly increase translation from laboratory 
discoveries to clinical practice which could lead to important improvements in public health -
particularly in cancer research. I am especially enthusiastic about the cross-campus 
collaborations between Duke University, UNC and NC State University. The results of all of 
us working together could lead to great advances that ultimately can benefit patients. 

We will contribute $8,000.00 per year toward this grant for each of the five years of the 
award. I wish we could do more, but we face additional rounds of budget cuts. 

The program project "Statistical Methods in Cancer Clinical Trials" has my highest level of 
support and commitment. I pledge to do what I can to help achieve the goals you have set. 

Warm regards, 

Barbara K. Rimer 

BKR/smb 
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December 19, 2008 

Michael R. Kosorok, PhD 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
University of North Carolina at Chapel Hill 
Chapel Hill, NC 27599-7420 • 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applications 

Dear Michael: 

As Vice Chancellor for Research and Economic Development, I am writing to express very 
enthusiastic institutional support for your application for a National Cancer Institute Program Project 
(POl) entitled "Statistical Methods for Cancer Clinical Trials" at the University of North Carolina at 
Chapel Hill. This is certainly an important initiative for the Gillings School of Global Public Health, 
the Lineberger Comprehensive Cancer Center, and for the University of North Carolina at Chapel Hill. 
As you know, my ovra research background is in physiology, so I am attuned to the exciting 
developments in basic biomedical research knowledge and the enormous potential that exists to 
translate this knowledge into improvements in public health. Even with all ofthe recent advances in 
biomedicine, there remains a serious bottleneck between laboratory discoveries and their utilization in 
clinical practice. I believe that the innovative program you have outlined in this proposal will 
significantly relieve this bottleneck and lead to important improvements in public health, especially in 
cancer. I am also pleased that your collaborators include a diverse range of disciplines and departments 
across the university, not only in the Gillings School of Global Public Health but also researchers from 
the School of Medicine, the School of Pharmacy, and the College of Arts and Sciences. 

Another important facet of this project is the collaboration with North Carolina State University and 
Duke University that will be both leveraged and facilitated by your program. We are very supportive 
of inter-imiversity cooperation of this kind and recognize that this combination of institutions offers a 
imiquely powerfiil resource for making advances in clinical trial methods research that will have a high 
public health impact. 

Because ofthe importance and value of this project for the university, we will contribute $20,000.00 
per year towards this grant for each ofthe five years ofthe award. 

In summary, the program project "Statistical Methods in Cancer Clinical Trials" has my highest level 
of support and commitment. I pledge to do whatever I can to see that we achieve the goals you have 
laid out and, in the process, become a leader in the field of cancer clinical trials. 

Sincerely, 

Tony G/Waldrop, PhD 
Vice Chancellor for Reset ch and Economic Development 
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North Carolina State University is a land- College of Physical and 
grant university and a constituent institution Mathematical Sciences 
of The University of North Carolina 

NC STATE UNIVERSITY 
January 9, 2009 Offlca of the Associate 

Dean for Research 
Campus Box 8209/300 Cox Hall 
Raleigh. NC 27695-8209 
919.515.7865 (phone) 
919.515.7668 (fax) 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics 
North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applicafions 

Dear Marie: 

I am writing to offer my enthusiastic endorsement and commitment to your application for a 
National Cancer Institute Program Project (POl) Award, entitled "Statistical Methods for 
Cancer Clinical Trials," which will be a joint venture between North Carolina State 
University, Duke University, and the University of North Carolina at Chapel Hill. This 
important project is consistent with the College's emphasis on health-related research and in 
particular with the mission ofthe Center for Quantitative Sciences in Biomedicine (CQSB), 
which our College strongly supports and which will be the administrative home for the 
project. 

I am well aware ofthe critical role the quantitative sciences and statistical science in 
particular play in the development of new methodology for the conception, design, and 
analysis of clinical trials, and I am excited at the prospect that the innovative program of 
research proposed in this project will lead to new advances that can speed discoveries in the 
laboratory to clinical practice in the treatment of cancer. I am also pleased that the project 
involves a significant collaboration leveraging the complementary expertise at our institution, 
Duke University, and the University of North Carolina at Chapel Hill, which together 
comprise an unparalleled resource for this sort of effort. 

The College is pleased to contribute $17,500 per year for each of the five years ofthe award 
to the CQSB in support ofthe activities of this project. The project has my highest level of 
support. I look forward to hearing of the progress you make on your ambitious research 
program, and I and the College are happy to assist you I any way we can to ensure that in the 
goals ofthe project are achieved. 

Sincerely, 

P 0 ( ^ 
Raymond E. Fornes, PhD 
Associate Dean for Research, College of Physical and Mathematical Sciences 
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North Carolina State University is a land-
grant university and a constituent institution 
of The University of North Carolina 

Office of Research 
and Graduate Studies 

IMC STATE UNIVERSITY 
Office of the Vice Chancellor 
Campus Box 7003 
103 Holladay Hall 
Raleigh, NC 27695-7003 

919.515.2117 
919.515.7521 (fax) 

January 12, 2009 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics 
North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025 - National Cancer InstiUite Program Project (POl) Applications 

Dear Marie: 

As Vice Chancellor for Research and Graduate Studies at North Carolina State University, 
I am pleased to offer my enthusiastic support for your inter-university grant application for 
a National Cancer Institute Program Project (POl), entitled "Statistical Methods for Cancer 
Clinical Trials." This exciting initiative, which will translate advances in basic biomedical 
science to clinical practice and develop new ways to conceive and evaluate treatment 
strategies for cancer, is consistent with the University's emphasis on health-related 
research. It is also an ideal endeavor in which to exploit the strengths ofthe Center for 
Quantitative Sciences in Biomedicine (CQSB), which the University strongly supports and 
which will serve as the administrative home for the project. 

I am especially pleased that this project offers yet another opportunity for trans-
institutional collaboration with Duke and the University of North Carolina at Chapel Hill. 
The resources at our three institufions for carrying out such a transformative project are 
unique and abundant, and integrating them in the way that you propose is certain to result 
in advances in clinical trial methods research that will have high visibility and impact. 

To recognize the value of this project to the University's research mission and to assist you 
in achieving your ambitious research objecfives, we will contribute $25,000 per year in 
each ofthe five years ofthe award to the CQSB in support ofthe activities of this project. 
I look forward to assisting you in any way I can to ensure the success ofthe project. 

Sincerely, 

tru. L.L Ov^T'—yL^ 

Terri L. Lomax, PhD 
Vice Chancellor for Research and Graduate Studies 

TLL/mh 
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North Carolina State University is a land-
grant university and a constituent institution 
of The University of North Carolina 

College of Agriculture and Life Sciences 
North Carolina Agricultural 
Research Service 

NC STATE UNIVERSITY Campus Box 7643 
Raleigh, NC 27695-7643 

919.515.2717 
919.515.7745 (fax) 
ag_res9arch@ncsu.edu 

January 9, 2009 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics 
North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applications 

Dear Marie: 

I am pleased to offer my unqualified support of your grant application for a 
National Cancer Institute Program Project (POl) entitled "Statistical Methods for 
Cancer Clinical Trials." This exciting project fits well with our College's focus on 
the life sciences and health as well as with that ofthe Center for Quantitative 
Sciences in Biomedicine (CQSB), to which our College is strongly committed. I 
am especially enthusiastic about the opportunity this project represents for trans-
institutional collaboration, which will draw on the complementary strengths of our 
institution, Duke, and the University of North Carolina at Chapel Hill, and I am 
pleased that the CQSB is a partner in this important effort. 

In support of this transformative project, the College is pleased to commit $17,500 
per year for each of the five years of the project to the CQSB in support of the 
activities of this project. The College and I pledge to assist you in any way 
possible to advance the goals of the project and contribute new innovations to 
cancer clinical trials methodology. 

Sincerely, 

Steven A. Lorftmel, PhD ^ 
Associate Dean for Research, College of Agriculture and Life Sciences 

Cc: Ray Femes 
Mike Cross 
Joy Martin 
Gail Hill 
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North Carolina State University is a land-
grant university and a constituent institution 
of The University of North Carolina 

Sastry G. Pantula 
Head, Department of Statistics 
Director, Institute of Statistics 
Campus Box 8203 / Patterson Hall 
Raleigh, NC 27695-8203 

College of Physical and Mathematical Sciences 
College of Agriculture and Life Sciences 

919,515.1949 
919.515.7591 (fax) 
pantula@stat.ncsu.edu 
www.stat.ncsu.edu 

NC STATE UNIVERSITY 

January 14,2009 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trial" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics, North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025, National Cancer Institute Program Project (POl) Applications 

Dear Marie: 

I am delighted to lend my enthusiastic support to your application for a National Cancer Institute 
Program Project (POl) Award, entitled "Statistical Methods for Cancer Clinical Trials," which will be a 
joint venture between North Carolina State University, Duke University, and the University of North 
Carolina at Chapel Hill and which will involve a number of faculty from the Department of Statistics. 
This project fits well with the Department's many activities related to the health sciences, including our 
popular graduate and research programs in biostatistics, bioinformatics, and biomathematics; our 
established relationship with Duke Clinical Research Institute through our joint training and graduate 
internship programs; and our recently minted relationship with the Department of Biostatistics at the 
University of North Carolina at Chapel Hill (UNC-CH) through your membership in the Biostatistics 
Core ofthe Translational and Clinical Sciences (TraCS) Center. I am especially excited about the 
opportunity the project represents for expanded and deeper collaboration among faculty in our 
Department, the Department of Biostatistics and Bioinformatics at Duke, and the Department of 
Biostatistics at UNC-CH. The project will be an important resource for all of our faculty, students, and 
postdocs, who will be exposed to the cutting-edge research on methodology for cancer clinical trials that 
you propose. 

1 am pleased that the both Colleges of Physical and Mathematical Sciences and Agriculture and Life 
Sciences, in which our Department jointly resides, have committed generous support to the project. In 
addition to the funds they have provided, I am pleased to commit space in the new Mathematics and 
Statistics Building, to which the Department will move in May 2009, to house the equipment that will 
host the project software repository as well as office and meeting space for project activities as needed. 

The Department is eager to contribute to the success of this high-profile and important project in any 
way we can. Please do not hesitate to contact me if you need further resources. Also, as the President-
Elect ofthe American Statistical Association, I am thrilled to see this proposal and its benefits to our 
profession and for human health. 

Sincerely, 

Sastry G. Pantula 
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i Duke University 
_ , . . £ « « - ! • • " Nancy C. Andrews, M.O., Ph.D. 
School of Medicine Oean, Ouke university school of Medicine 

Vice Chancellor for Academic Affairs 

Stephen L George, Ph.D. 
Co-Director/Co-PI 
"Stati-siical Methods for Cancer Clinical Trials" Prograni Project 
Duke University School of Medicine 
Durham. NC 27705-3833 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applications 

Dear Sieve: 

As Dean ofthe Duke University School of Medicine and Vice Chancellor of Academic Affairs, I 
am writing to express my strong suppori for the Duke participation in the multi-institutional 
Prpgram Project (POl) application to the National Cancer Insliuite entitled "Statistical Methods 
for Cancer Clinical Trials". The overall scientific goal of this project, to develop highly 
innovative methods for cancer clinical trials, is especially important in speeding the introduction 
of effective new therapies into practice, and i.s in line with the strategic research plans for the 
School of Medicine. The involvement oftwo other major universities in our region, the 
University of North Carolina and North Carolina Slate University, provides an outstanding 
opportunity for collaborative research. 

Because of ihe imporlancc and value of lliis program, The School of Medicine will contribute 
$15,000 per year towards this grant for each ofthe five years ofthe award. 

In summary, ihe program project "Statistical Methods in Cancer Clinical Trials" has my 
enthusiastic support and commitment. 1 pledge lo do whatever I can to see that we achieve the 
goals you have laid oul. 

Sincerely, 

Nancy .Andrews, M.D.. Ph.D. 
Dean. School of .Medicine 
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DUKE UNIVERSITY MEDICAL CENTER 
Depariment of Biostatistics and Bioinformatics 

Telcplioiic: (919)684-9447 
Ricsiinilc (919)681-7918 

January 13, 2009 

Stephen L George, Ph.D. 
Co-Director/Co-PI 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Rc: PAR-()9-025 - National Cancer Institute Program Project (POI) Applications 

Dear Steve: 

As chair ofthe Department of Biostatistics and Bioinformatics, 1 am writing to express 
my enthusiastic support for the POl application entitled "Statistical Methods for Cancer 
Clinical Trials", in which Duke will participate jointly with the University of North 
Carolina - Chapel Hill and North Carolina State University. The overall goal ofthe 
research, to transform the current paradigm for drug discover^' and translation to clinic, 
resulting in improved survival and quality of life for cancer patients; is extremely 
important in itself And the opportunity for our faculty to engage in high level 
collaborative research in statistical methodology is consistent withthe strategic plans of 
our department. 

Because of the importance ofthe research, I am willing to commit S15,000 per year of 
the grant for use in offsetting the costs of research. In addition, I will help in whatever 
other ways are needed to help this program succeed. 

Sincerely, ^__^ 

Elizabeth R. DeLong, Ph.D. 
Professor and Chair 
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F a DukeMed icine Duke Comprehensive Cancer Center 
A Mailonfll Cancer rnstitule-designjied Comprehensive Cancer Center 

H. Kim Lyeriy, M D 

George Barth Geller Professor of Research In Cancer 
Director 
Diiko Comprehensive Cancer Center 

January 13,2009 

Stephen L George, Ph.D. 
Co-Dircctor/Co-Pl 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Steve: 

As Director of the Duke Comprehensive Cancer Center, I am writing to express my strong 
support for your Program Projeel (POl) application entitled "Statistical Methods for Cancer 
Clinical Trials". The overall scientific goal of this projeel, to develop highly innovative methods 
for cancer clinical trials, is highly relevant to the .strategic plans ofthe DCCC. Efficient 
statistical methods are extremely important in accelerating the development of anti-cancer 
therapy and in translating results into clinical practice. Developments fi-om your proposed 
research prograni can be quickly implemented in cancer research projects here because of your 
role as the director ofthe biostatistics unit in the DCCC. 

1 am enthusiastic about this program and I pledge to help in whatever 1 can to see that you 
achieve the goals you have laid out. 

Sincerely, 

H. Kim Lyerly/f 
George Barth G|iller'Profcssor of Research in Cancer 
Director, Duke Comprehensive Cancer Center 

60.̂  6\JM<: 2714^ Durham, NC 27710 tt i 
I K 2424 Er.vin Road F.ii 

Hock Plaza, Suite 601 
Durham, NC 27705 
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Tomorrow's Cancer 
Treatments Today 

Cancer and Leukemia Group B 
CENTRAL OFFICE OF THE CHAIRMAN 

230 W. Monroe Stre«t, Suite 2050 
a\ast>,\l6O6O&4701 

TEL (773) 702-9171 
FAX (312) 34SOII7 

wwwxalgixorg 

RlchaidLSchIiilcy,M.D. 
Chainnan 

January 14,2009 

Stephen L George, Ph.D. 
Co-Director/Co-PI 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Sieve: 

As chair of the Cancer and Leukemia Group B (CALGB), I am writing to express my 
enthusiastic support for your POl application entitled "Statistical Methods for Cancer Clinical 
Trials". Indeed, the CALGB will be a major partner in this research through the participation of 
several clinical co-investigators participating from Duke and UNC, through the involvement of 
statisticians from the CALGB Statistical Center, which you direct as Group Statistician, and 
through the sharing of data from selected CALGB studies to illustrate the methods that are 
developed. The overall goal ofthe research, to transform the current paradigm for drug discovery 
and translation to practice, resulting in improved survival and quality of life for cancer patients, 
is a shared goal ofthe CALGB. For all of these reasons, it is anticipated that the results from this 
program can and will be implemented directly and immediately into the design and analysis of 
CALGB studies, to the benefit of all. 

In summary, 1 enthusiastically support this program and look forward to our partnership in 
achieving its aims. 

Sincerely, 

(M.t T 

1 
Richard L. Schilsky, M.D. 
Chair, Cancer and Leukemia Group B 
Professor of Medici ne 
University of Chicago 
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NISS National Institute of Statistical Sciences 
PQ Box 14006, Research Triangle Park, NC 27709-4006 
Tel: 919.685.9300 FAX: 919.685.9310 
www.niss.org 

Alan F. Karr, Director 
karr@nlss.org 

January 5, 2009 

Dr. Michael Kosorok 
Dr. Marie Davidian 
Dr. Stephen George 
Department of Biostatistics 
Gillings School of Global Public Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg, CB 7420 
Chapel Hill, North Carolina 27599-7420 

Dear Michael, Marie, and Steve, 

1 am delighted to hear that you and your colleagues at Duke University, North Carolina State University, 
and the University of North Carolina at Chapel Hill are collaborating on a application for a joint Prograni 
Project grant from the National Cancer Institute on "Statistical Methods for Cancer Clinical Trials." 

The Research Triangle is a natural setting for trans-institutional research projects such as the one you 
are proposing, and, as you know, the National Institute of Statistical Sciences (NISS) and the Statistical and 
Applied Mathematical Sciences Institute (SAMSI) have a long history of catalyzing and facilitating such 
interactions. NISS would be pleased to support this important initiative by making our centrally-located 
facilities available to you and other project personnel for meetings during the project period, as we have 
already done during the months leading up to the submission of your application. These facilities include 
"traditional" conference rooms, a fully-equipped video conference room and a lecture room and conference 
that support web streaming of events. 

T wish VO!! 5T'-!C'';ftss with thi^ ororiop-ni. .̂ .rrf, M T ^ ^ )ookr- tnt*v.',?r.H to h'>''.t^tis! HCti'^'itieri Bssoci^t-^d with the 

project. ; • ,. ^ , ; • • 

Sincerely, 

Sincerely, 
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Colin B. Begg, PhD 
Eugene W. Kettering Chair 

Department of Epidemiology & Biostatistics 

December 23, 2008 

Michael R. Kosorok, PhD 
Marie Davidian, PhD 
Stephen L. George, PhD 
Gillings School of Global Public Health 
University of North Carolina at Chapei Hiii 
3101 McGavran-Greenberg Hall 
CB 7420 
Chapel Hill, NC 27599-7420 ~ 

Re: Statistical Methods in Cancer Clinical Trials 

Dear Michael, Marie and Steve, 

I'airiWriting to'confirm my willingness to serve ori the External Advisory Committee for your 
joint POi Program Project application entitled "Statistical Methods in Cancer Clinical Trials". 
Although the key ingredients of clinical trial methodology have been established for many 
decades, the new drug development paradigm of trying to create new agents that are 
speciflcally targeted to the characteristics of relatively small subgroups of patients, with the 
ultimate goal of "personalized medicine", promises to change the laiidscape for designing and 
analyzing clinical trials. At this juncture we certainly need fresh, innovative approaches to 
maximize the efficiency ofthe drug development and testing strategies in the context of this 
paradigm. Statistical methods must play a central role in this effort. The group of investigators 
you have put together to tackle these difficult issues is impressive, drawing on the 
considerable strengths of your three institutions. Your team encompasses several prominent 
experts in both statistical theory and the application of clinical trials, and so you are in a great 
position to enhance our knowledge in this important area. I am very happy to serve on your 
External Advisory Committee, and generally to help in any way I can. 

With best wishes. 

.-CoW. 
Colin Begg, PhD • - ; : • - ' ; • - . ^ -y- ••.•:•. - ••-•:•• '• • - - - ' 
Attending Biostatistician ; ' . 
Chair, department of Epidemioiogy and Biostatistics 
Memorial Sloan-Kettering Cancer Center 

Memorial Sloan-Kettering Cancer Center 
507 East S r̂d Street, ird Floor, New York, New York 1006̂  

Telephone 646.7ss.8108 • FAX646.7SS0009 
E-mail: beggc@msl:cc.org 

NCI-designatfd Comprehensive Cancer Center 
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The University of Micliigan 
Department of Statistics 

12/17/2008 

Michael R. Kosorok, PhD, Marie Davidian, PhD, Stephen L. George, PhD 
Gillings School of Global Public Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg Hall 
CB 7420 
Chapel Hill, NC 27599-7420 

Re: Statistical Methods in Cancer Clinical Trials 

Dear Michael, Marie and Steve, 

I am very happy to serve as chair of the External Advisory Committee for your joint 
Program Project "Statistical Methods in Cancer Clinical Trials" that you are submitting to 
the National Cancer Institute. This is an exiting project that will bring together the 
combined strengths of Duke University, North Carolina State University and the 
University of North Carolina at Chapel Hill. 

I am keenly aware of the importance of clinical trials in the discovery of new treatments, 
and, as you know, have worked for many years in my own research on creating new 
clinical trial methods, especially in the areas of dynamic treatment regimes and 
reinforcement learning. 1 believe that the application of these new areas to cancer, as 
well as many of the other novel approaches proposed in your application, will likely have 
a large impact on public health. 

As a member of the External Advisory Committee, I am looking fonward to following your 
research progress and providing feedback on at least an annual basis. I wish you 
success in your application. 

Sincerely, 

n/l/, S^-T^t 
H. E. Robbins Professor of Statistics 
Research Professor, Institute for Social Research 
Professor of Psychiatry 

Address Telephone Fax email/URL 
Department of Statistics 734-647-3684 734-763-4676 samurphv@umich.edu 
444D West Hall http://www.stat.lsa.umlch.edu/~samurphv 
The University of Michigan 
AnnArbor, Ml 48109-1107 
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December 18, 2008 

Michael R. Kosorok, PhD 
Marie Davidian, PhD 
Stephen L. George, PhD 
Gillings School of Global Pubhc Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg Hall 
CB 7420 
Chapel Hill, NC 27599-7420 

Re: Statistical Methods in Cancer Clinical Trials 

Dear Michael, Marie and Steve, 

I am pleased to serve as a member ofthe External Advisory Committee for 
your joint Program Project "Statistical Methods in Cancer Clinical Trials" 
that you are submitting to the National Cancer Institute, 

Many of your research aims involve genomics and Bayesian methods, areas 
of research in which I have been very active. Thus I am keenly aware ofthe 
potential these methods have in improving design and analysis of cancer 
clinical trials. I believe your proposed research in cancer clinical trials is 
fundamental ahd will likely have a large public health impact. This is an 
exciting project that will bring together the combined strengths of Duke 
University, North Carolina State University and the University of North 
Carolina at Chapel Hill. 
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December 19,2008 
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As a member of the External Advisory Committee, 1 am looking forward to following 
your research progress and providing feedback on at least an annual basis. I wish you 
success on your application. 

Best wishes, 

Giovanni Pafmiaiani, PhD 
Professor of Bkwtatisties 
Johns Hopkins University 
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Lead PD/PI: Michael R. Kosorok, PhD 
PD/PI: Marie Davidian, PhD 

PD/PI: Stephen L. George, PhD 
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MULTIPLE PD/PI LEADERSHIP PLAN 

Dr. Kosorok's duties as lead PD/PI include managing the integration of the five projects and three core 
facilities; leading Core A operations; scheduling regular meetings of the Executive Committee, the UNC-CH 
Administrative Office, the Steering Committee, and the Annual Retreat and Meeting with the External Advisory 
Committee. Dr. Kosorok chairs the Executive and Steering Committees and also coordinates yearly summaries 
of progress and non-competitive renewal materials. Other activities include preparation of annual reports, over
sight of budgetary disbursements and financial records for both the program project and the UNC-CH compo
nents, and communication with NIH and other external communications that impact the program. 

Dr. Kosorok is assisted in his overall leadership responsibilities and duties by Drs. Davidian and George 
who comprise the Executive Committee and who share overall administrative and scientific leadership and 
responsibility for the program project. Dr. Davidian is also the Core C leader, Project 2 leader and chair of the 
inter-institutional computing committee which coordinates trans-institutional computing issues. As chair of this 
committee. Dr. Davidian will provide overall program project leadership for inter-institutional computing issues. 
Dr. Davidian also has overall responsibility for the NCSU budgetary components of the program. Dr. George is 
also the Core B leader, and, as such, coordinates trans-institutional data sharing and data compilation issues. 
Dr George also has overall responsibility for the Duke budgetary components of the program. Drs. Davidian 
and George also assist Dr. Kosorok with external communication, although Dr. Kosorok is the primary contact 
person. 

Dr. George will provide overall program project leadership on human subjects issues. Dr. George will 
also be responsible for any human subjects approvals at Duke University Drs. Davidian and Kosorok will be 
responsible for any human subjects approvals at NCSU and UNC-CH, respectively, with assistance and advice 
from Dr. George as needed. 

Dr. Kosorok will be responsible for preparation of annual non-competitive renewal applications and disper
sion of funds to the subcontracts at NCSU and Duke as well as to the project and core components at UNC-CH. 
Drs. Davidian and George will be responsible for assisting with the non-competitive renewal applications as well 
as dispersing funds to the project and core components at their respective institutions. No budgetary changes 
in subcontracts will be undertaken without approval from the Administrative Office at the affected institution. No 
budgetary changes affecting projects or cores will be undertaken without consulting with the affected project or 
core leaders nor without approval of the Executive Committee. 

The proposed administrative structure is not a strict hierarchy but is more of a matrix with both intra-
institutional leadership under the Administrative Offices and trans-institutional scientific leadership of the overall 
program as well as of individual projects and cores. While Dr Kosorok is the lead PD/PI, the overall leadership 
and responsibility for the core is shared among all members of the Executive Committee, and no major deci
sions affecting the project will be made without the consensus of the entire Executive Committee. Moreover, 
no major changes in scientific focus or budget allocations to projects and cores will be made without input and 
guidance from the Steering Committee (which includes all project and core leaders). We have been success
fully functioning in this manner for about six months now, and we do not anticipate there being any conflicts or 
difficulties that cannot be successfully resolved within this administrative structure, 

The rationale for the proposed multiple PD/PI leadership structure follows naturally from the fact that the 
three institutions involved are all playing a significant scientific role across multiple projects and cores within 
the proposed program project. More importantly, the novel matrix administrative structure will greatly facilitate 
research by fostering and coordinating trans-institutional collaboration. 

PHS 398/2590 (Rev. 11/07) Page 194 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

PROJECT 1 

INNOVATIVE CLINICAL TRIAL DESIGN AND ANALYSIS 

Project Leader: Jianwen Cai, PhD 
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PROJECT SUMMARY (See instructions): 

Study design is a crucial first step in clinical trials. Well-designed studies are essential for successful cancer 
research and cancer drug development. Innovative clinical trial designs can potentially require fewer 
patients, save resources, and accelerate cancer drug development. The broad, long-term objective of this 
research project is to develop new statistical methodology to address new and challenging issues in the 
design and analysis of cancer clinical trials. There are 3 specific aims in this praject. The first aim addresses 
statistical methods for the design and sample size calculation for longitudinal data and joint models for 
longitudinal and survival data. Statistical methods will be developed for sample size and power estimation for 
the overall and direct treatment effect on survival, for the effect of the longitudinal process on survival, and 
for settings involving multivariate longitudinal and multivariate survival processes. The second aim studies 
statistical methodology for the design and analysis of group randomized cancer prevention trials with survival 
and recurrent event outcomes. Empirical process theory will be used to study the asymptotic behavior of the 
test statistics and both asymptotic approximation as well as permutation test will be used to develop sample 
size formulas and power estimation. The third aim addresses important statistical issues in the oncology 
drug development pathway. There are three sub-aims. The first sub-aim is in the area of targeted designs. 
Methods for alternative designs, including "enrichment" designs, will be developed, and the operating 
characteristics and costs of these designs to fully targeted designs will be compared. Valid and efficient 
statistical methods for these trials will be developed by applying a semiparametric empirical likelihood 
approach. The second sub-aim is in the area of phase 11 designs. New methods for phase II and phase 11/111 
clinical trials will be developed and their operating characteristics, costs, and predictive ability for subsequent 
phase HI trials will be assessed. Information on both combination and non-combination therapies in phase 11 
studies and subsequent phase III studies will be gathered to build prediction models using machine learning 
and other nonparametric classification methods. The third sub-aim is in the area of partially randomized 
designs. New semiparametric empirical likelihood methods will be developed for the design and analysis of 
such trials to adjust for selection bias and to improve efficiency. Our research will produce important new and 
efficient design and analysis tools for cancer research. 

RELEVANCE (See instructions): 

This research will provide valuable new design and analysis tools to cancer researchers and other 
biomedical researchers. These new and improved design and analysis tools will help to improve the quality 
and efficiency of cancer clinical trials. They will help to improve public health by enabling accurate and 
efficient estimation of sample size and power calculation for cancer clinical trials and by accelerating cancer 
drug development. 

PROJECT/PERFORMANCE SITE(S) (if additional space is needed, use Project/Performance Site Format Page) 

Project/Performance Site Primary Location 

Organizational Name: The University of North Carolina at Chapel Hill 
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Project/Performance Site Congressional Districts: N C - 0 0 4 
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Organizational Name: North Carolina State University 
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RESEARCH PLAN 

1 INTRODUCTION TO RESUBMISSION/REVISION APPLICATION - N/A 

2 SPECIFIC AIMS 
Design is a crucial first step in clinical trials. Well-designed studies are essential for successful cancer research 
and cancer drug development. Innovative clinical trial designs can potentially require fewer patients, save 
resources, and accelerate cancer drug development. Although much effort has been put into analysis methods 
with complicated data structure, the design aspect has not kept pace. Hence developing statistical methods for 
innovative clinical trial design is timely and much needed. 

In this project, we propose to develop new statistical methodology to address issues in the design and 
analysis of clinical trials. We will investigate both the analytical and the empirical behavior of the proposed 
methodologies. Related software will be developed. These high impact and innovative statistical methods will 
improve public health by enabling accurate and efficient estimation of sample size and power for studies with 
time-to-event and longitudinal endpoints, cluster randomized cancer prevention and therapeutic trials, and can
cer drug development trials. Specifically, we have the following specific aims: 
Aim 1: Develop methods for design and sample size calculation for longitudinal and joint models for 
longitudinal and survival data. We will consider a wide range of design issues for joint models. Specifically, 
we will undertake a methodological development of design issues, such as sample size and power considera
tions, for investigating the treatment effect on both the survival and longitudinal processes, and the effect of the 
longitudinal process on survival in a joint modeling setting using a two-stage modeling approach. We will de
velop statistical methods for sample size and power estimation for testing the overall treatment effect on survival, 
the effect of the longitudinal process on survival, and the direct treatment effect on survival. We will consider 
settings from the simple case involving a univariate longitudinal process and a univariate survival process to the 
very complex case involving multivariate longitudinal processes and multivariate survival processes. These high 
impact and innovative statistical methods will provide new and innovative methodology for clinical trials design 
using joint models and will provide an important set of data analysis and design tools for the practitioner These 
methods will improve public health by enabling accurate and efficient estimation of sample size and power in 
the presence of time-to-event and longitudinal data using joint modeling approaches. 
Aim 2: Develop statistical methodology for the design and analysis of group randomized cancer pre
vention trials with survival and recurrent event outcomes. We will consider design Issues with clustered 
survival endpoint and clustered recurrent events endpoint from cluster-randomized trials. Specifically, we will 
consider samiple size and power calculations for investigating the treatment effect on the survival process or 
recurrent event process. Test statistics for clustered recurrent event data will be considered and its asymptotic 
properties will be developed using modern empirical process theory Permutation tests will also be considered 
when the number of clusters is small. We will also consider the situation where the elements of a cluster are 
randomized to different treatments. The strengths and weaknesses of different designs will be compared via 
theoretical investigations and simulation studies. These new methods will provide important data analysis and 
design tools and will improve community-based cancer research. 
Aim 3: Develop statistical methodology for cancer drug development. The process for clinical development 
of anti-cancer agents is time-consuming and costly Phase III clinical trials, the most costly and time-consuming 
type of clinical study in the development process, are required in order to demonstrate safety and efficacy in a 
specific setting and to receive regulatory approval. Unfortunately, only a minority of the phase III 'pivotal' trials 
conducted are successful in achieving regulatory approval for the tested therapy. In ad(dition, the explosion of 
new agents requiring development, particularly moleculariy targeted agents, has led to an increased need for 
efficiency in identifying and screening promising therapies and in conducting clinical trials of those therapies 
with a high probability of success. In this aim, we will address important statistical issues in the oncology drug 
development pathway, including three specific sub-aims in the areas of targeted designs, phase II designs, and 
partially randomized designs. 
i. Develop methods for the design and analysis ot clinical trials of targeted therapy. The explosion In 
the number of anti-cancer agents targeted to a particular biologic pathway has led to the need for a rethinking 
of the design of clinical trials using such agents. If the only patients who could benefit from such therapy are 
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those with the biologic target, if the assay for assessing the target is accurate, and if the prevalence is low, a 
'targeted' design is much more efficient than an untargeted design in which all patients are eligible. However, 
these condilions do not always hold or may be uncertain. We will develop methods for alternative designs, 
including "enrichment" designs in which some, but not all, of the patients without the target are randomized, 
and compare the operating characteristics ahd costs of these designs to fully targeted designs. We will develop 
valid and efficient statistical methods for these trials by applying a semiparametric empirical likelihood approach. 
ii. Develop designs for phase II trials that are predictive of phase III trial success. Phase II trials are an 
important step in the drug development process, designed to screen out unpromising therapies and to identify 
therapies to be tested further in phase III trials. The track record of phase II trials in predicting phase III success 
is not particularly goodet al., 2008; Zia et al., 2005; Joffe et al., 2004). In addition, newer cytostatic agents pro
duce different effects than the cytotoxic agents for which such trials were originally designed. Better approaches 
are needed. We will develop new methods for phase II trials, particularly randomized phase II trials, and phase 
ll/lll clinical trials, and assess their operating characteristics, costs, and predictive ability for subsequent phase 
III trials. We will also gather information on both combination and non-combination therapies in phase II studies 
and subsequent phase III studies to build prediction models using machine learning and other nonparametric 
classification methods. 
iii. Develop methods for the design and analysis of partially randomized clinical trials. Randomization 
is a powerful technique in experimental design and the randomized phase III clinical trial represents the gold 
standard technique for comparing treatments. Unfortunately, randomization is often a serious impediment to 
patient accrual, particularly when there is a major difference in the types of treatments under study One alter
native to a fully randomized trial is a partially randomized trial in which some patients, those without treatment 
preferences, are randomized and others are assigned their treatment of choiceand Bradley 1989; Brocklehurst, 
1997). We will develop new semiparametric empirical likelihood methods for the design and analysis of such 
trials to adjust for selection bias and to improve efficiency The performance of these methods will be compared 
with standard methods via simulation. In addition, we will work closely with collaborators on Aim 1 of Project 2 
on semiparametric inverse weighting methods, a topic with potential application to partially randomized trials. 

3 BACKGROUND AND SIGNIFICANCE 

3.1 Specific Aim 1 - Design and Sample Size Calculation for Longitudinal and Joint Models for Longi
tudinal and Survival data 

In many observational studies and randonnized clinical trials, both time-to-event and longitudinal data are fre
quently simultaneously collected. For example, in many cancer clinical trials, both time to death (or relapse) 
and longitudinal quality of life (QOL) measures are collected. In such studies, there is a great interest in char
acterizing the relationship between time-to-event and the longitudinal process. For example, if a treatment has 
a significant effect on the longitudinal process, and the longitudinal process has a significant effect on survival 
time, then the longitudinal biomarkers are in the casual pathway and can potentially be used as a surrogate 
endpoint for the time-to-event. 

Characterizing the treatment effect on the time-to-event and longitudinal response processes, and the effect 
of longitudinal process on survival are usually complicated by many challenges including missing and/or mis
measured longitudinal data (Tsiatis et al., 1995, Wulfsohn and Tsiatis, 1997; Tsiatis and Davidian, 2004) and 
informative censoring of survival data (Hogan and Laird, 1997). Failure to correctly deal with those challenges 
can lead to biased and inefficient estimators for the treatment effect on both the survival and longitudinal pro
cesses, and the effect of longitudinal response process on survival. Thus, naive approaches to inference on the 
treatment effect on both the survival and longitudinal processes, and the relationships between longitudinal and 
time-1o-event data are inappropriate (Tsiatis and Davidian, 2004). 

Joint models for survival and longitudinal data have recently become quite popular and have played an 
important role in cancer and AIDS clinical trials, where a longitudinal biologic marker such as CD4 cell count or 
immune response can be an important predictor of survival (Ibrahim, Chen, and Sinha, 2001). Joint modeling 
for survival and longitudinal data is an innovative framework that efficiently utilizes the intrinsic relationships 
between the time-to-event and the longitudinal processes, for example, by incorporating a trajectory function for 
the unobserved true longitudinal process into the hazard function of the time-to-event process (Wulfsohn and 
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Tsiatis, 1997; Henderson, Dlggle, and Dobson, 2000; Lin et al., 2002). The others have considered joint models 
where the event time distribution and longitudinal data are taken to depend on a common set of latent random 
effects (Tsiatis and Davidian, 2004; Guo and Cariin, 2004). It has been shown theoretically and by simulations 
that joint modeling leads to unbiased estimators of the treatment effect on both survival and the longitudinal 
response process, and the effect of the longitudinal response process on survival. Furthermore, joint modeling 
approaches are very likely to provide more efficient estimators. 

However, to the best of our knowledge, fundamental statistical design issues regarding sample size and 
power estimation have never been considered in the literature for joint models, potentially due to the very 
complex integrated joint likelihood involved in deriving sample size and power estimation formulas. In this aim, 
we will tackle this very important and high impact design problem. The statistical methods to be developed 
will be immediately applied to designing randomized clinical trials conducted in the Lineberger Comprehensive 
Cancer Center at the University of North Carolina at Chapel Hill (UNC-CH) and several Cancer and Leukemia 
Group B (CALGB) studies to answer important scientific questions, and will be disseminated to the broad 
community through publications in high-impact journals and development of user-friendly, publicly available 
software. Specifically, we will check design plans on the following current CALGB studies which involves both 
survival and longitudinal data collection: 

1. CALGB 9221 - A randomized phase III controlled trial of subcutaneous 5-azacytidine versus observation 
in myelodysplastic syndromes (MDS). The quality of life (QOL) part of this study actually played a key role 
in FDA approval for 5-azacytidine in MDS; 

2. CALGB 90401 - A randomized double-blinded placebo controlled phase 111 trial comparing docetaxel and 
prednisone with and without bevacizumab in men with hormone refractory prostate cancer; 

3. CALGB 49907 - A randomized trial of adjuvant chemotherapy with standard regimens, cyclophosphamide, 
methotrexate and fluorouracil - (CMF) or doxorubicin and cyclophosphamide - (AC), versus capecitabine 
in women 65 years and older with node positive or node negative breast cancer 

3.2 Specific Aim 2 - Design and Analysis of Prevention and Therapeutic Trials 
Because cancer has been difficult to treat, an important component in cancer research is to find effective 
ways to prevent cancer In many cancer prevention trials, it is often of interest to examine group-administered 
interventions to determine if these interventions help to improve the health of the members in those groups 
on average. Many of the intervention strategies are designed to be delivered to groups of participants, where 
the groups are usually not constituted at random, for example, workers at worksites or students in classrooms. 
When study conditions (e.g., intervention and control) are randomly assigned to such groups, that is, the groups 
are used as the unit of assignment, these trials are referred to as group-randomized trials. They are also 
referred to as cluster-randomized U\a\s. Because of the increased focus on disease prevention and the fact 
that many intervention programs are delivered in group settings, we have seen a great increase in the use of 
group-randomized trials. 

One example for the group-randomized trial is the Community Intervention Trial for Smoking'Cessation 
(COMMIT) (The COMMIT Research Group, 1995a, 1995b). The Intervention strategies were designed to pro
mote smoking cessation by using a wide range of community resources to approach individual smokers and to 
affect community attitudes and policies toward smoking. Twenty-two communities were paired up and random
ized to receive the active intervention or control. In this 5-year trial, the benefit of community smoking cessation 
strategies were examined. Other examples of group-ran(Jomized trials include a study of the impact of vitamin 
A supplementation (Sommer et al., 1986), which randomized villages to study the effect of vitamin A supple
mentation for preschool children, and the Working Well Trial (WWT) (Abrams et al., 1994), which studied the 
effects of worksite interventions regarding smoking cessation and diet on employee health. 

The design issues and analysis for group-randomized trials have been considered for complete continuous 
and categorical data by many authors. For example, Raudenbush (1997), Slymen and Hovell (1997), Murray 
(1998), Hayes and Bennett (1999), Kerry and Bland (2001), Lake et al. (2002), and Liu et al. (2002) considered 
the power analysis for group-randomized trials. Feng et al. (1996), Gail et al. (1996), Murray et al. (1996), and 
Braun and Feng (2001) considered analysis issues in group-randomized trials. Murray (1998), Donner and Klar 
(2000), and Murray et al. (2004) have provided comprehensive reviews on these issues. 

In some of the prevention trials, survival times or recurrent event times are the outcome of interest. An 
example for survival time is the time of onset of smoking in smoking prevention trials. It is of interest to study if 
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intervention strategies help to delay the time of onset of smoking in such trials. An example of recurrent event 
is quitting smoking in smoking cessation trials. Such event could recur, since people could start to smoke again 
after quitting and then quit again after re-starting. Data from such trials are naturally clustered within the cluster 
and we refer to them as clustered survival data and clustered recurrent event data, respectively 

Another related design is the subunit randomized design. In a cancer clinical trial, we may randomize 
patients with multiple tumor sites between treatment arms and observe time to an event from each site. Or, 
we may assign different treatments among the tumor sites of each patient. The former belongs to the cluster-
randomized trial mentioned above and the latter is called a subunit randomization trial. While there exists 
dependency only within each arm in cluster randomization trial data, there exists dependency both within and 
across arms in subunit randomization trial data. 

A common feature of the data generated from such design is that the data within the group are correlated 
or clustered. Regression analysis approach has been considered by Lee et al- (1992) for clustered survival 
data and by Schaubel and Cai (2005a, 2005b) for clustered recurrent event data. Log-rank type of tests regres
sion methods can be applied to compare the marginal survival distributions between arms, but their variance 
estimators need to be modified to account for the possible dependency in clustered survival data. Adjusted 
variance estimator for the log-rank test was proposed by Jung (1999) for the paired survival data and Jung 
(2007a) proposed an efficient simulation method to calculate the sample size based on the paired log-rank test. 
Although logrank-type of tests have been proposed for clustered survival data (Jung and Jeong, 2003; Jeong 
and Jung, 2006), design methods have been limited. Gangnon and Kosorok (2004) proposed for the weighted 
rank tests with general clustered data. However, the formulas do not clearly separate the contributions by joint 
survival distribution and censoring distribution to the final sample size. Jung (2007b) proposed a simulation-
based sample size calculation method for clustered survival data. However, simulation-based method requires 
long computing time, does not show the direct relationship between the sample size and the input parameters, 
and requires specification of the full dimensional joint distributions. Therefore, it is desirable to develop closed 
form sample size formulas for clustered survival data from cluster randomized trials. 

Among the methods for treatment comparisons of recurrent events data fromi independent individuals, a 
robust log-rank test proposed by Lawless and Nadeau (1995) is widely used. Based on the test by Lawless 
and Nadeau (1995), Cook (1995) and Matsui (2005) considered sample size calculations in this context via a 
nonhomogeneous Poisson process model. Their methods are parametric in the sense that, conditional on a 
frailty, the intensity of a homogeneous Poisson process is needed as an input parameter for sample size cal
culations. Hughes (1997) and Bernardo and Harrington (2001) considered power and sample size calculations 
based on a multiplicative intensity model and a marginal proportional hazards model respectively In spite of 
these developments for recurrent event data from independent individuals, fundamental statistical design issues 
regarding sample size and power estimation have never been considered in the literature for the clustered re
current endpoint for group-randomized trials. In this aim, we will tackle these very important and highly practical 
design problems. The resulting methods will provide much needed statistical tools for cancer prevention trials. 

3.3 Specific Aim 3 - Statistical Methodology for Cancer Drug Development 
The impetus for this aim is the need to streamline the process by which new anti-cancer agents obtain 

regulatory approval and thus become available for general use. The process is time-consuming, complicated 
and expensive (Malakoff, 2008; Fricker, 2008). There is no easy fix, but the sub-aims in this proposal address 
three important aspects of the process: designs for targeted therapy phase II trials, and partially randomized 
trials. New methodology and improved efficiency in these areas can make a substantial impact on the process. 

3,3.1 Targeted Therapy 
The term 'targeted therapy' refers to drugs designed to interfere with a specific molecular target that is 

believed to play a critical role in tumor growth or progression, is not expressed significantly in normal cells, and 
is correlated with clinical outcome (Chon et. al., 2006). The mechanisms of action and toxicities of targeted 
therapies differ substantially from those of traditional cytotoxic chemotherapy With the rapid development of 
high-throughput techniques for identifying novel specific molecular targets in human cancer over the past few 
years, targeted cancer therapy has dramatically increased and is now used for many common malignancies, 
including breast, colorectal, lung, and pancreatic cancers; lymphoma; leukemia; and multiple myeloma. The 
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implications of this change in the types of therapy have yet to be fully incorporated into the design and analysis 
of cancer clinical trials. 

For trials of targeted therapy, there are potential efficiency gains that can be achieved by limiting eligibility in 
trials to those patients who are known to have the target in question (Simon and Maitournam, 2004; Maitournam 
and Simon, 2005). There are important examples of situations in which such a strategy has worked well (e.g., 
trastuzumab in breast cancer) and in which the alternative, entering all patients, has failed (gefitinib in NSCLC). 
However, there are other examples (e.g., cetuximab in metastatic colorectal cancer) in which patients without 
the target appear to benefit as much as those with the target. 

It is important to consider alternative designs and to understand the circumstances under which competing 
designs are most appropriate. One alternative to a targeted design is a biomarker stratified randomized (BSR) 
design, in which marker positivity is a stratification factor and both marker positive and negative patients are 
randomized to target agent versus placebo. A BSR design allows testing of whether the marker positive patients 
benefit from the targeted agent compared to placebo, testing an overall treatment benefit for all patients, and 
evaluating the performance of the predictive classifier in identifying targeted patients. Another alternative is 
an enrichment design, which lies somewhere between a targeted design and a BSR design. An enrichment 
design randomizes only a subset of marker negative patients in order to reduce cost and to improve study 
efficiency Selecting which patients to randomize will depend on the biomarker prediction, other baseline patient 
characteristics, or an intermediate efficacy endpoint 

3.3.2 Phase II Designs 
The primary purposes of a phase II trial are to identify promising treatment regimens for further testing in 

a subsequent phase III trial and to screen out unpromising regimens that do not warrant further testing. There 
is a vast literature on phase II trials. Although the eariiest single-arm phase II clinical trials were also designed 
as single-stage trials (Gehan, 1961; Fleming, 1982; A'Hern, 2001), most phase II clinical trials are designed as 
multi-stage trials, ordinarily with a stopping rule for ineffectiveness at the early stages (Simon, 1987). Two-stage 
designs are commonly used because of simplicity and because of diminishing returns beyond two stages. One 
may also employ an upper boundary to stop the trial early when a significantly high efficacy is observed from 
stage 1 (Chang et al., 1987; Spiegelhalter et al., 1986). It is also possible to introduce decision rules allowing for 
an intermediate outcome (Storer, 1992). In recent years, randomized phase II trials have become increasingly 
employed because of the unreliability of historical data used in the design of single-arm trials and because of 
the use of other endpoints (e.g., progression-free survival) that require a concurrent control arm (Jung, 2008a; 
Jung and George, 2009; Piedbois, 2007; Redman and Crowley, 2007; Stadler, 2007; Tangen and Crowley, 
2006; Lee and Feng, 2005; Rubinstein et al., 2005; Wieand, 2005; Rosner et al., 2002; Steinberg and Venzon, 
2002; Simon etal., 1985). 

For phase 11 trials with promising results, a subsequent phase III trial is the gold standard for assessing 
efficacy and is required for regulatory approval. But these trials are very expensive and time-consuming and 
there are an increasingly large number of new cancer agents and combinations of agents that need to be 
assessed. Most of the reported phase II trials in the medical literature are in oncology (Michaelis et al., 2007), 
but many phase III cancer trials have not led to improvements over standard (control) therapy, despite promising 
results in the phase II trials (Turrisi, III, 2005; El-Maraghi and Eisenhauer, 2008). Thus, the traditional phase I 
- II - III sequence of clinical trials, designed originally for cytotoxic agents, may not be the best strategy for the 
newer types of agents under development. Indeed, we may be doing the wrong type of phase II trials (Burton, 
2007). It is increasingly important to design, conduct and analyze such trials with care (Mariani and Marubini, 
2000; Ottaiano et al., 2007; Mariani and Marubini, 1996; Chang et al., 2005) and new approaches are needed 
(Rawlins, 2004). 

In this sub-aim, we will do two things: (i) develop statistical models for predicting positive phase III trials 
based on the outcome of phase II trials; (ii) improve the standard two-stage design for single-arm phase II trials 
when the patient population is heterogeneous. 

3.3.3 Partially Randomized Designs 
Randomized clinical trials have been the cornerstone of cancer drug development. Randomization balances 

known and unknown prognostic factors among treatment groups, allows unbiased estimation of treatment ef
fects and provides the basis for valid statistical inference. However, randomized clinical trials often have accrual 
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difficulties due to patient or physician preferences (i.e. a lack of equipoise), low adherence in the randomly as
signed treatment group, and low generalizability due to enrollment bias. For example, CALGB 30102 is a phase 
111 trial designed to compare the success rates of pleural effusion control by a talc/chest tube and a small PluerX 
catheter in lung cancer patients. PluerX is a small device used at home and a chest tube is an inpatient device 
requiring attention from the medical staff. This study was terminated due to the slow accrual rate after enrolling 
40 patients. Patient or physician preference for one of the two treatments was obviously the primary reason for 
slow accrual and eariy termination. Similariy CALGB 140503 is an ongoing randomized trial designed to test 
the non-inferiority of sublobar resection to lobectomy for small peripheral non-small cell lung cancer (NSCLC). 
It is also at risk of early termination due to slow accrual. The investigators are interested in alternative designs 
to improve accrual and to increase the generalizability of the results. 

In the literature, alternative designs to the classic randomized clinical trial have been proposed to relieve 
or bypass randomization,. One example is the randomized consent design (Zelen, 1990}, in which a patient is 
randomized prior to the informed consent stage, the physician presents the treatment that has been selected 
and then asks for informed consent. However, this design has ethical, legal and scientific problems and is rarely 
used in practice. Another design is the non-randomized patient preference design, in which patients receive 
their preferred treatment and are followed prospectively for clinical outcome. This design may encourage patient 
accrual, but it introduces selection bias between treatment arms. Because the assignment of treatment is 
determined by both known and unknown factors, it is possible that the apparent effect of treatments is due 
primarily to these other factors in ways that cannot be fully accounted for in the analysis. There are other hybrid 
designs that combine features of randomization and patient preference of treatments (Lambert and Wood, 
2000). One variant of the hybrid designs is the doubly randomized preference design (Ruker, 1989), where 
patients are randomized into a randomization arm, within which treatments are randomized; and a preference 
arm, within which treatments are chosen by patients. Long, Little, and Lin (2008) proposed a two-stage model 
for estimating the causal treatment effects and the preference effects for the doubly randomized preference 
design under certain assumptions. Their work also provides a framework to understand other hybrid designs. 

We are particularly interested in partially randomized designs (Brewin and Bradley, 1989; King et al,. 2005). 
In one design of this type, the comprehensive cohort design, patients with preferences are offered their preferred 
treatment, while those without preferences are randomized. This design was originally proposed to increase 
the external validity of the randomized component of the trial. The advantage for such hybrid designs are 
fast accrual and inclusion of all patients with and without preference for treatment while still allowing unbiased 
inference of treatment effects in the set of patients receiving randomly assigned treatments. If it is truly believed 
that there is no systematic difference in baseline covariates in the treatment groups for the non-randomized 
patients, a joint efficient analysis of randomized and non-randomized patients is possible. In order to adjust for 
potentially unbalanced covariates in the non-randomized patients and to improve efficiency through auxiliary 
covariates in the randomized patients, we will estimate the constrained covariate distribution by the empirical 
likelihood method. A consistent and efficient estimator for treatment effect for all patients can be obtained using 
the constrained covariate distribution. Our method requires the assumption that the treatment selection of a 
patient is independent of his or her clinical outcome, given the observed covariates. We will evaluate the impact 
of violating this assumption on the estimation and the testing of treatment effect using nonignorable treatment 
assignment model. In Project 2, Aim 1, semiparametric inverse weighting methods will also be developed for 
data arising from the partially randomized design. We will evaluate via simulation the performance of these 
semiparametric methods. 

4 PRELIMINARY STUDIES 

4.1 Investigators 
The study team for the proposed project is highly qualified. This section summarizes the relevant experience of 
the investigators. 

Jianwen Cai of UNC-CH will serve as Project Leader and will in addition lead Aim 2. Dr. Cai has extensive 
experience in longitudinal data analysis and joint modeling of longitudinal and survival data (Zeng and Cal, 
2005a, 2005b), study designs (Cai and Zeng, 2004, 2007), multivariate survival analysis (Cai and Prentice, 
1995,1997; Cai et al. 2005, 2007,2008 ), and clinical trials (Shen and Cai, 2003), making her ideally suited to 
lead the project. Her work with colleagues (Schaubel and Cai, 2005a; Song, Kosorok, and Cai, 2008) forms the 
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basis for the research proposed in Aim 2. 
Stephen George of Duke University, the Duke PD/PI for the overall Program Project, will serve as Project 

Co-Leader and will in addition lead Aim 3. Dr. George has extensive expertise in the methodology of clinical 
trials (George, 2009; Potthoff and George, 2009) and translational science (George, 2007,2008). 

Richard M. Goldberg of UNC-CH is the Chief of the Division of Hematology and Oncology and Distinguished 
Professor of Medicine at UNC-CH. Dr. Goldberg is also the Physician-in-Chief of the North Carolina Cancer 
Hospital. Dr. Goldberg has extensive experience in cancer care and cancer research. Dr. Goldberg's clinical 
interest includes colorectal and other Gl cancers, carcinoid tumors, new drug development, and inherited pre
disposition to Gl cancers. Dr. Goldberg's research interest focuses on four areas: 1) clinical studies in patients 
with Gl cancers (principally colorectal cancer); 2) translational studies done on biologic specimens from patients 
with cancer done with laboratory collaborators; 3) development of new cancer drugs and drug combinations; 
and, 4) clinical trials methodology (Goldberg et al., 2004; Hoskins, Goldberg, and McLeod, 2007; Dy et al., 
2007; O'Neil et al., 2007). Dr. Goldberg will provide his expertise in the subject matter and provide advice on 
the interpretation of statistical results to the research team. 

Joe Ibrahim of UNC-CH, the UNC-CH co-PD/PI for the overall Program Project, will serve as Project Co-
Leader and will in addition lead Aim 1. Dr. Ibrahim has extensive experience in statistical methodological 
development for joint models of longitudinal and time-to-event data (Brown and Ibrahim, 2003a, 2003b, 2005; 
Ibrahim, Chen, and Sinha, 2004; Brown, Ibrahim, and DeGruttola, 2005; Chi and Ibrahim, 2006,2007). 

Sin-Ho Jung of Duke University is a co-investigator. Dr Jung's expertise includes statistical methods for 
clustered survival data (Jung, 1999,2008b; Jung and Jeong, 2003) and design and analysis of phase II cancer 
clinical trials (Jung, 2008a; Jung, Carey, and Kim, 2001; Jung et al., 2004). 

Michael Kosorok of UNC-CH, the PD/PI for the overall Program Project, is a co-investigator for this project. 
Dr. Kosorok's expertise includes clinical trials (Kosorok, Shi, and DeMets, 2004), time-to-event data (Eng and 
Kosorok, 2005), empirical processes and semiparametric inference (Kosorok, 2008). 

Herbert Pang of Duke University is a co-investigator for the project. Dr. Pang's expertise and research 
interests include classification methods (Pang et al., 2006; Pang, Kim and Zhao, 2008), genomics (Pang and 
Zhao, 2008), and shrinkage-based discriminant analysis (Pang, Tong and Zhao, 2009). 

Anastasios A. Tsiatis of NCSU is a co-investigator for the project. Dr Tsiatis has extensive experience in 
semiparametric theory (Tsiatis, 2006), survival analysis and clinical trials (Tsiatis et al., 2008), joint modeling of 
longitudinal and survival data (Tsiatis and Davidian, 2004), and causal inference (Davidian et al., 2005; Tsiatis 
and Davidian, 2007; Cao et al., 2009). 

Xiaofei Wang of Duke University is a co-investigator for the project. Dr. Wang is Involved in design and 
analysis of cancer biomarker studies, such as CALGB 30203,30506 and 30801, in which targeted design and 
biomarker stratification design have been used. He is also the faculty statistician for CALGB 30102 and 140503, 
which are used as examples to motivate the partially randomized design. He has expertise in semiparametric 
inference for data arising from outcome/auxiliary-dependent sampling (Wang and Zhou, 2006) and subsampling 
(Wang and Zhou, 2009; Wang, Wu, and Zhou, 2009). 

Donglin Zeng of UNC-CH is a co-investigator for the project Dr. Zeng's expertise includes semiparametric 
inference with event time data (Zeng and Lin, 2007), joint modelling (Zeng and Cai, 2005), missing data (Chen, 
Zeng, and Ibrahim, 2007), and study design (Cai and Zeng, 2004; 2007). 

Hao (Helen) Zhang of NCSU Is a co-investigator for the project. Dr. Zhang's expertise is in nonparametric 
smoothing (Zhang et al. 2004; Lin and Zhang, 2006), variable selection (Zhang, 2006; Zhang and Lu, 2007), 
and statistical machine learning and high dimensional data analysis (Zhang et al., 2006; Zou and Zhang, 2008). 

Haibo Zhou of UNC-CH is a co-investigator for the project. Dr. Zhou is an expert on cost-effective study 
designs especially the outcome-dependent sampling design and inference (Zhou et al., 2002, Weaver and Zhou 
2005, Zhou et al 2007). He is also an expert on measurement error problems (Zhou and Pepe, 1995; Zhou 
and Wang, 2000, Zhou and You, 2007), survival analysis (Jiang and Zhou, 2007), epidemiological methods and 
environmental statistics (Zhou and Weinberg, 1999; Zhou et al., 2009). 

There have been very active intra-institutional collaborations. Drs. Kosorok and Cai have collaborated 
on sample size calculation for recurrent event data (Song, Kosorok, Cai, 2008); Drs. Kosorok and Zhou on 
outcome dependent sampling (Song, Zhou, Kosorok, 2009); Drs Cai and Zeng on joint modeling of longitudinal 
and survival data (Zeng and Cai, 2005a, 2005b) and sample size calculations for case-cohort studies (Cai and 
Zeng, 2004, 2007); Drs. Zhou and Cai on partially linear models (Cai et al., 2007, 2008) and measurement 
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error problems (Liu, Zhou, and Cai, 2009); Drs. Ibrahim and Zeng on missing data problem (Chen, Zeng, and 
Ibrahim, 2007); Drs. George and Jung on clinical trial method (Jung and George, 2009); and Drs. Wang and 
Pang on methods for cancer biomarker (Wang, Pang, and Schwartz, 2009). 

In addition to the intra-institutional collaboration, there has also been some inter-institutional collaboration 
among the investigators from the three institutions. The investigators on this project have all given seminars 
in the other two institutions. Dr. Cai from UNC-CH had meetings with Dr Jung from Duke to discuss issues 
related to multivariate survival analysis and possible collaboration. She has also had discussion with Dr. George 
from Duke about issues related to data monitoring. Dr. Wang from Duke and Dr. Zhou from UNC-CH have 
collaborated on research for methods for outcome dependent sampling. This collaboration has resulted in two 
publications (Wang and Zhou, 2006,2009) and one manuscript under review (Wang, Wu, and Zhou, 2009). 

4.2 Preliminary Studies 

4.2.1 Specific Aim 1 - Design and Sample Size Calculation for Longitudinal and Joint Models for Lon
gitudinal and Survival data 

The study team has extensive experience in statistical methodological development for joint models of longitu
dinal and time-to-event data (Brown and Ibrahim, 2003a, 2003b; Ibrahim, Chen and Sinha, 2004; Tsiatis and 
Davidian, 2004; Brown, Ibrahim, and DeGruttola, 2005; Zeng and Cai, 2005a, 2005b; Chi and Ibrahim, 2006, 
2007). these models to the design setting. Fbr subject i, {i = I , . . . ,n), let Tj and Ci denote the event and 
censoring times, respectively; Si = min(Ti, d ) and 6i = /(Tj < d ) . Let Zj be a treatment indicator, and Xi{u) 
be the longitudinal process of the longitudinal markers at time u > 0 (also referred as the trajectory). In a very 
general case, Zi can be a g-dimensional vector of baseline covariates including the treatment indicator. For 
ease of exposition, Zi denotes the treatment indicator here. Values of Xi{u) are measured intermittently at 
times u = Uj < Si,j - l , . . . , m i , for subject i. Let Yi{tij) denote the observed value of Xi(%) attime%, which 
is subject to measurement error The joint modeling approach links two sub-models, one for the longitudinal 
process Xi{u) and one for the event time Tj, e.g., by including the trajectory in the hazard function of Tj. Thus, 

Aj(i) = Xo{t)exp{f3Xi{t) + aZi] (1) 
Although other types of joint models for Xi{u) have been proposed (Henderson et al., 2000; Wang and Taylor 
2001), here we focus on a general polynomial model, 

Xi{u) = eoi + eiiu-^e2iu'^ + --- + epiuP + ^Zi (2) 
where 9i = {9oi,6u,... ,9piY is identically and independently distributed as a multivariate normal distribution 
with mean /19 and covariance matrix S^. The parameter 7 is a fixed treatment effect. Here, we only consider 
the main effect of 'yZi in equation (2) to estimate the treatment effect on longitudinal process averaged over 
time, which is, in general, a reasonable assumption. Alternatively, one can include the interaction term between 
Zi and It in equation (2) to allow time dependent linear treatment effect on the longitudinal process (in this 
case, we do not need to include the main effect of yZi since the treatment effect is usually considered to be 
zero at baseline), which may be questionable. However, at the design stage, some functional assumptions on 
the treatment effect on the longitudinal process are needed to develop methods for sample size and power 
estimation. The polynomial term of Z^^^o'̂ fci"*' can be easily generalized to nonparametric forms such as 
B-splines. The model in equation (2) can be easily extended to include other covariates at baseline. The 
observed longitudinal measurements are modeled as Yi(^ij) = Xi{tij) -f- ejj, where the t i j are identically and 
independently distributed as A'̂ (0, al), and Cov(eij, ejj') = 0, for j i^ f . The observed data likelihood for subject 
i is, 

f 
J - C 

f{ei\ne,'£6)f{Si,Ai\di,/3,^,a)dei (3) 
Lj=l J 

Figure T shows the underlying causal diagram for the models that we will consider here for design considera
tions. We will focus on design issues for testing the overall treatment effect on survival P j + a; the effect of the 
longitudinal process on survival /?; and the direct treatment effect on survival a. We will not consider design 
issues for testing the direct treatment effect on the longitudinal process 7 in this aim since it has been already 
well studied (Diggle et al,. 2002). As a first step, let us consider the two-step inferential approach developed 
by Tsiatis et al. (1995) based on a first-order approximation, E[f{X{t),i3\Y{t),S > t)] « f\E{X{t)\Y,S > t,p)] 
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where Y{t) denotes the observed longitudinal data up to time t. Under this approximation, we can replace 
{9oi,9ii,.:., 6'pj}^ in the Cox model with the empirical estimates {9oi, ^ H , • •., 9pi}'̂  described by Laird and Ware 
(1982). The Cox partial likelihood (Cox 1975) can then be applied to obtain parameter estimates and inferences 
without the need to use the complex integrated full joint likelihood as in equation (3). Despite several drawbacks 
(Wulfsohn and Tsiatis 1997), the two-stage modeling approach has two major advantages: (1) The separate 
likelihood is simple to maximize and standard statistical software for longitudinal and survival data can be used 
directly; (2) It can provide nearly unbiased estimators (i.e., the biases associated with this simple approach 
are negligible) and correct biases caused by missing and/or mismeasured longitudinal data, and/or informative 
censoring of survival data. 

1 (t) <• — 
4 

y 

' \ ^ 

^ X « 
2 ^ 

* S 

Figure t: Causal Diagram 

Bias of estimating the direct treatment effect on survival if ignoring the longitudinal trajectory. When a 
treatment has an effect on the longitudinal process (i.e., 7 7̂  0 in equation (2)) and the longitudinal process is 
associated with survival (i.e., ̂  7̂  0 in equation (2)), the overall treatment effect on the time-to-event is {l3j-\-a). 
Thus, it is obvious that ignoring the longitudinal process in the proportional hazard model would result in a 
biased estimator of the treatment effect on survival. When the longitudinal process is not associated with the 
treatment (i.e, 7 = 0 in equation (2)), it is not easy to understand that ignoring the longitudinal trajectory in the 
proportional hazard model would result in an attenuated estimator of the hazard ratio for the treatment effect on 
survival (i.e., bias towards the null). This attenuation is known In the econometrics literature as the attenuation 
due to unobserved heterogeneity (Horowitz 1999; Abbring and Van den Berg, 2007). Suppose that the true 
trajectory is known and it is a linear function of time, Xi{u) - 9oi + 9iiu, where Zj - (0,1} is the treatment 
indicator If event time follows an exponential distribution, the likelihood for subject i is 

-Aoexp(^% + aZi)[exp{/3euSi) - 1] 
Li ^ {Ao exp[;a(6'oi + 9iiSi) -\- aZi])^' exp 

P9: li }• (4) 

The maximum likelihood estimate of the hazard ratio for the treatment effect on survival takes the form 

exp(Q:) = 

• N ^ { ^ 1 

N N 
(5) 

\J2WiI{Zi = 1 ) \ \ Y^I{Ai = 1) - X;ZjJ(Aj = 1) 
l i= l J U=l i=l J 

Where Wi = ^M0eoi){eM0euSi)-i) ^ ^ -̂̂ ^^ g^^^g |̂.̂ ĝ  |̂̂ g hazard ratio is dependent on p. Table 1 below shows 
estimates ofthe hazard ratio using different models based on some preliminary simulation studies using different 
/?'s. 
4.2.2 Specific Aim 2 • Design and Analysis of Prevention and Therapeutic Trials 
The investigators in this project have done extensive work in methodological development for survival data, 
especially multivariate survival data such as correlated failure times and recurrent event times. With respect to 
correlated failure time data, Cai and Prentice (1995,1997) considered the marginal proportional hazards model 
with distinguishable and common baseline hazards, respectively, and propose a weighted method to improve 
the efficiency of the estimator, which took the correlation of subjects within the same cluster into consideration. 
They showed that the efficiency is improved with the weighted estimator when the correlation is high and the 
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Table 1: Effect of p on the Estimation of Direct Treatment Effect on Survival (a) 

p 
0 

0.5 

1 

A((t) = Ao(')e==p(a2i) 

exp(d) under sxponential model exp(d] 

0.67 

0.75 

o.eo 

1 under Coi model 

0,67 

0,72 

0,79 

Ai ( t ) = \o{')='<P{^(»Oi +»H)< + <»Zi} 

exp{d) under exponenlial model e>tp(d) under Cox model 

0.67 0.66 

0.67 0.67 

0.67 0.67 

^ Note: exp(Q) is the average value based on 1000 simulated trials, each with 200 subjects per arm. 
Minimum follow-up time is set to be 0.75 year (9 months), and maximum follow-up time is set to be 2 
years. Tlie liazard for \be time to event follows equation (2) with constant baseline hazard Ao = 0.85, 
and the true direct treatment effect on survival a = -0.4 (i.e., HR = 0.67). 

censoring percentage is small, regression parameter varies with time, Cai et al. (2007b) studied the varying 
coefficient model for multivariate failure times. Yin and Cai (2004) considered additive hazards model for mul
tivariate failure time data. With respect to recurrent event data, Pepe and Cai (1993) proposed a rate model 
conditioning on the covariates and the numbers of recurrences prior to time t to analyze the recurrent events. 
The additive rates model was also considered by Schaubel et al. (2006). Multiple type recurrent event data were 
analyzed by Cai and Schaubel (2004). Schaubel and Cai (2005a) considered the proportional rates models for 
clustered recurrent event data. Statistical methods were developed to analyze multivariate failure time data 
under case-control and case-cohort studies (Cai, Qaqish, and Zhou, 2001; Kong, Cai, and Sen, 2004; 2006; 
Kang and Cai, 2008; Kong and Cai, 2008). 

The study team also has extensive experience in methods for study design. Shen and Cai (2003) proposed 
statistical methodology to calculate the sample size and power for survival data in clinical trials. Cai and Zeng 
(2004; 2007) used log-rank type statistics to calculate the sample size and power under case-cohort study with 
rare events and non-rare events, respectively. Jung (1999) proposed to use the two-sample weighted rank tests 
for comparing the marginal distributions of paired survival data. He modified the variance estimators of the 
rank tests to account for possible dependence between paired survival variables. Jung (2007a) proposed a 
simulation-based sample size method and Jung (2008b) proposed a closed form sample size formula based 
o.n these tests for paired survival data. Jung and Jeong (2003) proposed the weighted rank test for clustered 
survival data under cluster randomization and Jeong and Jung (2006) under subunit randomization. Jung 
(2007b) proposed a simulation-based sample size method based on the log-rank test by Jung and Jeong (2003). 
Gangnon and Kosorok (2004) proposed closed form sample size formulas for the weighted rank tests with 
general clustered data. Recently Song, Kosorok, and Cai (2008) proposed a sample size calculation formula 
for recurrent event data using robust covariate-adjusted logrank statistics. 

In summary, the study team has extensive experience in working in the areas of methods for dealing with 
correlated failure time data and statistical issues in study designs. Their work and experience form the basis of 
this aim and make the team to be highly qualified for the proposed work. 

4.2.3 Specific Aim 3 - Statistical Methodology for Cancer Drug Development 

4.2.3.1 Targeted Therapy 
A recent review paper was published on statistical methods In translational cancer research (George, 

2008), in which considerations for targeted designs were discussed. In particular, it was argued that the effi
ciency of a targeted design in a trial with a time-to-event endpoint may be measured by the time to reaching a 
final answer, not solely in terms of the number of patients accrued. 

We developed a semiparametric inference procedure for data from studies conducted with a two-component 
sampling scheme where both a simple random sample and multiple outcome- or outcome/auxiliary-dependent 
samples are observed (Wang and Zhou, 2006). This sampling scheme allows the investigators to oversample 
certain subpopulations believed to have more information about the regression model while still gaining insights 
about the underiying population through the simple random sample. The proposed method applies to both 
binary and multicategorical outcome data and allows an arbitrary link function in the framework of generalized 
linear models. Simulation studies showed that the proposed estirriator has good small sample properties. The 
techniques are relevant to the hybrid targeted design that we propose to investigate in this project. In fact, 
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the example used in the paper was an ongoing study to assess the association between the mutation level 
of epidermal growth factor receptor (EGFR) and the antitumor response to EGFR-targeted therapy among 
non-small cell lung cancer patients. In a related but different design, we (Wang and Zhou, 2009) developed 
an estimated likelihood method for data arising from outcome/auxiliary-dependent subsampling with a kernel 
smoother to utilize the information from continuous auxiliary variables. 

4.2.3.2 Phase II Designs 
We defined a family of designs, called admissible designs (Jung et al., 2004; Jung et al., 2001), general

izing the popular minimax and optimal designs (Simon, 1989). A widely used graphical computer program was 
developed to facilitate the identification of all admissible designs. When there exist no or very small historical 
control data, a single-arm phase II trial based on a hypothetical or unreliable parameter estimates can lead to 
wrong conclusions. In this setting, we have proposed optimal and minimax designs for randomized phase II 
trials (Jung, 2008a). 

In multi-stage phase II clinical trials, the ordinary maximum likelihood estimator (MLE) is biased. We derived 
uniform minimum variance unbiased estimators (UMVUE) for such trials (Jung and Kim, 2004) and demon
strated that, unlike the MLE-based confidence interval (Cl), the UMVUE-based Cl does not require specification 
of the critical value at the stopping stage. Due to this property, we can calculate an exact UMVUE-based Cl 
adjusting for the multiple stages even when the number of patients at the stopping stage is different from the 
one by the original design. Further, in publishing phase II study results, investigators often report whether the 
experimental drug is accepted or not, but do not report how strong the evidence is to support the final decision. 
We proposed (Jung et al., 2006) to calculate a p-value to this end. We show that the UMVUE-based p-value is 
unbiased and does not require specification of the critical value at the stopping stage. 

If the primary endpoint of a phase II trial is a censored variable, such as time to progression, the two most 
popular analysis methods are (1) MLE based on exponential distribution and (2) nonparametric method for 
median time. The first requires a parametric assumption and both are based on large sample approximation. 
However, due to the small sample size of phase 11 trials, these methods do not control the type I error We 
proposed using a dichotomous endpoint based on a fixed time point and controlling the type I error using 
normal distributions (Owzar and Jung, 2008). 

When there are multiple therapies available for testing in a phase 11 trial, one approach is to evaluate each 
therapy separately in a single-arm phase II trial. When multiple arms are accepted through the separate evalua
tions, we proposed a testing method to compare multiple arms accepted by the individual multistage randomized 
phase II trials (Jung and George, 2009). 

4.2.3.3 Partially Randomized Designs 
The constrained empirical likelihood is a nonparametric approach for the use of side information in the 

form of a known statistical functional. See Owen (2001) for a comprehensive review on the subject. Qin 
and Lawless (1994) studied on the case where the number of estimating equations exceeds the number of 
parameters, i.e. the overdetermined case. The constrained empirical likelihood method has been successfully 
used in incorporating auxiliary information about the underlying population (Wang et al., 2008) and in the biased 
sampling problem (Wang and Zhou, 2006). In a partially randomized design, we would like to force balance 
of covariates distribution for the non-randomized patients in order to reduce bias. We also add the balance 
of the covariate distribution in the randomized patients as a side condition to improve efficiency. The idea 
of reducing bias by balancing covariate distribution is related to using a propensity score as a covariate in 
regression analysis for causal inference on treatment effect (Lunceford and Davidian, 2004). Tsiatis et al. 
(2008) developed a new semiparametric method for covariate adjustment that separates modeling of covariate 
relationships from estimation of the treatment effect. 

5 RESEARCH DESIGN AND METHODS 

5.1 Specific Aim 1 - Design and Sample Size Calculation for Longitudinal and Joint Models for Longi
tudinal and Survival data 

5.1.1 Plan 
In this aim, we will undertake a methodologic development of design issues for investigating the treatment ef
fect on the longitudinal and survival processes, and the effect of the longitudinal process on survival in a joint 
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modeling setting based on the two-stage approach described above. Extensive simulations will be conducted 
to investigate the tentatively proposed methods for sample size and power estimation. There are four scientific 
goals for this aim. First, we will develop statistical methods for sample size and power estimation for the overall 
treatment effect on survival /?7 + a. Second, we will develop statistical methods for sample size and power 
estimation for the effect of the longitudinal process on survival ^. Third, we will develop statistical methods for 
sample size and power estimation for the direct treatment effect on survival a. Last, we will extend those meth
ods to address complex design issues in settings involving multivariate longitudinal and multivariate survival 
processes. The methods to be developed will be disseminated to the broad biomedical research community 
through publications in high-impact journals and development of user-friendly, publicly available software. 

5.1.2 Statistical Methods for Sample Size and Power Estimation for the Overall Treatment Effect on 
Survival {0'y -\- a) 

When the longitudinal trajectory is a linear function of time, we have derived a sample size and power formula 
for testing the overall treatment effect, which generalizes the sample size formula developed by Schoenfeld 
(1983). The number of events required for a one-sided level a* test with power l - /?* can be estimated by the 
following formula when the hazard follows (1) and the longitudinal trajectory is linear function of time: 

Pi(l-pi)(/37 + a)2' °̂> 

where pi is the proportion of patients assigned to treatment 1 (Zj = 1). Properties of the random effects in the 
longitudinal trajectory do not play a role in the sample size and power estimation for the overall treatment effect 
on survival at the design stage. However, correct assumptions must be made with regard to the overall treatment 
effect {/3j-\-a). Limited simulation studies, presented in Table 2 with different )9's based on 1000 simulated trials 
with 100 subjects per simulation per arm show that the Schoenfeld's formula works approximately well in joint 
modeling approaches when the primary objective is to investigate the overall treatment effect on survival when 
the longitudinal trajectory is a linear function of time. In this aim, we will generalize the derived formula to a very 
general setting where the longitudinal process is modeled by a general polynomial model as in equation (2) and 
conduct a large number of simulations to investigate the performance of Schoenfeld's sample size formula as 
in equation (6). 

Table 2: Validation of Schoenfeld's Sample Size Formula for Testing the 
Overall Treatment Effect on Survival /37 -j- a by Simulations 

0 

0.15 

0.15 

0.16 

0.2 

0.2 

0.2 

0.2 

Var(eoi) 

0.5 

0.8 

0.8 

1.2 

0.7 

0.7 

0.7 

V C L H S U ) 

0,9 

1 

1 

0,7 

1.2 

1.2 

1.2 

Cov(eoi, 

0 

0 

0.5 

0 

0 

0,2 

•0.2 

eu) 

Power to Estimate Overall Treatment Etfect on Survival py + Q 

Empitlcal 

50.5 

49.3 

47.0 

51.4 

51.9 

49.8 

49.6 

Calculated 

50.0 

50.0 

50.0 

52.4 

52.4 

62.4 

62.4 

^ Note: The trajectory and variance-covariance of [doi, 9u) were assumed known. 
Minimum follow-up time is 0.75 year (9 months), and maximum follow-up time is 2 
years. Event time simulated with exponential distribution with Ao = 0.85, 
Q = -0.3, 7 = - 0 . 1 , £^(6ioi) = 0, and E{eu) = 3. 

5.1.3 Statistical Methods for Sample Size and Power Estimation for the Effect of Longitudinal Process 
on Survival (/?) 

When the longitudinal trajectory follows a general polynomial function of time as in equation (2), we can derive 
the number of events required for a one-sided significance level a* with power 1-/3"* by the following formula: 

_ jZff' + ^1-a-)^ ,_, 
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Table 3: Validation of Tentatively Derived Formula (7) for Testing the Effect 
of Longitudinal Process on Survival (/?) by Simulations 

13 

0.15 

0.15 

0,15 

0.20 

0.20 

0.20 

0.20 

Var(eoi) 

0.5 

0.8 

o.e 
1.2 

0.7 

0.7 

0.7 

VarCflu) 

0.9 

1.0 

1.0 

0.7 

1.2 

1.2 

1.2 

cov(eoj ,ei , ) 

0 

0 

0.5 

0 

0 

0.2 

-0.2 

Statistical Power to Estimate the Eftecl ot Longitudinal Process on Survival 0 

Empirical 

41,6 

52,9 

66,1 

87,1 

75,9 

82,7 

69,8 

Calculated 

41.7 

54.0 

69.1 

86.B 

78.7 

84.6 

70.9 

^ Note: The trajectory and variance-covariance of (dm, &u) were assumed known. 
IVIinimum follow-up time is 0,75 year (9 months), and maximum follow-up time is 2 
years. Event time simulated with exponential distribution with Ao = 0.85, a = -0.3, 
7 = - 0 . 1 , E(eoi) = 0, and E { 0 H ) = 3. 

Where cr̂  = St^S^ Sj, St = { l , E [ I iT<t )T ] , E\I{T < i )T% ..., E[I{T <i)TP]}'^. and te is the co-
variance matrix of {doi,9ii,..., 9pi}'̂ , and i is the average follow-up time on all subjects. Thus, the power for 
estimating the effect of the longitudinal process on survival (/?) depends on: (a) The expected log hazard ratio 
associated with a unit change in the longitudinal trajectory, i.e., the expected size of /3. As the expected /3 
increases, the required sample size decreases; (b) The covariance matrix S^. A larger variance and positive 
covariance leads to a smaller required sample size, while smaller variances and larger negative covariances re
quire larger sample sizes; and (c) the truncated moments of survival time, T. To obtain the truncated moments 
of T, we need to assume a distribution function for T. Suppose that T follows an exponential distribution with 
parameter rj, then 

E[I{T < t)TP] = / T^7jexp{-vT)dT ^ \ ^ { p + l,i), 
Jo V 

(8) 

where 7(p -i- l,f) is a lower incomplete gamma function. The exponential parameter r] can be estimated if we 
know the median survival or the median event time of the study population, rj= - \og{0.5)/TM, where TM is the 
median survival time. When the trajectory is a linear function of time, 

a^ - var(0oi) + E[I{T < t)T^]var{9u) + 2E[I{T < f)T]cov{9oi,9u)- (9) 

Both E{I{T < t)T'̂ ] and E[I{t < tT] have closed-form solutions: 

r i 2 • 2t 2 
E[IiT < t)T^] = / T^r)exp{-r)T)dT = ^ - exp{-r]i){P + - + -^) , and 

JQ \ v v v 

ElIiT < i)T] = f Triexp(-r]T)dT = - - exp(-r?t)(«-1- - ) . 
Jo V V 

In this aim, we will develop methods to obtain the truncated moments of T using a more general parametric 
distribution for survival time, sCich as the generalized gamma distribution which contains all four of the most 
common types of hazard functions: monotonically increasing and decreasing, as well as bathtub and arc-
shaped hazards (Cox et al., 2007). If we have a known longitudinal trajectory E^ can be used directly in 
a'f = Sj^Sfl St replacing S^. When di is unknown with known or unknown E ,̂ the trajectory is characterized 
by the empirical Bayes estimates of 0,. % is associated with the number of data collection points (mj) and 
the correlation between Yjj and Yik{j 7̂  k) ot the longitudinal data. Table 3 shows that the power estimated 
by formula (7) agrees with the empirical power in the simulated data with a linear trajectory based on 1000 
simulated trials with 100 subjects per arm. 

Efficient Design with Optimal Data Collection Strategy. Although we may estimate the sample size 
and power by assuming a known longitudinal trajectory with known parameters as shown above, we need to 
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investigate how the longitudinal data measurements (i.e., the number of measurements, the intervals between 
measurements etc.) affect Ee and the sample size and power estimation at the design stage. This would 
allow us to efficiently design a data collection strategy to maximize the statistical power of a study Let Rj -
/ I til .• • tiiP \ 

1 ti2 • • • ^2 
be a mj X (1 +p) matrix, and Zi = l^j Zi, Var(Yi) = Vi = ImjO-̂  -i- RiE^Ri^ and 

V 1 /• t- p i 
\ J- Hrrii • • • Hm.i / 

Wi = V i " \ then 9i and Ee can be expressed as the following (Laird and Ware 1982): 

fli = EtfRi^Wi(Yi - 7Zi) (10) 

Var(fli)=E(, = EeRi^iwi-WiZiff[Zi^WiZiJ Zĵ W; I RiS .̂ (11) 

We will extend the derived formulas as in equation (2) to develop sample size and power estimation formulas 
for studies with longitudinal data collected at irregular time points using the relationships listed above for testing 
the effect of the longitudinal process on survival (/?). It thus will allow users to pick a data collection strategy that 
is optimal. We will conduct a large number of simulations to investigate the performance of the newly proposed 
sample size formula as in equation (7) and the to-be-derived sample size and power estimation formula when 
the longitudinal data are collected at irregular time points. 
5.1.4 Statistical Methods for Sample Size and Power Estimation for the Direct Treatment Effect on 

Survival (a) 
When the longitudinal trajectory is a linear function of time, the derived sample size and power formula for 
testing the direct treatment effect generalizes the sample size formula developed by Schoenfeld (1983). The 
number of events required for a one-sided level Q* test with 1-/3'* power can be estimated by the following 
formula when the hazard follows (1) and the longitudinal trajectory is linear function of time: 

p i ( l - p i ) a ^ 

where pi is the proportion of patients assigned to treatment 1 (Zj = l). Properties of the random effects in the 
trajectory do not play a role in the sample size and power estimation for the direct treatment effect on survival (a) 
at the design stage. We will generalize the derived formula above to a very general setting when the longitudinal 
process is modeled by a general polynomial model as in equation (2) and conduct a large number of simulations 
to investigate the performance of Schoenfeld's sample size formula as in equation (12). 
5.1.5 Statistical Methods for Sample Size and Power Estimation for Other Key Issues in Joint Modeling 

of Longitudinal and Survival Data 
In this aim, we will derive sample size and power calculation formulas for the very general setting where studies 
collect multivariate longitudinal and multivariate survival data. 

We will extend the methods proposed in Sections (5.1.2) (5.1.3) and (5.1.4) to test the overall treatment 
effect on survival Ifi^ -i- a), the effect of the longitudinal process on survival (/?) and the direct treatment effect 
on survival (a) when the longitudinal data are collected at irregular time points. In the very general setting for 
the joint model for multivariate longitudinal and multivariate survival data (Chi and Ibrahim, 2007), let FjA(tij) 
be an assessment of the fcth indicator of the longitudinal data process for the ith patient at time t i j and Xik{tij) 
be the corresponding unobserved trajectory representing its true value, where k = 1,...,K, j = I, . . . ,mi, and 
i = 1 , . . . , n. The multivariate longitudinal model for Yik{tij) is given by 

yikihj) = Xik{tij) -f eijk, (13) 

where eijk represents a measurement error Again, we consider a general p-dimensional polynomial model for 
the longitudinal process. The trajectory function for the fc"* longitudinal process is modeled as 

Xikiy-) = 9oki + 9ikiU -f 92kiU^ -f • • • -f 9pkiuP -H 7A;ZJ, (14) 

PHS 398/2590 (Rev. 11/07) Page 229 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KOSOrok, M lchae l R., et a l . 

where 9ik = {9oki,9iki, • • •,9pki}'^. The parameter 7*; is a fixed treatment effect on the fc"' longitudinal process. 
We assume 

Cy. '•'̂ '̂ iV/c(0,*fc), Oik ' - iV(w,Sfctf), 

and eij. is independent of fljjt, where ejj. = {ej j i , . . . , EIJK}^. Therefore, the measurement errors of the longitudi
nal process observed at the same time may be related to each other, but are independent among observations 
assessed at different times. The structure of * * characterizes the association between the longitudinal process 
indicators measured at the same time, and is assumed to be common across time and patients. To incorporate 
information from both the longitudinal trajectories Xk{t), k=^ l , . . . ,K , and the baseline covariates Z (including 
treatment indicator) in our multivariate survival model, we let the m"^ hazard function, i.e., Xm{t), depend on all 
covariates through a proportional hazard model as 

Am(i) = Aom(*)exp ^0mkXk{t) + amZ 
.k=\ 

(15) 

for m = 1,2,... ,M. To tackle the design issues of this very important and challenging statistical question, we 
will extend our proposed methodology discussed above to: 

1. develop statistical methods for sample size and power estimation for studies with multivariate longitudinal 
data and univariate survival data. 

2. develop statistical methods for sample size and power estimation for studies with multivariate longitudinal 
data and multivariate survival data. 

We will conduct a large number of simulations to investigate the performance of our sample size and power 
estimation formulas for the above cases using a two-step approach (Tsiatis et al., 1995). We will compare 
the results to the single-step joint modeling approach by directly maximizing the joint integrated likelihood. If 
there is a substantial difference, we will develop sample size and power estimation formulas using a single-step 
joint modeling approach, which involves complex multidimensional integration over random effects and is quite 
mathematically and computationally challenging. However, given the advantages of the two step approach, we 
would expect that the sample size and power estimation formulas should perform reasonably well. 

5.1.6 Evaluation by Simulation Study 
Carefully designed simulation scenarios will be used to evaluate the proposed sample size and power esti
mation formulas in joint models. We will utilize Core C for assistance in developing code for these simulation 
studies. One special challenge for joint models — and especially for multivariate longitudinal and multivariate 
survival data — is that the analysis of simulated studies can be very computationally expensive. For multivariate 
longitudinal data, we will generate it from multivariate normal or log normal distributions. For the generalization 
of multivariate survival data, we will consider multivariate exponential distributions (Marshall and OIkina, 1967) 
and multivariate Weibull distributions (Hougaard, 1986; Nadarajah and Kotz, 2006) with appropriate parameters 
as the input for baseline hazard functions and then use equation (15) to incorporate the effect of longitudi
nal processes on survival. We will consider both uninformative uniform censoring and informative censoring. 
We will carefully evaluate both the accuracy of theoretical predictions as well as performance of the proposed 
methods under a broad range of simulation scenarios. 

5.2 Specific Aim 2 - Design and Analysis of Prevention and Therapeutic Trials 
Our objective in Specific Aim 2 is to develop sample size formula and power estimation for cluster randomized 
trials. We will derive closed form sample size formula for clustered survival data from cluster randomized 
trials and subunit randomized trials, propose test statistic and investigate its asymptotic properties for clustered 
recurrent event data, and derive sample size formula for clustered recurrent event data. 
5.2.1 Clustered Survival Time Under Cluster Randomization 
5.2.1.1 Review of the Log-Rank Test for Clustered Survival Time 

Suppose that rik clusters are randomized to arm fc(= 1,2). For cluster i(= 1,..., n^) in arm k, let ruki denote 
the number of units, called cluster size, and {Tkij,j - l,...,mki) their survival times. We assume that units 
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within each cluster are exchangeable in the sense that these units have a common marginal survivor function 
Skit) = PiTkij > t), cumulative hazard function Ak(t) = -\ogSk{t), and joint survivor function Sk{t\,t2) = 
P{Tkii > tuTkij' > t2) for 1 < j ^ j ' < mki. 

In conjunction with survival time Tkij, let Ckij be the censoring time. From units in cluster i ot group fc, we 
observe {{Xkij,Akij),j = 1, •••, "̂ fci}. where Xkij = Tkij A Ckij, ^kij - H^kij < Ckij) and a A 6 = min(a, b). We 
assume that {CkijJ = I,...,mki) are independent of (Tkij.j = I,...,mki). 

In order to test if two treatment arms have the same treatment effects, i.e. 

Ho : Ai{t) = A2{t) tor a\\ t > 0 vs. .ffa : Ai(i) ^̂  A2(0 for some i > 0, 

we consider the class of rank statistics 
/ • o o 

W = V^ H{t){dAiit) - dA2{t)}, 
Jo 

where n = m -t n2, Afc(i) = /^ K ^{s)dNk{s) is the Nelson's estimator based on the clustered survival data, 
N{t) = Nxit) + N2{t), Nk{t) = i:r=i Nkiit), Nkiit) = E7il Nkijit), Nkijit) = ^kiA^kij < t), Y{t) = Y ît) + 
Y2[t), Yk{t) = E7=iyki{t), Ykiit) = ET=i^kiji^) and Ykijit) = I{Xkij > t). .Here, ff is a function of bounded 
variation that converges in probability to function h. For the log-rank test, we use H{t) = n-^Yi{t)Y2(t)/Y{t). 

Jung and Jeong (2003) show that, under Ho, W is asymptotically normal with mean 0 and and variance o-̂  
that can be consistently estimated under Ho by 

^̂  = - y ] 4 + - 7 ] l̂i
1=1 1=1 

Where iki = Ef=1 /o°° ^^rfiV^y(i), Mkij{t) = Nkij{t) - /Q' Ykij{s)dA{s), and A(i) = Ĵ  Y-\s)dNis). 
We can reject HQ when the absolute value of W/a is larger than .2;i_a/2, the 100(1 - a/2) percentile of the 

standard normal distribution. 

5.2.1.2 Sample Size Formula 
Now we want to derive the required number of clusters n(= ni -f- 712) for a new study The key component of 

a sample size formula is to describe u^ as a function of joint survival distributions and a censoring distribution. 
Although we do not have to specify the marginal and joint distribution functions in analysis, we need them in 
sample size calculation. We assume common censoring for subunits within each cluster, under which we have 
Ckij - Cki. This assumption can be easily loosened. Let G{t) = P{Cki > t) denote the survivor function of 
the common censoring times within each cluster which will be specified by the accrual and additional follow-up 
periods. 

In order to simplify the discussions, we assume constant cluster size mki — "^. but the results can be 
extended to variable cluster size cases, see Jung et al. (2001) in clustered binary data case. Also, we limit our 
discussion to the log-rank test, but all the results can be modified for the general weighted rank-tests. . 

Let ak = rik/n denote the allocation proportion for arm fc, and yk{t) = Skit)G{t) the limit of Yk{t)/[mnk). Let 
Mk{t) = E S i Er=i ^kiji" )̂ a"cl Mkij{t) - Nkij{t) - l l Ykij{s)dAk{s). We can show that for large n 

n i m. n2 m, 

W w ri- '^' '^C^ Y^ eiij - Y l Y l 2̂uO + maia2U)^/n (16) 
i = l j = l i—l j—1 

Where.,., = /,°° ̂ ^^^0^dMk,,{t) andc. = / - ^^i j^^{dAx{t) - dA2it)}. 
Let fkihM) denote the bivariate probability density function of the survival times of subunits in arm fc. 

Also let Xk{t) = dAk{t)/dt, Xk{h,t2) = fk{ti,t2)/Sk{ti,t2), Sfen)(ii,i2) = dSk{ti,t2)/dti, and Xk(ii2){ti\t2) = 
-Sk{i){ti,t2)/Sk{tut2)- We define 5fc(2)(̂ i,t2) and Afe(2|i)(i2|ti) similarly Then from (16), under Ha, we will 
show that W is approximately normal with mean maia2U)y/n and variance 

(T̂  = m[ai{cri -h (m - l ) c i } -|- a2{CT2 -H (m - l )c2} | , 
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2 .. 1 V ^ V ^ r ^ 2 T Sk{t)S3-k{t)^G{t) ^ , . . 
n-*oo m n / j ^ ^ Jo {aiSi{t)-\-a2S2{t)}^ 

2 
' ' = r , !^ n . m ( m - l ) g ^ E:<,<,.<^Cov(e.j„ e.j,,) 

= 4-k / 
JO vo 

53-)t(tl)53-fc(i2)5)fc(ii,t2)G(tiVi2) 
-dAk{ti,t2) 

{ai5i(i i) + a2S2(ii)}{ai5i(i2) + a252(t2)} 

dAfc(il,t2) = {AA:(tl,t2) - Afc(i|2)(tl|<2)AA;(t2) " Afc(2|])(t2|<l)Afc(il) + Afc(ti)AA;(t2)}titldt2. 

Hence we can obtain the required sample size for power 1 - /3 by 

a^(zi-a/2 + zi-ff)^ 

(maia2ai)2 

As expected, we can see that n decreases as ai gets close to 1/2 and m increases. It can be also shown 
that (T̂  and n decrease as the dependency in survival times within each cluster increases. If subunits within 
each cluster are independent, the sample size formula reduces to a standard formula for the log-rank test 
with independent observations, e.g., Schoenfeld (1983). For specified marginal and bivariate joint survival 
distributions and accrual and additional follow-up periods, we can calculate w and u^ as shown above. The 
sample size formula requires specification of the joint survival distributions only up to the second dimension. 
The sample size calculation procedure may be summarized as follows. 

Sample Size Calculation 

1. Specify input parameters 

(a) Type I error probability a and power l - /? 
(b) Marginal and bivariate joint distributions under Ha, e.g. exponential distributions Sk{t) with hazard 

rates A/- and joint exponential distribution Sk{ti,t2) defined by the marginal distribution and a copula 
(c) Accrual period a (or, accrual rate r) and additional follow-up period b which determine a censoring 

distribution of {7(6, a -i- 6) 
(d) Cluster size m (or, the distribution of mki) 
(e) Allocation proportions ai, a2 

2. Calculate w and a'̂  (i.e., al and Ck for fc = 1,2) using numerical integrations 

3. Calculate n by (17) 

5.2.1.3 Design and Analysis with Small Number of Clusters and Large Cluster Size 
In some studies, the number of clusters are fixed but the number of participants can be very large. In such 

case, studying the asymptotic behavior of the test statistic W asm -* oo will be desirable. Under the situation 
when the number of clusters is finite but the cluster size m goes to infinity, we will use the empirical process 
for dependent data to establish the asymptotic property of the testing statistic W. Particularly, we assume 
that for each fc and i, {Xkij,Akij)J = l,...,m is a stationary sequence but we allow different covariances for 
different clusters and arm fc. We will apply the large sample results from Dehling et al. (2002) to show that the 
process {Nki{t),Yki{t),k = l,2,i - l,...,nk) converges in distribution to a Gaussian process. The asymptotic 
covariance functions of the limiting process will be obtained using the results in Dehling et al. (2002). The 
asymptotic distribution of W will be derived using the functional delta method. Sample size formula will be 
developed based on the asymptotic approximation. 
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5.2.2 Clustered Recurrent Events data Under cluster Randomization 
5.2.2.1 Log-rank Test for Clustered Recurrent Events Data 

Suppose that subject i { j = 1, • • • ,nki) in cluster i(t = 1, • • • ,nk) is randomized to treatment group fc(fc = 
1,2) and its ith recurrent event time is denoted by THJ;. The censoring time is CHJ- The underlying counting 
process is Nkijit) = E;Si J{Tkiji < t) and the observed counting process is Nkijit) = E £ i H'J^kiji < t,Ckij < 
t). Let Ykij = liCkij < t) be the at-risk process. Let ^^(t) = EiN^-jit)) be the cumulative mean function across 
the clusters under treatment group fc. 

In order to test if two treatment groups have the same effect on the recurrence's of the event, we consider 
the following hypothesis: 

Ho : MiW = M2W f o r a l l t > 0 vs, Ha : MiW > M2(i) f o r a l l t > 0. 
The logrank-type statistics we consider take the following form: 

Yiit)Y2it) (dNiit) _ dN2it)] 
Y,it) + Y2it)\ Y,it) Y2it) / ' 

where n - «i -h na,Nkit) = ZZi E"=i Nkijit) and n(t) - Er=i E"=i ^^^(O-
We will show that, as n —» 00, under HQ, Ln asymptotically follows a zero-mean normal distribution with 

variance a'̂  that can be consistently estimated by 

- ' = - E E^"H, + - E E ^ - . 
i=l \ j = l I i=l \ j = l 

Where Ikij - l ^ ^ ^ d M u j i t ) with Mujit) - Nkijit) - JlYkijis)dftis), m = JlY-^is)dNis), Nit) = 
Niit) -f N2it), and y(t) = Yi(t) -I- Y2it). We reject Ho if Ln/a > ZI-Q, where zi-a is the 100(1 - a) percentile 
of the standard normal distribution. 

5.2.2.2 Sample Size Calculation 
To calculate the required sample size for a given power we need to investigate the asymptotic distribution of 

Ln under the alternative hypothesis Fa as n ^ 00. Hereafter, we consider the case 

Ha : M2 W = M t ) exp(-(/)(t)/2) < i^iit), 
where (̂ (i) = Oiv.-^ '̂̂ ) and (pit) > 0 for all t. 

We assume constant cluster size uki = m, rik/ri -» pk, and ^ ! E r = i S ^ i ^ f c ' j ( 0 ~* ^kit)- From the 
modern theory of empirical processes, we will show that under Ha : 

vn Jo /Oi7ri(^)-|-P27r2(0 V^ JQ Pinit) + P2'rr2it) 

-V /̂2pxp2m r 7/.^jrfl f.Mi^.imit)) + Op(l) 
Jo Pi7ri(i)-l-j027r2[t) 

= - ^ E E ^ i ^ J ~ 7 ; ^ E E ^ 2 i ; " - V ^ / 2 p i P 2 m u ; + Op(l), 

Where Sk,j = /o°° ^i^iP^^^Jfci j (^) . ^kijit) = Nkijit) - Ĵ  Ykijiu)d,ikiu), and 

We will show that, as n -> 00, L„ asymptotically converges to a normal distribution with mean - v^/2pip2"^w 
and variance 

2 / . Wfc m \ 

^a = r n ' S ^ l Pk lim Y ] VVar(£:fcjj) 
fc=l \ '̂  i= l j = l / 

-|-m(m - 1) V " pfc lim 
n->oo m(m 

fe=i ' 

1 "'' \ 
3 ^ 1 ^ E E Cov(efcjj-,efcjy) 

^ 1=1 i<j<j'<m y 
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Hence, the required sample size for power 1 - /? is given by 

(piP2Tna;)2 

5.2.2.3 Simulation Study 
We will conduct extensive simulation studies to evaluate the small sample performance of our proposed 

test. We will utilize Core C for assistance in designing and implementing these simulation studies. The (l -\- l)th 
recurrent event time Tkij,i will be generated from the recursive formula 

Tkij,i-i-\ = Tkiĵ i - log(l - Ukij,i+])iQiRjmQk)~ , / = 0,1,2, • • • 

where Tktj.o = 0, Ukij.i+i is generated from uniform distribution on (0,1), Rj from Gamma(a-^ ,̂o-^^), Qi from 
Gamma((7g ,̂ o-g )̂, and mok is the underlying recurrent rate for treatment group fc. Note that Rj induces positive 
correlation among subjects within a cluster and Qi induces correlation among the within-subject event times. 
The magnitude of the within-cluster and within-subject correlation increases with increasing aj^ and o-̂ , respec
tively We will consider a%=0,0.25, 0.5 and aQ=0,0.5,1.0, since, in most practical situations, the within-subject 
correlation will be greater than between-subject correlation. Let mok — fc/2. 

We will consider the situation for the number of clusters to be 20, 50, and 100, and the cluster size to be 2, 
5,10, 20, 50,100. We will investigate the empirical type I error rate and empirical power for the proposed test 
statistics for various combination of numberof clusters, cluster size, within-cluster correlation, and within-subject 
correlation. 

5.2.2.4 Permutation Test 
The aforementioned inference relies on asymptotic approximation as n -> oo. However, in situations when 

the number of clusters are very small, the asymptotic approximation might not work well. We will consider 
permutation test in the case of very small number of clusters. Suppose there are n = m -h n2 clusters and 
randomly select n\ of n clusters receiving treatment group 1, so there are R = ^"\T"af' different allocations. Let 
L;; be the corresponding logrank statistics under the rth permutation and the order statistics are denoted by 

We still consider the following hypothesis: 

Ho : mit) = fi2it) for all t > 0 vs. Ha : MiW > Ai2(0 for all t > 0. 

Ho is rejected if the originally observed L„ is greater than the ?I_Q = Ln°°''^~°'^\ 
In order to compute the sample size for given power 1 - /3, we consider the following alternative hypothesis: 

Ha : M2(t) = mit) exp(-(A(f)/2) < mit), 

where <;&(«) = 0(n-i/2) and <Pit) > 0 for all t. 
We will show that under Ha : 

V^Jo Yiit)-\-Y2it) ' ^ ' v^io Yiit)-\-Y2it) '^^ 

= ^ r ^ l % ^ d M : ( t ) - - ^ r T77̂ ^̂ %T-̂ dM2it) - V^w, 
VTiJo yiit) + Y2it) '^^ v^7o Y,it)-\-Y2it) ''^^ V , 

where 
^ 1 f°° Yiit)Y2it) „ , ^ 
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The required sample size n for power 1 -/9 is then 

iz i-a + Zi-p)^ 
n = - : ^ i ^ . 

We will conduct simulation studies under the situations described in Section 5.2.2.3 with the number of 
clusters being 2,5,10 to investigate the empirical type I error rate and power We will utilize Core C for 
assistance in designing and implementing these simulation studies. We will also investigate the effect of various 
combination of the number of clusters, cluster size, within-cluster correlation, and within-subject correlation on 
the power of the test. 

5.2.3 Clustered Survival Data Under Subunit Randomization 
5.2.3.1 Review of the Log-rank Test 

Suppose that cluster i(== 1, ...,n) has mj subunits, of which TTIJA: are assigned to arm fc(=; 1,2), i.e. mn -\-
mi2 - mi. Let iTiki,...,Tikmi^) be survival times for subunits in treatment fc. Since subunits within a cluster 
share common characteristics, their survival times Tm, ...,Tiimii,Ti2\,...,Ti2mi2 tend to be positively correlated. 

We assume that within treatment group fc, (Tjfej, l < i < n, l < j < mjfc) are marginally identically distributed 
with cumulative hazard function Afc(f). We want to test the same hypotheses HQ vs. Ha as in the cluster 
randomization case. 

For subunits in cluster i. let Cjn,..., dima, Ci2i,..., Cj2m,2 be censoring times. We assume that the censoring 
times are independent of survival times within each cluster. The resulting clustered survival data consist of 

{iXikj,Aikj),l < i <n;fc= 1,2;1 < j < mj^}, 

where Xikj =- min(Tjfcj,Cjfc )̂ and Aikj -- liTikj < Cikj). 
The log-rank statistic is 

^ = H^W'^^^'^-rm'''^'^^^ 
where h i t ) = J*Yj^'is)dNkis), Nkit) = Er=i^ifcW. ^ikit) = T.7l\Nik,it), Nkjit) = XkjHXikj < t), 
Yit) = Y,it) + Y2it), Ykit) = Er=i Yikit), Yikit) = T,^! Yikjit), Yikjit) = liXikj > t). Let Nit) - N^it) + N2it) 
andy(i) = yi(t) + l2(0-

By Jeong and Jung (2006), under HQ, W is asymptotically normal with mean 0 and variance CT^ that can be 
consistently estimated by o-̂  = i Y,7=i £?. where ii = J ^ ^ d M n i t ) - f^ ^dMj2(t) , dMikit) = dNkit) -
Yikit)dAit), and A(i) - Ĵ  Yit)~'^dNit). We reject HQ when the absolute value of W/a is larger than zi_a/2. the 
100(1 - a/2) percentile of the standard normal distribution. 

5.2.3.2 Sample Size Formula 
We assume common censoring for subunits within each cluster, under which we have Cfcĵ  = Ci. This 

assumption can be easily loosened. Let Git) - P(Cj > t) denote the survivor function of the common censoring 
times within each cluster which will be specified by the accrual and additional follow-up periods. 

In order to simplify the discussions, we assume constant cluster size m of which mik = mk are assigned to 
arm fc (mi +m2 = m). All the results will be extended to variable cluster size cases. Also, we limit our discussion 
to the log-rank test. All the results can be modified for the general weighted rank-tests. 

Let ak = mk/m denote the allocation proportion for arm fc, and ykit) = Skit)Git) the limit of Ykit)/imkn). 
Let fkiti,t2) denote the bivariate probability density function of the survival times of subunits in arm fc. Also let 
Xkit) = dAkit)/dt, XkitiM) = fkit\M)/Skiti,t2), Sk[i]iti,t2) = dSkitut2)/dti, and 
A/c(i|2)(il 1̂2) = -s/c(i)(il, t2)/Sk(il, i2)• We define Sk(2)(ii, ̂ 2) and Afc(2|i)(̂ 2|ii) similarly Define 

dAkiti,t2) = {Afc(fi,t2) - Afc(ij2)(ii|i2)Afc(t2) - Xk(2\i)it2\ti)Xkiti) -\- Xkiti)Xkit2)}dtidt2. 

Let /i2(ii,i2) and 5i2(ii,f2) denote the bivariate probability density function and survivor function, re
spectively, of the survival times of two subunits, one in arm 1 and the other in arm 2. Also let Ai2(ti,t2) = 
/i2(*i,t2)/5'i2(ti,i2), si2(i)(ti,^2) = dSi2iti,t2)/dti, and Ai2(i|2)(ii 1*2) = -Si2(i)iti,t2)/Si2iti,t2). Wo define 
si2(2)(*i,*2) and Ai2(2|i)(i2|ii) similariy Define 
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.dAuiti,t2) = {Xniti,t2) - Ai2(i|2)(ii|i2)Ai(t2) - Ai2(2|i)(i2|ii)A2(ti) + Xiiti)X2it2)}dtidt2. 
We will show that, for large n, W under Ha is approximately normal with mean maia2U}^/n and variance 

CT^ — m i a \ -\- m2a2 -\- mi (mi - l)ci + m2(m2 - l)c2 - m]m2Ci2, 

where 
f°° Siit)S2it)Git) ,^^ , . ,̂  . . . 

2 _ „2 r _ S3.kit)'Skit)Git) 
' ' - ' ' ' - ' L -{ai5i(0 + a252(t)P^^*W 

_ 2 p /°° 53-fc(tl)53-fc(t2)5fc(il,i2)g(ilVi2) , , ,, , . 
' ~ ' - ' J o Jo {aiS,it,) + a2S2iti)}{mSrit2) + a2S2it2)} ' ^ ' ' ' ^ 

r r,n H T 'g2(il)5l(t2)5l2(il, ^2)^(^1 V 2̂) 
'^^ = ' ^ ' V o io {ai5i(ti) + a252(ii)}{ai5i(t2) + a252(i2)}^^^^^'^''^^-

'̂  = r^j.^,,,^2 • (18) 

Hence we obtain the required sample size for power l - /3 by 

^^(fl-a/2_+£l-/3)^ 
(maia2'^) 

If subunits within each cluster are independent, the sample size formula reduces to a standard formula for the 
log-rank test with independent observations, e.g., Schoenfeld (1983). 

5.2.3.3 Simulation Plan 
Extensive simulations will be conducted to evaluate the performance of the proposed sample size formulas. 

We will utilize Core C for assistance in designing and implementing these simulation studies. We will calculate 
a sample size n for a given input parameter setting; generate a large number (say 5000) of simulation data 
sets with size n each; apply the log-rank test with the specified a; and calculate the empirical power. If the 
empirical power is close to the nominal power 1-/9, then we can claim our sample size is accurate. We 
will conduct the simulations at a wide range of input parameter settings under both cluster randomization and 
subunit randomization. 

5.3 Specific Aim 3 - Statistical Methodology for Cancer Drug Development 
5.3.1 Targeted Therapy 

Issues such as sample size, length of study, and cost will be investigated in various scenarios, which include 
assumptions about the size of the treatment effect, prevalence of marker positives, and patient allocation in 
subgroups. 

In comparing a targeted design to a traditional design, the factors affecting the relative efficiency include the 
relative treatment effect (̂  = 5o/Si) in those patients in R- compared to those in R-\-, the prevalence (1 - 7) 
of R-\- patients, the accuracy of the assay (through OJ, the positive predictive value of the assay), and the costs 
of the assay and treatment. Specifically the relative number of patients required on the traditional design (n) 
relative to the number required on the targeted design (n^) is: 

n/riT ' 
(1 - a;)6l-I-w"" ^ 

. 7 ^ + ( l - 7 ) . 
That is, the relative efficiency of the targeted design in terms of the required number of patients is high if 9 is 
small (i.e., relatively little treatment benefit in the R- patients), if 1 - 7 is small (i.e., few R-t patients in the 
population), and if the positive predictive value (w) of the assay is high. If the targeted therapy does not benefit 
R- patients at all (i.e., 9 = 0), the required number of patients for the traditional design is more than 20 times 
higher than a targeted design. These numbers help define situations in which targeted therapies may not work 
well in unscreened populations. 

The picture is somewhat less favorable for a targeted design if we consider the time required for accrual of 
the requisite number of patients and the cost of screening. For example, the relative average time to accrue the 
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requisite number of patients is (n/nr)(l - 7). If the prevalence of R-\- is low, fewer patients are required in a 
targeted design, but it takes longer to accrue these patients and more patients have to be screened to identify 
those suitable for the trial. 

These considerations suggest that if we can be reasonably certain that the benefit of the targeted therapy 
for the R- patients will be low and the assay is known to be highly accurate, a targeted design will be preferable 
to a traditional design. However, if we are not certain of these items, various "hybrid" or alternative designs 
should be considered (Wang et al., 2007; Song and Chi, 2007; Sargent et al., 2005). One such design that we 
will consider is an enrichment design. Like the BSR design, an enrichment design will randomize both marker 
positive and marker negative patients. But it only randomizes a subset of all marker negative patients in order-
to reduce cost and to improve study efficiency In order to maximize the efficiency gain, the process of selecting 
which patient to randomize may depend on the biomarker prediction and other baseline patient characteristics. 
The efficiency gain due to an enrichment design could be significant when marker negatives are predominant in 
the unselected patient population and when there exists auxiliary variables to identify those informative patients. 

For the enrichment design, standard statistical methods that fail to take into account the biased subsampling 
scheme would lead to an overestimate of the overall treatment effect, the interaction effect between treatment 
and the biomarker performance. We will develop methods for enrichment designs with the objectives of evalu
ating treatment effects (overall, subgroups), the interaction of treatment with biomarker, and the performance of 
the biomarker (e.g. Se. Sp, ROC curve, PPV and NPV). We are particularly interested in the semiparametric 
empirical likelihood approach (e.g. Wang and Zhou, 2006). The method has the potential to utilize all clinical 
and correlative sciences data collected for all registered patients (randomized or not, complete data or not). The 
method can be developed for continuous, binary, or time-to-event endpoints. The method involves estimating 
the empirical distribution of the unselected patient population, which is then incorporated as weights into the 
standard statistical methods to obtain unbiased estimates. The method allows one to carry out a principled 
analysis in which the treatment effect estimate is constructed independently of estimating the empirical distribu
tion of the unselected population. Enrichment designs will be compared to target designs and BSR designs with 
respect to sample size and other characteristics in various scenarios. To fix the idea, we briefly consider the 
problem of ROC curve estimation under an enrichment design, in which all patients with positive markers and 
a random subset of the patients with negative markers will be selected to be randomized and to be followed for 
clinical outcome. Let Y be the marker value, D the clinical outcome, X the vector of covariates that affects the 
marker predictive accuracy, that include treatment arm. Assume that the ROC curve characterizing how well 
the marker Y predicts the clinical outcome D follows a binormal form: Y = Po-\- PiD -i- /32X -t- P^DXD -\- aiD)e, 
where e ~ JV(o, l) and aiD) = aiI\D = l] + aol[D = 0]. X D could be X or a subset of X. Further, assume 
that Y falls into one of the K mutually exclusive intervals. When K ^ 2 , \ \ could divide Y into a negative region 
Y < a and a positive region Y > a. The combined data consists of three components: (1) a marker positive 
and outcome observed component of size ni , (2) a marker negative and outcome observed component of size 
n2, and (3) a marker negative and outcome unobserved component of size n^. The combined likelihood can be 
shown as 

LiP) 
Tii-|-n2 

n fffivMî î) 
i = l 

[<Hi-^ir+"1 
"ni+n2 

n aidi,Xi) 
i=\ 

where TTI = Piy > a) = /P (y > a\d,x)dGid,x). The unknown cumulative distribution Gid.x) is difficult 
to specify parametrically and its miss-specification could lead to biased parameter estimation. We will adopt 
an empirical likelihood based semiparametric method to estimate /3 and the induced coyariate-specific and 
marginal ROC curves. Based on the empirical likelihood theory, to estimate pi = gidi,Xi), it is sufficient 
to search the discrete probability space defined by the observed values of {d,x}. For fixed /?, we search for 
{Pi}, i ^ i , - - - ,ni-1-712, that maximize log !/(/?,£?(.)) under the constraints using a Lagrange multiplier argument. 
After substitution of {pi} into the likelihood function we have a profiled empirical likelihood function /p(/3). Once 
obtaining p, one can estimate the induced covariate-specific ROC curve and its marginal counterpart according 
to the binormal ROC model. 

5.3.2 Phase II Designs 
We will expand on our previous work on the design of phase II clinical trials, with particular attention to the 

issue of making phase 11 trial results more predictive of the results in phase 111 results. Our first approach will be 
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to Utilize existing data to build predictive models. 
In order to better understand why certain phase II trials fail to predict phase III studies, a comprehensive 

study is needed. Chan et al. (2008), which focuses on pharmaceutical-sponsored trials, used a logistic re
gression model to identify predictive factors. Zia et al. (2005), which focuses on solid malignancies, used both 
logistic regression models and generalized estimating equations but did not identify factors that significantly pre
dicted positive phase III. Moreover, none of the published methods used non-parametric or machine learning 
classifications. These state-of-art classifiers are able to train models that are sensitive to outliers in the data, 
resulting in better predictions. Moreover, they are able to cope with non-linearity in the data. 

Our approach in building a predictive model is as follows. A pilot study will be conducted to evaluate the 
feasibility of identifying factors of phase II studies predictive of positive phase III. Data of various factors of phase 
II studies related to positive phase III trials will be collected. A positive phase III study is defined as a study if the 
stated primary end points were met. If primary endpoints were not stated, then it is considered to be positive 
if the experimental treatment is statistically significantly better in terms of overall survival than the standard 
therapy available. These data come from approximately 80 phase III trials and their corresponding phase II 
trials conducted by the CALGB that completed recruitment of patients between 1985 and 2000. Completed 
trials will include all trials that either met the target accrual or had been closed at an interim analysis. Trials that 
are terminated eariy will be excluded from the analysis. This will allow us to refine the variables to be collected. 
After the completion of the pilot study, we will request data and study protocols from phase 111 trials conducted 
between 1985 and 2000 from other National Clinical Trials Cooperative Groups. This will be our main training 
and test samples for building models predictive of positive phase III. Core B will act as a main hub for gathering 
and compiling data from different National Clinical Trials Cooperative Groups. Data will be stored in a database 
with technical support from Core B. 

For preliminary analysis, machine learning and other nonparametric classification methods on all variables 
will be performed in addition to univariate and bivariate analyses. The variables considered include trial design 
elements, accrual, sample size, primary endpoints of interest, and whether it is randomized or not. The model 
built from the training set will then be tested for internal validity using cross-validation or bootstrapping methods. 
As classification models trained on unbalanced data sets will tend to favor the larger set, i.e. the negative phase 
111, we will develop new methods to account for this statistical issue. We will consider and compare resampling 
approaches, weighting schemes and area under the ROC curve methods to assess model performance. Fea
ture selection techniques will be employed to rank the factors of phase II studies that are good, at predicting 
positive phase 111 trials. The identification of these important factors will help design group randomized preven
tion trials, studies with multinomial endpoints in Aim 2 as well as for targeted trials in Aim 3. We will make use 
of Core C to prepare user-friendly software in SAS/R of the predictive tools for public dissemination. 

As one example of the type of methodological issues we will investigate, consider a phase II trial for which the 
patient population is heterogeneous, say high- and low-risk. A standard design to account for the heterogeneity 
of the patient population is a single-arm trial based on a projected prevalence for each sub-population. When 
study is completed, however, the realized prevalence may be very different from the projected one. In this case, 
the fixed rejection value for a chosen standard phase 11 design may be either too strict (i.e., increasing the false 
rejection probability of the experimental therapy) if the trial accrues more high-risk patients than expected or 
too liberal (i.e., increasing the false acceptance probability of the experimental therapy) if the trial accrues more 
low-risk patients than expected. 

• In order to address this problem, we will develop an adaptive single-arm design. For cohort j (= 1,2), let 
Pj denote the response rate (RR) of the therapy Suppose that we want to reject the new therapy if the RR for 
sub-population j (= 1,2) is pô  oi" lower We specify the hypotheses as 

•f̂ o : Pl = Poi,P2 = Po2 vs. Ha.:p-\ > P0i,P2 > P02-

Suppose we plan to accrue n patients in a single stage design. Let mj denote the number of patients from 
sub-population j . Also, let Xj denote the number of responders among mj patients from sub-population j . 
Then, given a type I error rate a and an observed mj, we can choose a rejection value a = a(mi) from 

PiXi-{-X2>a\poi,po2,mi)<a. 

The above probability Is calculated by assuming that Xj are Independent Bin(mj,poj) random variables. The 
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power conditioning on mj can be similarly calculated for specified RRs Paji> poj) under Ha. By this adaptive 
design, the critical value will change depending on the observed number of patients mj from subpopulation j . 

This method can be easily extended to two-stage designs. The sample size for each stage is (determined by 
a standard design, such as Simon's minimax or optimal design, based on the projected prevalence of each sub-
population, but the rejection value is adjusted depending on the observed prevalence from the trial. Conditioning 
on the observed prevalence, the developed design will control the type I error probability under the desired level, 
and the power around the prespecifed power In contrast, the conditional type I error of a standard design based 
on a projected prevalence with a fixed rejection value will wildly fluctuate around the prespecified type I error 
depending on the observed prevalence. Furthermore, the marginal type I error and power of the conventional 
design can be heavily biased if the projected prevalence is different from the true prevalence. 

The rejection value of a phase II trial is chosen for a fixed sample size. Because the realized sample size of 
a trial may be slightly different from the planned sample size, the chosen rejection value is not valid. We will also 
develop a p-value calculation conditioning on the final sample size and the observed prevalence, and conduct 
statistical testing by comparing the conditional p-value with the prespecified type 1 error probability using a 
similar method developed by Jung et al. (2006). Whatever the final sample size of the phase II trial, we can 
reject or accept the experimental therapy by comparing the calculated conditional p-value with a pre-specified 
a level. 

5.3.3 Partially Randomized Designs 
Some details of the empirical likelihood approach are given below. Without loss of generality let V be a 

continuous clinical endpoint, X is a covariate to be adjusted for efficiency gain, Z is a covariate to be adjusted 
for its potential effect on patient's treatment preference. In the partially randomized trial, patients can viewed as 
simple random samples drawn from four strata: (1) randomized, treatment; (2) randomized, placebo; (3) non
randomized, treatment; and (4) non-randomized, placebo. Let the index h - 0,1 represent non-randomized 
and randomized patients, the index fc = 0,1 represent placebo and treatment. Let n k̂ be the size of the hk\h 
stratum. For the ith subject in the /ifcth stratum, Whki = {Yhku Xhki, ^hki} is the observed data following a 
distribution function F̂ k- The empirical likelihood approach has been discussed for a covariance adjustment 
problem (e.g. Owen, 2001) and a biased sampling problem (e.g. Wang and Zhou, 2006). In this setting, 
we will maximize the log empirical likelihood for W, I = T,l=oT,l=o^°&Phki> where Phki ^ priZhk = z/jfci) 
subject to the normalizing constraints S"=iP/,fci = 1, h = 0,1, k = 0,1. The maximization is also subject 
to the randomization constraints for the randomized patients I]"=iPiiiXiii = Iir=iPioia:ioi, corresponding to 
the mean equivalence of X between treatment and placebo for randomized patients due to randomization, 
i.e.. Ax = EiXu) - ^(^'^lo) = 0. Furthermore, the maximization is subject to the profiling constraints for 
non-randomized patients YH=iPoiî oH = IZ"=iPooi'̂ ooi. corresponding to the constraint that we enforce the 
equivalence of covariate mean between treatment and placebo for non-randomized patients in order to correct 
any covariate unbalance between these two subgroups of patients. Notice that for non-randomized patients, 
a similar constraint Yd=\PouxoH = 'Ed=iPooî ooi can be enforced as well if it is necessary The empirical 
likelihood distribution phki for h, fc can be estimated using the following Lagrange multiplier argument 

1 1 / " i l * \ / n u "10 \ 

H ^ " ^ ' Y ^ l o g p h k i + ' ^ ' ^ a h k i ^ P h k i - 1 +A I ^pi i i2 ; i i j -^PiOia; ioi j-f^ 
ti=Ok=0 h k Vi=l / \ t = l i=l / 

where r/ = (aoo,aoi,aio,an,A,i/;) are Lagrange multipliers. Set J ^ = 0 and E"=iP/»fciJ^ == 0. It can 
shown that phki can be estimated by solving a set of equations on 77. The overall treatment effect is defined as 
Ay - Hy.i - Hy.o = (TTn/LZyn -h TTQi/Liyoi) - (7rioM2/io + T̂ ooiiyoo) whoro TThk = n^k/rik 's tho proportlon of the /ith 
level of randomized patients in those who receive the fcth level of treatment. The adjusted estimator for Aĵ  is 

Ay = Aj/.l - Ay.O = (TTllMyll + TToiPyOl) " i'^loflylO + 7rooAs/Oo) 

( n u noi \ / nio noo \ 

— } ^ P n m i i H > Pouyoii - — > ̂ P m y m + — >^Pooi2/ooj 
The asymptotic variance estimator for A^ can be derived by applying the empirical likelihood theory The vari
ance estimate as well as the confidence interval can also be obtained by a resampling method. Notice that the 
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empirical distribution estimate {pkki} would be able to be used with nonparametric methods for estimation and 
hypothesis testing, such as Wilcoxon rank-sum test, in this setting. In the above, we assume the potential bias 
introduced by the unbalanced distribution Z between the two preference groups can be effectively eliminated by 
forcing equal means. Additional constraints on 2nd (or higher) moments) can be added if forcing equal means 
fails to remove the.bias. 

5.4 Timetable 
The theoretical development and the computer programming will go hand in hand. The following is the time 
table for each aim. 

5.4.1 Specific Aim 1 - Design and Sample Size Calculation for Longitudinal and Joint Models for Lon
gitudinal and Survival data 

In Year 1, we will develop methods for sample size and power estimation for the overall treatment effect on 
survival In Year 2, we will develop methods for the effect of the longitudinal process on survival in Year 3, we will 
develop methods for the direct treatment effect on survival. In Year 4, we will extend these methods to address 
complex design issues in settings involving multivariate longitudinal and multivariate survival processes. In Year 
5, we will develop user-friendly software utilizing Core C 
5.4.2 Specific Aim 2 - Design and Analysis of Prevention and Therapeutic Trials 
In Year 1, we will develop statistical methods and sample size formula for clustered survival data, In Year 2, 
we will conduct simulation studies with coding assistance from Core C and data analysis utilizing Core B for 
clustered survival data; write and submit manuscripts. In Year 3, we will develop statistical methods and sample 
size formula for clustered recurrent events data. In Year 4, we will conduct simulation studies with coding 
assistance from Core C and data analysis utilizing Core B for clustered recurrent events data; write and submit 
manuscripts. In Year 5, we will develop user-friendly software utilizing Core C 

5.4.3 Specific Aim 3 - Statistical Methodology for Cancer Drug Development 
5.4.3.1 Targeted Therapy 

In Year 1, we will develop semiparametric methods for the enrichment designs. In Year 2, we will evaluate 
the performance of the methods through simulation with coding assistance from Core C. In Year 3, we will write 
and submit research papers. In Year 4, we will extend the methods to more general cases. In Year 5, we will 
develop user-friendly software utilizing Core C. 
5.4.3.2 Phase il Designs 

In Year 1 we will, define the variables to be collected for the predictive model and check for their availability 
and develop single-stage phase II design for heterogeneous population. In Year 2, we will gather data for phase 
11 pilot study from CALGB through Core B and extend phase II design for heterogeneous population to two-
stage. In Year 3, we will build predictive models on data gathered through Core B and use the preliminary 
results to setup the framework for the design of randomized phase II and seamless phase ll/lll trials. We will 
also evaluate single-stage and two-stage designs through simulation with coding assistance from Core C. In 
Year 4, we will gather data through Core B for final training and testing samples from other Cancer Cooperative 
Groups. We will also prepare a manuscript for heterogeneous population phase II designs . In Year 5, we will 
build a predictive model on all data gathered through Core B and refine the designs of phase II trials. 
5.4.3.3 Partially Randomized Designs 

In Year 1, we will develop the proposed method to the partially randomized designs. In Year 2, we will 
evaluate the semiparametric methods proposed here and in Aim 1 of Project 2 through simulation with coding 
assistance from Core C. In Year 3, we will extend the proposed method to survival endpoints In Year 4, we will 
extend the proposed method to more general cases. In Year 5, we will develop user-friendly software utilizing 
Core C. 
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6 INCLUSION ENROLLMENT REPORT 

N/A 
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8 PROTECTION OF HUMAN SUBJECTS 

Although the proposed research indirectly involves human subjects through the preparation, in Core B, of de-
identified data sets from identifiable patient data sources, the investigators on Project 1 will have access only 
to the de-identified data. Thus, the investigators on Project 1 will have no access to any identifiable patient 
information. 
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9 INCLUSION OF WOMEN AND MINORITIES 

The methods we develop will be applicable to studies with both women and minorities and also to studies 
which examine treatment differences adjusted for gender, ethnicity and race. This is accomplished through the 
general formulation of the statistical designs, models and methods studied that allow for many possible kinds of 
risk factors. Moreover, many of the existing data sets to be studied and provided by Core B include women and 
minorities, although we will not be generating any new data involving human subjects. 

10 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

11 INCLUSION OF CHILDREN 

The methods we develop will be applicable to studies with children and also to studies which examine treatment 
differences adjusted for age. This is accomplished through the general formulation of the statistical designs, 
models and methods studied that allow for many possible kinds of risk factors. Moreover, some of the existing 
data sets to be studied and provided by Core B may include children, although we will not be generating any 
new data involving human subjects. 

12 VERTEBRATE ANIMALS 

N/A 

13 SELECT AGENT RESEARCH 

N/A 

14 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

15 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute subcontracts 
with the consortium institutions (Duke University and North Carolina State University). These inter-institutional 
agreements will be written consistent with the NIH consortium agreement policy 

16 LETTERS OF SUPPORT - None 

17 RESOURCE SHARING PLAN(S) 

(a) Data sharing plan: The data-related resources generated by the proposed research consists of new statis
tical methodology software packages for implementation ofthe methodology and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
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through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy Summaries of the methodology, the software and tutorials will 
be shared through a public web site managed by Core A, while Core C will assist in preparation of the 
software and tutorials for dissemination. This project will use de-identified data prepared by Core B to test 
the methods and to create demonstrations of use of the methods to be included in tutorials. This project 
will not be involved in sharing of these data; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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PROJECT 2 

METHODS FOR MISSING AND AUXILIARY DATA IN CLINICAL TRIALS 

Project Leader: Marie Davidian, PhD 
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PROJECT SUMMARY (See instructions): 

Randomized clinical trials are and will continue to be the key vehicle for evaluation of new and existing 
cancer therapies. This revolutionary era of advances in the biological sciences is leading to the discovery of 
novel biomarkers and complex genetic and genomic information that may be highly associated with various 
clinical outcomes, offering the tantalizing opportunity to exploit this information to both improve the precision 
of the analyses of trials and to develop models of longitudinal disease progression that may reveal important 
insights. A recurrent challenge is that missing data and subject drop-out are commonplace, presenting 
complications for analyses of these trials. Through a series of aims addressing these issues, this project 
proposes research that will have a significant impact on the quality and strength of inferences possible from 
current cancer clinical trials. That it is possible to improve efficiency of primary analyses of clinical trials by 
exploiting prognostic baseline auxiliary information is well known; however, such analyses are controversial 
because of the temptation to choose the analysis that leads to the most dramatic treatment effect. In the first 
aim, new methods for such "covariate adjustment" will be studied that circumvent this issue and can improve 
over existing approaches. In the second aim, these methods will be extended so that they may be used in 
the common case where outcomes are missing due to drop-out. Efficient methods for longitudinal analysis of 
measures such as quality of life and biomarkers in the presence of drop-out will also be developed. 
Understanding the relationship between such longitudinal measures and clinical outcomes such as time to 
recurrence or survival time is of key importance. The third aim focuses on development of methods for 
assessing the correctness of so-called joint statistical models used for this purpose and for assessing the 
influence of particular observations on the fit ofthe model, where the data used to develop the model may be 
missing. Finally, taking appropriate account of missing data sometimes requires unverifiable assumptions 
about why the data are missing, which are incorporated in models that thus cannot be checked based on the 
data. The fourth aim is devoted to development of a new statistical framework for assessing how sensitive 
conclusions are to the modeling assumptions made. 

RELEVANCE (See instructions): 

Randomized clinical trials in cancer research are the most important mechanism for the evaluation of new 
and existing therapies. Statistical methods will be developed that will improve the precision of the analyses 
of these trials and provide tools for drawing valid conclusions when some of the data intended to be collected 
are missing, e.g., if some subjects drop out ofthe trial, offering cancer researchers an expanded set of tools 
that will greatly improve the quality and strength of analyses of current cancer clinical trials. 
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RESEARCH PLAN 

1 INTRODUCTION TO RESUBMISSION/REVISION APPLICATION - N/A 

2 SPECIFIC AIMS 
Randomized clinical trials are the primary mechanism by which new cancer therapies are tested for efficacy 
and evaluated for regulatory approval. The advent of novel biomarkers and emerging genomic technologies 
that may yield important new baseline predictors of primary clinical outcomes, the increasing emphasis on anal
yses of longitudinal progression of markers such as measures of quality of life, and the routine complications 
of missing information and subject drop-out, present both challenges and opportunities for the interpretation of 
these studies. We propose foUr specific aims focused on new methodological advances to exploit prognostic 
auxiliary information and to provide frameworks for analyses in the presence of missing data that will affect 
notably the strength and impact of inferences possible from current cancer clinical trials: 
Aim 1: To develop methods to improve efficiency of inferences in randomized cancer clinical trials using 
auxiliary covariates. Auxiliary baseline information is routinely collected on trial participants in addition to clini
cal endpoints, and it is well recognized that relationships between these data and outcomes may be exploited to 
enhance precision ot primary and secondary analyses, increasing power to detect important effects. However, 
"adjusting" for auxiliary covariates has engendered considerable controversy because of the temptation under 
the usual regression approach to inspect different model fits and choose that leading to the most dramatic esti
mated treatment effect. We have recently proposed promising new methods that separate regression modeling 
from effect estimation, obviating this concern and raising the possibility for greater acceptance of more efficient 
adjusted analyses, but several issues must be resolved prior to their widespread adoption. We will develop new 
approaches to model selection and inference for these methods ensuring their reliable use, including for the 
case where key auxiliary information is missing for some subjects. We will also extend the methods to analysis 
of more complex trial designs, such as the partially randomized surgical trials studied in Aim 3 of Project 1. 
Aim 2: To develop methods for primary and longitudinal analyses In the presence of drop-out. A routine 
feature of cancer trials is drop-out, where subjects are lost prior to the end of follow-up, so that data intended to 
be collected are missing subsequent to the time of drop-out. In many settings, sufficient information may have 
been collected on participants prior to drop-out to justify the assumption that the missingness is "at random," 
i.e., the drop-out mechanism may be "explained" by the data observed up to the time of drop-out. We will extend 
the adjustment methods for primary analyses studied in Aim 1 to this setting. Many cancer trials also involve 
analyses of longitudinal measures such as quality of life, which are complicated by drop-out. When the missing 
at random assumption is plausible, popular analysis methods require a correct statistical model for either the 
intended, full data or for the drop-out mechanism, and may yield biased inferences if the assumed such model is 
incorrect. Recent interest has thus focused on "doubly robust" methods, which use models for both but require 
only one or the other to be correct, thus providing protection against incorrect modeling assumptions. We will 
develop new, efficient, doubly robust methods for longitudinal analysis under these conditions. 
Aim 3: To develop diagnostic measures for joint models for longitudinal and survival data In the pres
ence of nonignorably missing data. Cancer trials may involve studies ofthe association between longitudinal 
markers and clinical outcomes such as relapse-free survival or death, and a popular framework for analysis 
is that of joint models for the longitudinal data and time-to-event outcome. Because of their complexity, these 
frameworks must rely on correct models for the full data to ensure valid inferences; thus, it is critical that reliable 
diagnostic methods are available for assessing model misspecification and goodness-of-fit and for identifying 
data that may have disproportionate influence on the results. Because drop-out and other forms of missing data 
are possible, such diagnostic measures must be applicable in this setting, including when the missingness is 
"nonignorable," where the missing at random assumption is not realistic. We will develop new diagnostic tech
niques for a variety of these models when there may be nonignorable missing outcome and/or covariate data 
that will provide the analyst with powerful and heretofore unavailable tools for joint model assessment. 
Aim 4: To develop inference methods for sensitivity analyses of missing data. A major challenge when 
intended data are missing is that it is impossible to evaluate whether or not the missing at random assumption 
is justified based on the observed data, nor can models for nonignorable missingness mechanisms be verified. 
Thus, analyses may be predicated on incorrect such models, leading to misleading inferences. A popular 
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Strategy in practice is to undertake a sensitivity analysis in which one inspects how inferences vary across 
multiple competing such postulated models. However, interpretation is problematic, as it may not be clear how 
to synthesize formally the results across models. We will develop rigorous inferential methods that explicitly 
acknowledge the non-identifiability of the missingness model as well as the need to explore simultaneously a 
range of plausible models in order to formalize evaluation of sensitivity of inferences. 

3 BACKGROUND AND SIGNIFICANCE 

A unifying theme of this project is that the vast resources devoted to and the commitment of the volunteer 
participants involved in current cancer clinical trials demand continued development of state-of-the-art statistical 
methods that make the most efficient and reliable use of the observed data collected in these studies. We now 
elaborate on the considerations and Issues underlying each of our four aims. 

3.1 Aim 1: Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates 
The primary objective of a randomized clinical trial is to make comparisons among two or more treatments, 
where the endpoint forming the basis for comparison may be continuous, binary, categorical, or, as in the case of 
many cancer trials, a censored time-to-event. The standard primary analysis focuses on comparisons averaged 
across the patient population and is based on data collected on outcome and randomized treatment assignment 
only However, if baseline auxiliary covariates are associated with the outcome, it is well known that the precision 
of this analysis may be improved by "adjusting" for these relationships (Pocock et al., 2002), and there is an 
extensive literature on the use of regression methods and other techniques for such covariate adjustment (e.g., 
Senn, 1989; Tangen and Koch, 1999; Lesaffre and Senn, 2003; Grouin, Day, and Lewis, 2004). For example, in 
Eastern Cooperative Oncology Group (ECOG) trial El 694 (Kirkwood, Ibrahim, et al., 2001), a two-arm, phase 
HI clinical trial comparing a vaccine to high-dose interferon (HDl) in high-risk melanoma patients on the basis of 
relapse-free and overall survival, baseline covariates include standard possible correlates of outcome such as 
ulceration of the primary tumor and Breslow thickness. The potential for efficiency gains is of particular interest 
in this era where advances in molecular technology are leading to new, highly prognostic measures such as the 
lung metagene score in non-small cell lung cancer (NSCLC) used in Cancer and Leukemia Group B (CALGB) 
30506. The existence of key predictive baseline covariates in these cancers as well as leukemia and breast, 
colorectal, and prostate cancer suggests that adjusted primary analyses may enjoy improved precision sufficient 
to detect important effects for which evidence from the standard unadjusted analysis may be ambiguous. 

Despite this potential, there has been considerable debate regarding standard adjusted analyses due to 
concerns that the treatment effect and covariates are inextricably linked in a common regression model, tempt
ing the analyst to inspect effect estimates across models and focus on the models and covariates that "best 
accentuate the estimate and/or statistical significance" of the estimate (Pocock et al., 2002). Thus, trialists and 
regulatory authorities have been reluctant to endorse these analyses and require that, when undertaken, they 
involve only a few covariates in prespecified regression models (e.g., Raab, Day, and Sales, 2000; Grouin et al., 
2004). A consequence is that critical opportunities to enhance power to reveal real, important treatment effects 
may be lost due to unfortunate a priori such choices that cannot be later revised even if warranted. 

Recently by applying semiparametric theory (Tsiatis, 2006) to this general problem, we have developed new 
methods for covariate adjustment under unrestrictive assumptions that instead separate modeling of outcome-
covariate relationships from estimation of the treatment effect (Tsiatis et al., 2008; Zhang, Tsiatis, and Davidian, 
2008; Lu and Tsiatis, 2008). These methods involve regression modeling of the outcome-covariate relationship 
separately within each treatment group and have been shown to lead to impressive efficiency gains over existing 
methods. They thus support a "principled analysis" in which modeling exercises for each treatment may be 
conducted by distinct teams of analysts, who may be given access only to the treatment-specific data if complete 
transparency is desired, and the effect estimate is then constructed independently, circumventing the possibility 
of its inspection during the modeling process. This eliminates the need to impose a priori restrictions on model 
forms and covariates used, allowing, in principle, analysts license to deploy model selection strategies yielding 
the most predictive models for outcome within each treatment, which, according to the theory underiying the 
methods (Zhang et al., 2008), will in turn extract the maximum possible efficiency gains. 

Although our methods offer great promise for widespread acceptance of covariate adjusted analyses and 
hence opportunities for more efficient and powerful inferences from current cancer clinical trials, considerable 
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work is needed to provide guidance on their effective use before they can be recommended for routine adoption. 
In this aim, we will investigate several fundamental issues In their development and Implementation. 

The key, appealing feature of the semiparametric approach is that separation of modeling and effect estima
tion encourages, and indeed demands, development of the best predictive treatment-specific models possible 
given the available data. There is a vast literature on model selection methods, including traditional techniques 
such as fonward, backward, and stepwise selection based on fixed tuning constants such as "a to enter," and re
cent advances where tuning constants are selected adaptively; an admittedly incomplete list includes penalized 
methods such as the Least Absolute Shrinkage and Selection Operator (LASSO; Tibshirani, 1996), the adap
tive LASSO (Zou, 2006; Wang and Leng, 2007; Zhang and Lu, 2007), the Smoothly Clipped Absolute Deviation 
(SCAD) penalty (Fan and Li, 2001), and the False Selection Rate (FSR) methods developed by members of our 
team (Wu, Boos, and Stefanski, 2007; Boos, Stefanski and Wu, 2008). The performance of these methods in 
terms of prediction error and identifying "important" covariates has been widely studied; however, little is known 
of their relative merits for developing treatment-specific models in the context of our semiparametric covariate 
adjustment methods. In our first sub-aim, we will carry out a comprehensive study of this issue. 

A related challenge is taking faithful account of the uncertainty associated with the use of model selection 
methods on inferences on treatment effect. Theoretically, in large samples, that model selection methods have 
been employed should have no impact on the reliability of inferences, which are predicated on the assumption 
that the models are known a priori. However, in finite sample sizes, particularly for small and moderately 
sized trials, the impact may be nonnegligible. In our second sub-aim, we will determine the sample sizes 
where a "correction" for this phenomenon is required and develop corresponding techniques based on bootstrap 
methodology and second order theory that ensure the validity of inferences. 

Standard model selection methods assume that the full slate of baseline auxiliary covariates is available 
for all subjects. A common complication in many trials is that some baseline variables are missing for some 
subjects; e.g., in El694, information on tumor ulceration and Breslow thickness is missing for roughly 20% of 
the subjects (see Section 3.3). In our third sub-aim, we will study approaches to adapting treatment-specific 
model selection for the semiparametric covariate adjustment methods to handle this complication. 

Our semiparametric adjustment methods have been developed for trials carried out according to a standard 
randomization scheme. As reviewed in Aim 3 of Project 1, surgical and other trials may be complicated by slow 
accrual due to reluctance of some subjects to be randoniized, and alternative partial randomization designs 
have been proposed for this setting; e.g., in the comprehensive cohort design, subjects with preferences are 
offered their preferred treatments while those without are randomized. The selection bias inherent in the pref
erence group must be taken into account in the analysis. In our final sub-aim, under appropriate assumptions 
we make explicit, we propose semiparametric covariate adjustment methods for inferences on treatment effect 
that exploit auxiliary baseline covariates to both improve efficiency and adjust for selection bias. 

3.2 Aim 2: Methods for Primary and Longitudinal Analyses in the Presence of Drop-out 
Subject drop-out is common in cancer clinical trials, leading to a so-called monotone missingness pattern where 
data are observed on the subject only until the time of drop-out and are missing thereafter. As noted in Section 2, 
if the analyst is willing to believe that information observed prior to drop-out is sufficiently rich so that the 
probability of drop-out at any time may be explained as a function solely of this observed information, then the 
assumption that the unobserved data are missing at random (MAR) may be justified. Of course, whether or not 
a MAR mechanism holds cannot be determined from the observed data. When MAR is not deemed realistic, the 
mechanism must be modeled based on variables that are not observed, so the validity of the models cannot be 
directly checked, and sensitivity to the model choice must be evaluated; in Aim 4, we propose general, rigorous 
methods for this purpose. The MAR assumption will be plausible in many trials where high quality information is 
recorded; even if it is not realistic, it provides a key benchmark for any missing data analysis, and, accordingly, 
inferential methods under MAR are of considerable interest. 

Primary analyses focused on treatment comparisons as In Aim 1 are often complicated by missingness of the 
outcome due to drop-out. The methods to improve efficiency of these inferences in Aim 1 based on "adjusting" 
for auxiliary baseline covariates assume that the outcome is observed for all subjects. When drop-out renders 
the outcome missing for some subjects, if one is willing to make the MAR assumption that the missingness 
may be explained by baseline and intervening auxiliary information up to the time of drop-out, then, using the 
theory of semiparametrics (Tsiatis, 2006), it is possible to extend the methods in Aim 1 to exploit this auxiliary 
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information to both enhance precision and take appropriate account of the missingness due to drop-out. In our 
first sub-aim, we will develop a framework for inference on general treatment effects in this setting. 

Studies of longitudinal markers, such as a quality of life (QOL) measure or immune response in an inves
tigation of a cancer vaccine, are a feature of many cancer clinical trials. For example, one of the objectives of 
El 694 was to investigate whether or not there is a treatment difference in QOL score, which was ascertained 
at baseline and several pre-specified evaluation visits thereafter; see Section 3.3. When some subjects drop 
out, longitudinal marker and other information recorded at each visit are available on a subject only up to the 
time of drop-out. Under the MAR assumption, inference based on likelihood methods has been advocated on 
grounds of efficiency and, in the current context, the fact that it does not require specification of the drop-out 
mechanism but only of the model assumed to govern the full data that were intended to be collected. How
ever, if this model is incorrectly specified, biased inferences may result. Likewise, Robins, Rotnitzky, and Zhao 
(1995) proposed methods based on weighting of observed data by the inverse probability of not dropping out, 
which require modeling the drop-out mechanism (as a function of the observed data) rather than the full data 
but which may yield biased inferences if the drop-out model is incorrect. These issues have led to the recent 
focus on "doubly robust" methods (e.g.. Bang and Robins, 2005). Doubly robust estimators require specification 
of both a full data model and a missingness model; however, they have the desirable property that they will 
be consistent and asymptotically normal if only one or the other of these models Is correctly specified. It has 
thus been argued that this affords protection against misspecification not enjoyed by other methods, allowing 
the analyst two chances to "get it right." Nonetheless, there has been vigorous debate over the performance of 
some doubly robust estimators, framed in a simple non-longitudinal setting (Tan, 2006,2007; Kang and Schafer, 
2007; Tsiatis and Davidian, 2007), namely, that they can perform poorly when both models are only "slightly" 
incorrect. Recently, in this simple context, we have developed new doubly robust estimators that are relatively 
more efficient and exhibit superior robustness to slight modeling mishaps (Cao, Tsiatis, and Davidian, 2009) 
than existing competitors. This inspires our second sub-aim, to extend these ideas to the more complicated 
longitudinal setting with MAR drop-out. This nontrivlal extension will lead to improved performance relative to 
competing doubly robust estimators of Robins et aL (1995) and Bang and Robins (2005), providing analysts of 
cancer trials with a robust and efficient option for inference from longitudinal studies under MAR drop-out.. 

3.3 Aim 3: Diagnostic Measures for Longitudinal and Joint Models in the Presence of Missing Data 
As discussed in Section 3.2, an objective in many cancer trials is to carry out analyses focused on treatment 
differences with respect to a longitudinal marker such as a QOL measure; afurther goal is to examine the associ
ation between a longitudinal marker and a primary clinical endpoint, typically a time-to-event. This is the case in 
several recent CALGB phase HI trials in which the Aim Leader, Dr Ibrahim, is involved, including CALGB 9221, 
comparing subcutaneous 5-azacytidine vs. observation in myelodysplastic syndromes (MDS); analysis of QOL 
in this study played a key role in FDA approval for 5-azacytidine in MDS. Investigating the association between 
QOL and survival, and in particular whether or not higher QOL is associated with increased survival, also played 
an important part In other trials, including CALGB 90401, a double-blinded, placebo controlled trial comparing 
docetaxel and prednisone with and without bevacizumab in men with hormone refractory prostate cancer; and 
CALGB 49907, a trial of adjuvant chemotherapy with standard regimens, cyclophosphamide, methotrexate and 
fluorouracil (CMF) or doxorubicin and cyclophosphamide (AC), vs. capecitabine in women 65 years and older 
with node positive or node negative breast cancer. ECOG El 694 (Kirkwood, Ibrahim et al., 2001), mentioned in 
Sections 3.1 and 3.2, was based on the premise that the GM2 ganglioside is a well-defined melanoma antigen, 
and anti-GM2 antibodies have been associated with improved prognosis (Livingston et al., 1994); thus, the 
study focused on evaluating vaccination with GM2 conjugated to keyhole limpet hemocyanin and administered 
with QS-21 (GMK) for 96 weeks against HDl, the current standard adjuvant therapy, for one year in high-risk 
melanoma patients. A subset of the subjects also participated in the QOL study and were asked to complete 
QOL questionnaires at baseline, 1 month, and 6 months, and at approximately 6-month intervals thereafter; 
resulting longitudinal QOL measures including the total QOL score from the Functional Assessment of Cancer 
Therapy, Biologic Response Modifiers/CIS-Retinoic Acid+Pain Symptoms form (FACT BRM/CRA-̂ PS). The trial 
demonstrated a significant benefit of HDl versus GMK for both relapse-free and overall survival, and characteriz
ing the association between QOL and immune response within the vaccine arm and between QOL and survival 
in high-risk melanoma patients assigned to highly toxic HDl therapy were important subsequent objectives. 

These studies exemplify settings in which joint models for longitudinal and survival data (Hogan and Laird, 
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1997; Henderson, Diggle, and Dobson, 2000; Ibrahim, Chen, and Sinha, 2001; Brown and Ibrahim, 2003; 
Tsiatis and Davidian, 2004; Diggle, Farewell, and Henderson, 2007) are an appropriate analytic framework. 
These models, implemented via likelihood techniques, have become popular in cancer clinical trials for this 
purpose, especially those involving QOL or vaccine studies. However, because they require linking postulated 
models for both longitudinal marker progression and a possibly censored time-to-event endpoint, they are of 
necessity complex. Most of the associated literature, such as that cited above, focuses on inference within a 
specified joint model, but there is little work on diagnostic tools for assessing validity of model assumptions 
(Diggle et al., 2007), violation of which could lead to misleading conclusions, nor for investigating goodness-of-
fit and whether or not data from certain subjects or groups of subjects exercise undue influence on the fit. As 
joint models enjoy increasing application in cancer studies, development of such tools is essential. 

As noted previously, a further complication is missing data due to drop-out and other reasons. In El 694, 
response to QOL questionnaires at each visit was not compulsory, and some subjects refused to or othenwise 
did not complete the forms; 42.6% of subjects had at least one QOL score missing, and the extent of missing 
QOL scores became more pronounced at each visit, with 10.8%, 16.6%, 22.0%, and 26.7% of subjects missing 
these at baseline, 1 month, 6 months, and 1 year. Moreover, as discussed in Section 3.1, key auxiliary baseline 
covariates, ulceration of the tumor and Breslow thickness, were also missing for some subjects. Overall, close 
to 60% of cases had some form of missing outcome and/or covariate. Further complicating matters, the MAR 
assumption may not be realistic; e.g., a QOL score may be missing because the subject either had an excellent 
or, more likely, poor quality of life at the time, as would have been reflected in the missing QOL score. Similarly, 
missingness of baseline covariates might also be nonignorable; if insufficient tissue was available after diagnos
tic pathology, then submission of pathologic materials was not required, so that missingness of data concerning 
the primary tumor is most likely related to the amount or size of the resection. 

El 694 demonstrates that diagnostic tools for assessing the relevance of the component longitudinal and 
survival models in joint models must also incorporate assumed models for possibly nonignorably missing data. 
Approaches to model assessment and influence analysis for complete data settings, such as local influence and 
case-deletion measures, goodness of fit statistics, and schemes for perturbing model assumptions (e.g.. Cook 
and Weisberg, 1986; Cook, 1986) are available, but simply deleting cases with missing data or imputing missing 
data on an ad hoc basis in order to apply these to joint models is not appropriate. Very different cases might 
be identified as influential when analysis is limited to only subjects with complete data versus an analysis that 
uses all the cases, and the strength of evidence against model assumptions may be diminished if observed data 
from all subjects are not considered. These issues can be especially problematic when the fraction of missing 
data is moderate to high. A further challenge with any measure of case Influence with unbalanced longitudinal 
data is that "size matters" (Critchley et al., 2001); i.e., case-deletion and perturbation schemes are sensitive 
to the size of the data cluster for a subject. Difficulty also arises in development of goodness-of-fit statistics 
when many complete and incomplete covariates are present (Lin, Wei, and Ying, 2002; Zhu, 2005). Although 
there is work on sensitivity analyses for any complex model (Rotnitzky, Robins, and Scharfstein, 1998; Verbeke 
and Molenberghs, 2000; Troxel, Ma, and Heitjan, 2004; Copas and Eguchi, 2005), there is a lack of a rigorous 
approach for selecting an appropriate scheme to perturb complex joint models for longitudinal and survival data 
and for assessing the global and local influences of such perturbations. 

We will develop diagnostic measures for joint models that address these challenges, providing tools to assist 
cancer trial analysts not only in choosing an appropriate joint model for addressing a particular study but for 
mining longitudinal studies from cancer clinical trials for new insights on relationships more generally, which we 
will demonstrate through their application to the three recent CALGB studies above. 

3.4 Aim 4: Inferences for Sensitivity Analyses of Missing Data 
As we have emphasized, drop-out and missing outcomes and covariates are commonplace in cancer clinical 
trials, as in ECOG E1694, discussed in Section 3.1-3.3; the issues are similar in El 684, another phase III 
trial in high-risk melanoma patients randomized to either HDl or follow-up without intervention (Kirkwood et al. 
1996; Chen and Ibrahim, 2006). In this trial, a primary outcome is occurrence of relapse, and roughly 20% of 
subjects had missing covariates, including Breslow thickness and number of affected nodes. In these settings, 
whether or not such missingness is ignorable may be speculative, as described for El 694, leading the analyst 
to consider models for the missingness as a function of the unobserved data. 

Sensitivity analysis has been widely advocated in such missing data scenarios where the missingness mech-
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anism may depend on the unobserved data (e.g.. Little and Rubin, 1987; Scharfstein, Rotnitzky, and Robins, 
1999; Kenward, Goetghebeur, and Molenberghs, 2001; Rotnitzky et al, 2001). As we noted in Section 3.2, un
der such informative missingness, the missing data cannot be ignored, and valid inferences are predicated on 
the correctness of assumed models for the missingness mechanism as a function of unobservable quantities, 
which cannot be checked using the observed data. In many cases, assumed such models may be "overpa-
rameterized," so that standard estimation techniques may fail due to the model being non-identifiable. This is 
problematic, as it may not be known a priori whether the model is identifiable. The common approach of pos
tulating a range of models and inspecting the results to gain insight into sensitivity to model assumptions is not 
only subject to these issues but also is difficult to interpret. A sensitivity analysis methodology that supports 
principled, formal synthesis of evidence regarding the missingness mechanism would be particularly useful. 

Two general strategies for sensitivity analysis have been discussed in the literature, local and global, which 
involve frameworks incorporating a "sensitivity parameter" representing departures from ignorability. A local 
sensitivity approach assesses the impacts of uncertainties on inferences over a range of models specified by 
the sensitivity parameter in a small "neighborhood" of a known value of this parameter (Copas and Eguchi, 
2001; Verbeke et al., 2001; Troxel et al., 2002; Todem, Kim, and Lesaffre, 2006). One may assess the effects of 
small perturbations of the ignorable model in the directions of nonignorable models. If estimates of parameters 
of interest are locally insensitive to these values, then, under the assumption of small violations of ignorability, 
the desired inferences can be reasonably be carried out assuming ignorable missingness. Such methodology is 
useful but does not permit assessments ot large deviations of the sensitivity parameters on inferences. Global 
analyses focuses on the impact of such deviations. Under qualitative assumptions regarding the missingness 
mechanism, it may be possible to derive bounds on the behavior without imposing further parametric assump
tions (Manski, 2003; Horowitz and Manski, 2006). Alternatively, more structured parametric models for the 
missingness mechanism are often employed in practice on grounds of conceptual simplicity and ease of imple
mentation, with a small number of easily interpreted sensitivity parameters (Shepherd et al., 2006; Vansteelandt 
et al., 2006). A limitation is that formal inference is not available. The usual strategy Is to present parameter 
estimates at various values of the sensitivity parameters, accompanied by pointwise confidence intervals based 
on the assumption of a correctly specified model. Inference is ad hoc, ignoring that multiple tests are conducted 
and that the model may be misspecified. 

We will develop an approach to sensitivity analysis that attempts to formalize the objectives of such ad hoc 
techniques. Instead of informally reporting results at particular values of the sensitivity parameters, correspond
ing to particular model assumptions that are unverifiable, we will develop a rigorous approach to combining 
information across such models to enable a conservative synthesis of evidence, without requiring that any of 
those models be correct. We will focus on the context of cancer clinical trials, but the approach will be broadly 
applicable to general studies and settings involving potentially nonignorable missingness. 

4 PRELIMINARY STUDIES 
4.1 investigators 
The research will be carried out by a highly qualified team of investigators from all three institutions. Marie 
Davidian of North Carolina State University (NCSU), a PD/Pl for the overall program project, will serve as Project 
Leader. She has expertise in longitudinal data analysis and joint modeling of longitudinal and survival data 
(Song, Davidian, and Tsiatis, 2002; Tsiatis and Davidian, 2004), missing data and causal inference methods 
(Lunceford and Davidian, 2004; Davidian et al., 2005; Tsiatis and Davidian, 2007; Cao et al., 2009), and clinical 
trials (Tsiatis et al., 2008; Zhang et al., 2008), making her ideally suited to lead the project. Anastasios Tsiatis 
(NCSU) and Joseph G. Ibrahim (University of North Carolina, UNC) will serve as Project co-Leaders. Dr. 
Tsiatis is an internationally recognized expert on semiparametric theory and missing data (Tsiatis, 2006) and 
joint models (Tsiatis, DeGruttola, and Wulfsohn, 1995; Wulfsohn and Tsiatis, 1997; Song et al., 2002; Tsiatis 
and Davidian, 2004). Dr. Ibrahim is a world authority on missing data (e.g., Chen and Ibrahim, 2006), joint 
models (Brown and Ibrahim, 2003; Chi and Ibrahim, 2007), and model diagnostics (Zhu et al., 2007, 2008). 

Dr. Davidian will lead Aim 1, working with Dennis Boos (NCSU), Howard Bondell (NCSU), Sin-Ho Jung 
(Duke), Len Stefanski (NCSU), Anastasios A. Tsiatis (NCSU), and Helen Zhang (NCSU). This aim will involve 
considerable work on model selection. Drs. Boos and Stefanski are both experts In model selection and are 
the originators of the FSR approach (Wu et al., 2007; Boos et al., 2008). Dr. Boos' expertise in bootstrap 
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methodology (e.g., Boos, 2003) will be exploited in the second and third sub-aims. Model selection is Dr Bon-
dell's research focus (Bondell and Reich, 2008a, 2009; Bondell and Li, 2009); Dr. Zhang is also a recognized 
authority in this area (e.g., Zhang et al., 2004; Zhang, 2006; Lin and Zhang, 2007; Zhang and Lu, 2007; Zou 
and Zhang, 2009) and will contribute heavily to the first, second, and third sub-aims. Semiparametric theory 
and missing data methods will also play a key role; Dr Tsiatis will provide expertise and is co-developer ol 
the adjustment methods studied in the first three sub-aims (Lu and Tsiatis, 2008; Tsiatis et al., 2008; Zhang et 
al., 2008). Dr. Jung has been involved in cancer clinical trials for over 15 years and has published numerous 
papers on trial design and analysis methods (e.g., Jung et al., 2005; Jung, 2008; Jung, Kim, and Chow, 2008); 
accordingly, he will bring an important perspective to the research. 

Efforts on Aim 2 will be led by Dr. Tsiatis, whose expertise in semiparametrics and missing data will be 
critical and whose work with Dr. Davidian on adjustment methods and doubly robust estimators (Tsiatis and 
Davidian, 2007; Cao et al., 2009) forms the basis for both sub-aims. Dr Davidian will also lend expertise in 
these areas. Dr. Ibrahim will provide additional expertise on missing data. Dr. Jung on clinical trials issues, and 
Drs. Bondell and Zhang will contribute expertise on model selection. Aim 3 will be led by Dr Ibrahim, working 
with Drs. Davidian and Tsiatis. Drs. Davidian, Ibrahim, and Tsiatis will draw on their expertise in joint models 
and missing data, and Dr Ibrahim on his background in diagnostic methods. Aim 4 will be led by Jason Fine 
(UNC), who is an expert on sensitivity analysis (Todem et al., 2006; Todem and Fine, 2008) as well as survival 
analysis. Jianwen Cai (UNC) and Dr Tsiatis will work with Dr Fine, lending expertise on missing data. Dr Cai 
will bring her expertise on missing data/measurement error and joint model methods (Greene and Cai, 2004; 
Schaubel and Cai, 2006; Liu, Zhou, and Cai, 2009) to this work. 

Pre-existing collaborations and connections among subsets of these investigators ensure that this team will 
work effectively within and across institutions and aims. Trans-institutionally, Drs. Davidian and Tsiatis work 
with Drs. Cai, Fine, and Ibrahim, through their membership in the Biostatistics Core of the UNC Clinical and 
Translational Science Award, and both are members of the UNC Center for Innovative Clinical Trials, directed 
by Dr. Ibrahim. Drs. Fine and Tsiatis have also published together (e.g.. Fine and tsiatis, 2000). Drs. Davidian 
and Tsiatis are also adjunct faculty at Duke, where they spend one day a week and interact with Dr. Jung. 
Drs. Bondell, Boos, Cai, Fine, Ibrahim, and Zhang are or have been associate editors for Biometrics and 
worked regularly with Dr. Davidian in her capacity as Coordinating Editor and Executive Editor Within NCSU, 
Drs. Bondell, Boos, Stefanski, and Zhang are members of a research group on model selection and have 
published together (e.g.. Boos et al., 2008); more generally, all NCSU investigators publish together (e.g., 
Huang, Stefanski, and Davidian, 2009) and have or are co-directing doctoral dissertations (e.g., Boos-Stefanski, 
Davidian-Stefanski, Davidian-Tsiatis, Bondell-Zhang, Davidian-Zhang). Similarly, at Drs. Ibrahim, Cai, and Fine 
are members of the Lineberger Comprehensive Cancer Center, and collaborate on several substantive projects. 

Neil Spector, MD, Associate Professor of Medicine (Oncology) at Duke University Medical Center, will work 
closely with the team, offering subject-matter guidance from his vantage point as Director of Translational Re
search in Oncology and a Co-Director of the Experimental Therapeutics Program at the DCCC. He is former 
Director of Exploratory Medical Sciences in Oncology at GlaxoSmithKline (GSK). While at GSK, he focused 
on elucidating the biological effects of targeted agents in preclinical models in order to identify novel molecu
lar biomarkers with which to develop cancer therapeutics. Dr Spector directed the Nelarabine project, which 
received FDA approval for the treatment of childhood acute lymphoblastic leukemia; and he directed the de
velopment of lapatinib (Tykerb), an important epidermal growth factor receptor inhibitor for treating women with 
advanced Her2 positive breast cancer Dr. Specter's experience leading these therapies from bench to clinic 
trials to FDA approval will be invaluable in guiding the practical relevance and application of the methods. 

4.2 Preliminary Studies 
Aim 1: Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates. In 
Zhang et al. (2008), Drs. Davidian and Tsiatis outline a broad framework for covariate adjustment in clinical 
trials for general types of outcomes and two or more treatments based on taking a semiparametric perspective 
that places minimal restrictions on the nature of the data; this framework is presented formally in Section 5.1. 
They derive classes of all consistent estimators and tests that make use of the data on all of outcome, treatment 
assignment, and auxiliary baseline covariates and identify the form of the most efficient; i.e., that theoretically 
leading to the most precise inferences on the effect of interest with the available data. Although the paper did 
not appear in Biometrics (published quarteriy) until September 2008, it is among the most heavily downloaded 
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articles appearing in the journal in all of 2008, reflecting the considerable interest the approach has generated 
among clinical trials biostatisticians. In Lu and Tsiatis (2008), such adjustment methods are developed for 
comparison of two survival distributions under the usual assumption of noninformative censoring; Tsiatis et 
al. (2008) describe the approach in detail for practitioners in the routine special case where theparameter of 
interest is the difference in two treatment outcome means. In all three papers, simulation studies demonstrate 
impressive gains in efficiency over unadjusted and competing adjusted analyses. In the latter simple setting, on 
which we focus here for definiteness, the efficient estimator for the difference is obtained by incorporating correct 
representations of the conditional expectations of outcome given the covariates in each treatment group. Thus, 
roughly speaking, the most precise inferences will be attained when models for these conditional expectations 
are developed that come as close as possible to their true forms, which motivates our study of competing model 
selection techniques to identify models that achieve this. 

As noted in the citations in Section 4.1, Drs. Bondell, Boos, Stefanski, and Zhang have all developed 
methods for model selection. To date, only limited studies of use of model selection in the context of the 
semiparametric covariate adjustment methods are available. Simulations by Tsiatis et al., (2008) and Zhang et 
al., (2008) consider only traditional forward selection with a single fixed "a to enter" tuning constant in limited 
scenarios with continuous and binary outcomes. In larger sample sizes (on the order of > 600), there is rio 
discernible effect of model selection on inferences on treatment effect, as predicted by the theory However, 
in smaller sample sizes (200 or less), they found in simulations not reported that coverage of 95% confidence 
intervals for the true effect falls short of the nominal level, suggesting that optimistic inferences will result if the 
use of model selection is not taken into appropriate account. Boos et al. (2008) use their FSR model selection 
methods with the semiparametric methods in Tsiatis et al. (2008) to compare treatment means in a large HIV 
clinical trial; through various subsampling exercises with these data, they conclude that the FSR method may 
offer an improvement over traditional methods; see Section 5.1. Because of simplicity and ease of use of the 
version of FSR in Boos et al. (2008) in practice, we will focus on it heavily 

The selection bias arising in the preference arm of partially randomized studies is analogous to the con
founding encountered in the analysis of treatment effects from observational studies. Drs. Davidian and Tsiatis 
have considerable experience in this area (e.g., Anstrom and Tsiatis, 2001; Lunceford and Davidian, 2004; 
Johnson and Tsiatis, 2005). The proposed methods for these trials in the fourth sub-aim will merge these tech
niques with the principles of the semiparametric adjustment methods above. 
Aim 2: Methods for Primary and Longitudinal Analyses In the Presence of Drop-out. Missingness due 
to drop-out may be cast in its most general setting as a censored data problem. Censored data methods for 
survival analysis have been studied extensively assuming noninformative censoring; however, in reality, the 
censoring mechanism may be more complex, and may be thought of as a special (albeit more complicated) ex
ample of continuous-time monotone missingness assumed to be MAR. From this vantage point, it is possible to 
consider realistic censoring mechanisms where censoring may depend on auxiliary information and to consider 
censoring in contexts other than survival analysis where the outcome of interest is not necessarily a time-to-
event and occurs after some "lag time." Dr Tsiatis has developed methodology for such lag-time problems in 
Zhao and Tsiatis (1997, 1999, 2000), studying censored QOL measures, and Bang and Tsiatis (2000, 2002) 
in the setting of censored medical costs. A general strategy for deriving estimators for parameters of interest 
when data are missing due to such censoring using the theory of semiparametrics is outlined in Sections 9.3 
and 10.4 of Tsiatis (2006). This strategy Is applicable to the specific problems involving drop-out mechanisms 
assumed to depend on observed auxiliary covariates to be studied in this aim, where the outcome of interest 
may be a time-to-event or other censored time-lagged measure. 

Considering the simple problem of estimating a mean outcome when the outcome may be MAR, Kang and 
Schafer (2007) present examples where doubly robust estimators advocated by Bang and Robins (2005) per
formed poorly when both the models for the missingness mechanism and the full data are misspecified even 
slightly Implementation of the doubly robust estimators requires estimation of the parameters in both postulated 
models. Kang and Schafer (2007) consider only the case where those in the full data model were estimated by 
least squares. In Cao et al. (2009), Drs. Davidian and Tsiatis demonstrate that there are many possible doubly 
robust estimators depending on how the full data model parameters are estimated; see also related work by 
Tan (2006). They show that the estimator for these parameters leading to the optimal doubly robust estimator 
for the mean is not least squares but is rather a weighted least squares estimator using a specific weighting 
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scheme. Cao et al. (2009) give an argument for why such an estimator should not only be more efficient than 
doubly robust estimators using least squares when the model for the missingness mechanism is correct but 
also should be more robust to model misspecification, and they present empirical studies based on simulation 
scenarios used by Kang and Schafer (2007) that show dramatic such improvements when using their doubly 
robust estimator with weighting. The principles used in this simple case will be exploited in the more complex 
setting of monotone MAR missingness due to drop-out to derive doubly robust estimators for general quantities 
of interest in longitudinal studies In Section 5.2 and should lead to similar improvements. 
Aim 3: Diagnostic Measures for Longitudinal and Joint Models In the Presence of Missing Data. Moti
vated by applications in the biomedical, social, and ecological sciences. Dr. Ibrahim and colleagues have ari 
extensive record of systematic study of important statistical models, including generalized linear, longitudinal, 
and survival models with and without missing outcome and/or covariate data; spatial models for ecological and 
neuroimaging data; and joint models for longitudinal and survival data (Gu and Zhu, 2001; Ibrahim et al., 2001; 
Chi and Ibrahim, 2007). Especially relevant to Aim 3 are their significant contributions to model diagnostics 
(Zhu et al., 2007; Zhu et al., 2008). They have developed a differential-geometric framework, the perturbation 
manifold, for carrying out sensitivity analysis of any parametric model (Zhu el al., 2007), showing that the metric 
tensor of the perturbation manifold provides important information for selecting an appropriate perturbation of a 
model. They also use the concept of a geodesic on the perturbation manifold to introduce new local influence 
measures for any objective functions at any point. The development of the perturbation manifold allows explicit 
measurement of the amount of perturbation, the extent to which each component of a perturbation vector con
tributes, and the degree of orthogonality for the components of the perturbation vector. These advances are 
critical for formally carrying out sensitivity analysis in complicated models, such as hierarchical models. 

Dr. Ibrahim and co-workers have developed case-deletion measures for assessing the influence of several 
observations for a variety of statistical models for missing data (Cho et al., 2009) and goodness-of-fit statistics 
based on local influence measures (Zhu and Zhang, 2004). They have also proposed a general local influence 
approach for assessing effects of minor perturbations to statistical models for missing data. The key idea is to 
generalize Cook's (1977,1986) approaches to the conditional likelihood of the complete-data likelihood function 
in the expectation-maximization (EM) algorithm (Zhu and Lee, 2001). This not only dramatically reduces the 
computational burden of deriving case-deletion and the local influence measures, but also yields better inter
pretation of diagnostic results for hierarchical models such as longitudinal and multilevel models, compared with 
standard methods (Cook, 1977; Cook, 1986) and facilitates identification of influential observations and general 
model checking for many complicated models (e.g., Lee and Tang, 2004). 

Dr. Ibrahim and colleagues have also developed a diagnostic procedure based on the empirical likelihood 
for combining estimating equations without assuming any parametric distributions (Zhu et al., 2008), which con
sists of case-deletion measures for assessing influence of individual observations, a local influence approach for 
assessing small perturbations to estimating equations, and a goodness-of-fit statistic for testing potential mis-
specifications of the equations. Based on the theory of empirical processes (van der Vaart and Wellner, 2000; 
Kosorok, 2008), they develop the statistic using multiple pseudo-residual processes and devise a resampling 
method to approximate its null distribution to calculate the critical value, which corrects the multiple comparisons 
to control for the family-wise error rate while accounting for correlations among all estimating equations. 
Aim 4: Inference for Sensitivity Analyses Techniques of Missing Data. In current work (Todem and Fine, 
2008), Dr. Fine has proposed sensitivity analysis methods in the special case of longitudinal analysis of a binary 
outcome, as in El 684, where there is potentially informative drop-out. Assuming a specific longitudinal random 
effects binary outcome model for which the probability of drop-out depends on the random effects (e.g., Wu and 
Carroll, 1988; ; Albert and Follmann, 2000; Ten Have et al., 2002), inducing informative missingness, formal 
inferences for sensitivity analysis are developed for maximum likelihood inference under this model. Because 
of identifiability concerns, the analysis profiles across the random effects parameter, which quantifies the extent 
of informative missingness, rather than estimating it. If 5 is the sensitivity parameter derived from the random 
effects distribution, then 5 = 0 corresponds to noninformative missingness, and S j^O defines informative miss
ingness, where larger magnitude S implies stronger informativeness. A conservative test of the null hypothesis 
of no treatment effect is carried out simultaneously across the support of 5 using an infimum test statistic, taking 
into account that inferences are carried out simultaneously across the entire range of 6 and that the model may 
be misspecified under certain values of 6, as might occur if a nonignorable model is fit, when, in reality, miss-
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ingness is ignorable. In addition, simultaneous confidence bands for the identifiable paranneter are proposed, 
enabling pointwise tests of the null that control the overall type I error rate. This enables evaluation of how the 
treatment effect changes as 6 is varied, as well as providing confidence intervals that are valid simultaneously 
across all values of 5. Such simultaneous statements are the most rigorous approach to inference in a sensitiv
ity analysis and formalize current ad hoc practices of informally inspecting evidence across models. They may 
be especially useful in scenarios where one may not know in advance whether a model is identifiable, in which 
case proceeding as if the model is identifiable may yield misleading results. A careful theoretical analysis of the 
estimator of the treatment effect parameter as a process in 5 is conducted; because of the complexity of the dis
tribution of the process, a bootstrap procedure is proposed for practical implementation. Preliminary empirical 
results of application of the methods to data from a clinical trial of fluvoxamine, a serotonin re-uptake inhibitor, 
in patients diagnosed with depression, obsessive-compulsive disorder, or panic disorder, are presented; such 
patients often suffer comorbidities that lead to drop-out (Burton, 1991, Kenward, Lesaffre, and Molenberghs, 
1994; Lesaffre, Molenberghs, and Dewulf, 1996). Under the framework described above for the binary outcome 
of side effects, the null hypothesis of no temporal effect of treatment on side effects is evaluated by testing 
across a continuum of values for 6, each defining a different level of informative missingness, suggesting strong 
evidence of a time-varying effect of fluvoxamine across a wide range of values for <5. 

The research detailed in Section 5.4 will build on and significantly extend these ideas to general models. 

5 RESEARCH DESIGN AND METHODS 

Some symbols may represent different quantities in each section. Plans for software development and dissem
ination and a timetable of activities for all four aims are presented at the end of this section. 

5.1 Aim 1: Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates 
Semiparametric Covariate Adjustment Framework. For simplicity, we consider a univariate outcome Y; the 
methods are also applicable to multivariate outcomes. Let the data for subject i from a /c-arm randomized trial, 
fc > 2, be iYi,Xi,Zi), i = 1 , . . . ,n, independent and identically distributed (iid) across i, where Yi is outcome, 
X i is a vector of baseline auxiliary covariates, and Zi = g indicates assignment to treatment g with known 
randomization probability P(2 = g) = ng, Yl''g=i ''̂ g, = 1- Randomization guarantees ZALX, where "IL" means 
"independent of." Let /3 be a vector of parameters involved in making treatment comparisons. When fc = 2 
and interest is in a difference in treatment means, the quantity of interest is E(Y\Z = 2) - E(Y\Z = 1), which 
equals /?2 in EiY\Z) = pi -j- /32/(^ = 2), /3i = EiY\Z = 1), /3 = (/3i,y52)', and /(•) is the indicator function. 
When fc = 3 and Y is binary, interest may focus on log odds ratios 02 and 03 for treatments 2 and 3 relative to 
a control treatment 1, expressed in \ogit{EiY\Z)} = /8i -i- P2liZ = 2)-\- p^IiZ = 3), (3= (/?i,/?2, ft)', logit(p) = 
log{p/(l - p)}. In general, the focus is on parameters /3 in a model describing aspects of the conditional 
distribution of Y given Z, which in more complex settings could involve additional nuisance parameters 7. 
Standard unadjusted analyses make inference on /3 based only on iYi,Zi), i = 1, . . . ,n. Standard adjusted 
analyses also take into account X , usually through a regression model, e.g., for continuous outcome in the first 
example, the analysis of covariance (ANCOVA) model EiY\X,Z) = QQ + " 1 - ^ / + ^ l iZ = 2), where 0 is the 
adjusted estimator for ^2 above, and X j contains functions of elements of X pre-specified for the analysis or 
deemed "important" in the sense of being associated with Y. This framework links Inference on treatment effect 
to X . Although 4>\sa consistent and asymptotically normal estimator for P2 in this simple setting, in situations 
like the second example, estimation of the log odds ratios 02, Pz by postulating an analogous (nonlinear) logistic 
regression model including X j would not necessarily lead to consistent estimation; see Zhang et al. (2008). 

Zhang et al. (2008) derive alternative adjustment methods by considering a semiparametric model for 
iY,X,Z) placing no restrictions on the joint densities that could have generated these data except that ZALX 
and the ng are known; see Zhang et al. (2008) for details. Under this model, they use semiparametric theory to 
identify the class of all unbiased estimating functions for d - i(3',^')' in the assumed model for the relevant as
pects of the conditional distribution of Y\Z based on using all the data (F, X , Z). Unbiased estimating functions 
suggest estimating equations that lead to consistent and asymptotically normal estimators. They show that 
elements of the class of all such estimating functions have the form m*iY,X,Z;d) = miY,Z- d) - X)g=i{^(^ = 
g) - ng}agiX), where miY, Z; 9) is the estimating function one would use to estimate the desired elements 
of /9 in an unadjusted analysis by solving in 0 Y,'^^xm{Yi,Zi;d) = 0; and agiX), g = l,...,k, are arbitrary 
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functions of X . Solving X^"^jm'*(Fj,Xi,Zi;0) = 0 with appropriate functions agiX) yields an adjusted esti
mator for /3; Zhang et al. (2008) show that the optimal choice leading to the most efficient such estimator is 
agiX) = E{miY, Z; 9)\X,Z = g). They argue via semiparametric theory that using linear models to represent 
these treatment-specific regressions, whether or not they are correct, and fitting these by least squares, guaran
tees a gain in efficiency over the unadjusted analysis. If whatever parametric models one postulates to represent 
the regressions contain the true functions E{miY,Z;6)\X,Z = g} of X , then the greatest possible gain will 
result. Zhang et al. (2008) argue that, in general, the closer the predictions from these models are to those 
from the true functions of X , the closer the resulting estimator for fi will come to achieving the precision of the 
optimal estimator. They propose an adaptive strategy for solving the equations and advocate standard errors 
for the resulting estimator obtained by the usual sandwich technique (Stefanski and Boos, 2002). Analogous 
development is possible for optimal adjusted test statistics; for definiteness, we focus on estimation here. 

These results are very general; in most situations, like those above, because ofthe simple form of m(y, Z; 6), 
finding the most efficient estimator reduces to modeling EiY\X, Z = g) for each g. In fact, for the difference of 
fc = 2 treatment means above, the optimal adjusted estimator ft is asymptotically equivalent to an expression 
of the form _ _ " 

Y2-Y,-Y,{HZi^2)-n2/n}{n]:'EiY\X,Z^l)-i-n '̂EiY\X,Z^2)} (5.1) 
i= l _ 

where ng = X^Li H^i = 5)> and Yg = n~^ YA=I ^i^i = 9)^i' 5 = 1>2. Thus, the optimal adjusted estimator 
achieves efficiency gains by "augmenting" the usual unadjusted estimator Y2 - F i by a mean-zero term involv
ing the treatment-specific regressions. For simplicity of exposition in the sequel, we focus on this setting and 
(5.1); during the project period, we will consider the general case. 
Model Selection Methods for Covariate Adjustment. The theory implies that estimation of parameters in 
the postulated models for EiY\X,Z - g),g = 1,2, whether or not the models are correct, will have no effect 
asymptotically on consistency or precision of the resulting estimator ft, and as above, efficiency gain over the 
unadjusted estimator is guaranteed. Thus, theoretically, one could simply use models involving all elements 
of X , including, e.g., all linear, quadratic and first-order interactions. However, the theory is likely optimistic 
in the sample sizes seen in many cancer trials, suggesting use of model selection techniques to "pare down" 
the models to incorporate only "important" covariate effects predicting outcome in order to achieve the most 
dramatic efficiency gains.. A small simulation illustrates. Here, Zi are iid Bernoulli with TTI = 772 = 0.5; outcome 
is generated as YJ = Cos+Cio-X"i-|-ei for e ~ NiO,a'^), so ft = C02-C01 - iC,\2-C,n)'EiX); X i is 20-dimensional 
with a mix of correlated and independent normal and Bernoulli elements; and C,g are such that only 4 or 5 of 
the 20 covariates have non-zero coefficients, g = 1,2, the set of such covaî iates overlaps only slightly in each 
group, and 16 or 15 covariates are "unimportant." For n = 100 and each of 5000 Monte Carlo data sets, we 
computed the unadjusted estimator (UN); (5.1) with E{X\X,Z - g) ^ Cos + Cig-X" including all of X , fitted 
by least squares (FULL); (5.1) with these models for EiY\X,Z = g) fitted using traditional fonward selection 
with entry C = 0.05 (FOR) and the adaptive LASSO (ALAS, Zou, 2006); and as benchmarks (unachievable in 
practice) the true models fitted by least squares (TRUE) and with the true values of Cog, Ci^ substituted (IDEAL). 
All estimators for ft were unbiased; for brevity, we show only Monte Carlo efficiency based on mean square 
error relative to UN, and coverage probability of Wald 95% confidence intervals for /?2 using sandwich standard 
errors: 

UN FULL FOR ALAS TRUE IDEAL 
Rel. Eff. 1:00 097 T M 1A8 1720 1^5~ 
Gov. Prob. 0.95 0,94 0.91 0.93 0.94 0.95 

The results show that, contrary to the theory, overtitting of the models negates efficiency gains. Using model 
selection techniques to eliminate unimportant effects results in impressive gains approaching those achievable 
if the true models were known. However, coverage of the associated intervals falls short of the nominal, and an 
etfect of estimating the parameters in the true models is evident. Standard competing methods, e.g., ANCOVA, 
will suffer similar performance, as they are in fact equivalent to estimators in our class but do not have the 
appealing feature of separating modeling and effect estimation in their implementation; see Tsiatis et al. (2008). 
While tor continuous outcomes as here the effect of estimation and model selection disappears for sample sizes 
in the range of n = 400, in other settings, e.g., binary outcome and odds ratios, the sample sizes required for this 
are much larger (Zhang et al., 2008), and we conjecture similar behavior for censored time-to-event problems. 
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This evidence demonstrates that developing the treatment-specific models that effect the gains in efficiency 
is critical; a "kitchen sink" approach wherein all covariates are simply included in order to sidestep the effort 
involved in model-building could backfire, particularly with a large number of covariates. Indeed, in cases where 
the number ot covariates approaches or exceeds n, as may arise with genomic inforhnation, this strategy is 
untenable, and model selection is a necessity. Nonnegligible efficiency gains are possible, but appealing to 
theory that does not take into account model building can compromise inference. These general observations 
underscore the need for the large-scale, comprehensive study of the use of available model selection methods 
in this context and the accompanying development of methods for "corrected" inference in the next sub-aim we 
propose. Accordingly, our first step in developing guidance and recommendations on implementing the semi
parametric covariate adjustment methods in cancer clinical trials will be an extensive investigation of model 
selection techniques in this context. Because of the need to consider numerous factors that may impact per
formance, as detailed below, such a study, which is an essential step toward promoting use of these methods, 
will of necessity be empirical. A study of this breadth would be difficult to carry out without access to extensive 
programming and computational resources and varied expertise. The Program Project is the ideal and perhaps 
only setting in which to conduct an investigation of this scope. 

Assume that, for each g = 1,2, there is a set of functions of the elements of X , denoted Xjg, such that 
the true EiY\X,Z.= g) is a function of X only through Xjg-, thus, e.g., in a linear model EiY\X,Z = g) = 
qgiX,Cg), a number of the true elements of Cp would be zero, corresponding to functions of X that are not 
"important." Most (parametric) model selection methods, make an assumption on the form of qg, e.g., that it is 
linear in terms involving elements of X such as linear, quadratic, and first-order interaction effects, and then 
seek to include the "important" subset of these while not "over-including" terms that are unnecessary; ideally, 
the resulting model would include only Xjg. The extent to which these goals are met along with how well 
error of prediction of outcomes by resulting models is controlled are the usual criteria by which the methods 
are evaluated. It is important to recognize, however, that the treatment-specific models to be developed in 
our context are of little interest in their own right; their sole function is to enhance efficiency of the estimated 
treatment effect. Intuitively, as noted by Zhang et al. (2008) above, models that yield predictions at each X i 
that get as close as possible to the truth should correspond to the greatest increases in efficiency Whether or 
not they achieve the best performance in terms of identifying Xjg accurately may or may not be critical. 

We will consider a number of model selection methods; given our focus on providing guidance for practice, 
we will include but not limit to techniques for which software is available or that are othenwise convenient to 
implement, in order to promote the widest application. Traditional methods where a fixed tuning constant is 
employed, such as forward, backward, and stepwise selection, are widely available in software such as the re
gression procedures in SAS and the leaps package in R, and we will Include them in their role as "off-the-shelf" 
methods favored by many practitioners. We conjecture that methods that are tuned adaptively may lead to better 
performance; accordingly, we will consider in addition several such methods. The LASSO, the adaptive LASSO, 
and SCAD, cited in Section 3.1, are shrinkage methods involving penalizing the least squares or other objective 
function. The LASSO is similar to ridge regression but involves an Li rather than L2 penalty; in implementation, 
the tuning constant, the penalty parameter, is chosen via a criterion such as cross-validation, generalized cross-
validation, or inspection of information criteria such as the Akaike (AlC) or Bayesian (BIC) criteria. In contrast to 
traditional methods, where selection of variables is discrete, selection in the LASSO is continuous, and hence 
may be more stable; moreover, it is computationally feasible even with a large number of covariates. However, 
a purported drawback is that the LASSO does not possess the so-called "oracle property," meaning in linear 
regression that it can correctly select non-zero coefficients of predictors with probability converging to 1 and 
that the estimators of these coefficients are asymptotically normal with the same means and covariance matrix 
that they would have if their status had been known in advance. Other penalized methods, such as SCAD, do 
possess the oracle property (Fan and Li, 2001). However, the objective function is not convex and hence it is 
more difficult to compute; an R package is available. The adaptive LASSO proposed by Zou (2006) is similar 
to the LASSO but uses a weighted L] penalty with weights determined by an initial estimator of the regression 
parameter, and Zou (2006) has shown that the resulting estimator has the oracle property 

An alternative approach to tuning is the false selection rate (FSR) methods of Wu et al. (2007) and Boos 
et al. (2008). FSR is an approach to estimate the tuning constant of any model selection method, such as 
the "Q to enter" of fonward selection, so that the proportion of "unimportant" covariates for predicting outcome 
that enter the selected model is on average equal to a pre-specified small value, such as 0.05. When used with 

PHS 398/2590 (Rev. 11/07) Page 285 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

fonward selection to estimate "a to enter," FSR is a type of adaptive False Discovery Rate method (Benjamini and 
Hochberg, 2000) with intuitive appeal, leading to parsimonious models with good prediction error performance. 
The original version of FSR proposed by Wu et al. (2007) involves adding simulated noise variables to the real 
X , monitoring when they enter a forward selection sequence, and using this information to tune the procedure, 
and hence can be time-consuming to compute. Boos et al. (2008) develop a "fast" approximation to FSR that 
does not require simulation and is hence easy to compute. During the project period, software for all-purpose 
implementation of Fast FSR in the context here will be developed. 

In practice, all of the foregoing methods yield a model in which some predictors in the original set based 
on X are eliminated. Breiman (1996ab) has argued that some model selection procedures can result in very 
different models under slight perturbations of the data. To improve stability, his proposal of bagging (bootstrap 
aggregation) essentially averages models selected by any model selection strategy over bootstrap data sets. 
That is, in our context, assuming a linear model for treatment g, for the 6th bootstrap data set, b = l , . . . ,B, one 
would draw n pairs from (Yj.Xj), { i -. Zi = g}, and run the variable selection method to obtain a model con
taining selected predictors Xig^b, with corresponding estimated regression parameter Cg,6 (with some elements 

zero corresponding to unselected variables). The final model is found by using the average Cg ^ B~^ J2b=i ĝ.b-
Buhlmann and Yu (2002) show that bagging typically yields a more biased estimator for Cg than other methods 
but can yield improved prediction error, and Boos et al. (2008) present simulations showing that bagging Fast 
FSR works quite well in this regard. Because good predictions are so critical to efficiency gains for our covariate 
adjustment methods, we will consider bagging model selection techniques in our studies. Further impetus for 
studying bagging in the context of inference on the treatment effect is discussed below. 

During the project period, we will study the foregoing model selection methods for use with the semipara
metric covariate adjustment methods discussed above as well as the extension of these in the case of MAR 
drop-out discussed in the first sub-aim of Aim 2. We will also consider, as the current-practice competitor, stan
dard adjustment methods such as ANCOVA with covariates and model forms specified a priori, as would be 
dictated by regulatory policy In order that our study yield wide-ranging guidance, it will involve assessing per
formance of all of the methods over combinations of several key factors. Although we will begin by considering 
the difference of fc = 2 treatment means for a continuous outcome, as above, we will study binary outcomes, 
censored time-to-event outcomes, and longitudinal outcomes, so that the parameter of interest, (3, will have a 
different nature (e.g., log odds ratio, log hazard ratio) depending on the outcome. Note from the previous sec
tion that, in some more complex settings, rather than modeling treatment-specific regressions of the outcome 
itself on covariates, modeling will involve the "pseudo-outcome" m(y,Z,0), where, as in Zhang et al. (2008), 
6 is replaced by a preliminary estimate. A key factor will be sample size; we will consider small, moderate, 
and large studies reflecting those used in cancer clinical trials. The nature of the covariates is likely to play an 
important role. We will consider situations of only a few auxiliary baseline covariates to those involving high-
dimensional information, including genomic information and the so-called "p » n" case. Binary, more general 
categorical, and continuous covariates will be considered in combination, and the role of extent and nature 
of associations (e.g., correlation) among covariates and between covariates and outcomes will be systemati
cally explored. Whether or not the true treatment-specific regressions are sparse in or involve combinations of 
several baseline covariates will be varied to allow evaluation of the importance of this issue in determining an 
appropriate selection strategy. The form of the true and assumed models is another important factor; linear and 
nonlinear models will be considered for both. True relationships will likely be nonlinear, as for binary outcomes, 
for example, and there is a potential that assumed models may be misspecified. A final important factor will be 
the approach for choosing the tuning constants for the model selection methods, with emphasis on the balance 
between model sparsity and variable selection consistency 

To develop our plan for this large-scale effort, we will first review data sets compiled by Core B as well as 
other cancer studies, to establish realistic settings and ranges for all of these factors. Settings representing "ex: 
treme" and "normal" ranges, as well as those for other factors that may emerge as important to study following 
this review, will be determined, and an initial set of "screening" simulations will be carried out using experimental 
design principles to gain insight into which regions of the factor space are associated with the most dramatic 
efficiency disparities among selection methods and possibly deleterious effects on inference on /3 due to both 
estimation and model selection. Subsequent simulations will be designed focusing on combinations and set
tings of factors identified as the most fruittui to study We will compile the findings into a report providing detailed 
recommendations on choice and implementation of model selection techniques for covariate adjustment. 
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Inference Correcting for Model Selection. Identifying model selection methods that lead to the greatest gains 
in efficiency via covariate adjustment under situations likely to be encountered in cancer clinical trials is our main 
objective. However, as in our simulation above, such gains can be an accompanied by compromised inference 
on (3 based on standard, first-order asymptotic theory Although the theory dictates that there is no effect 
(to first-order) of estimation of the parameters Cg nor of model selection in the postulated treatment-specific 
regression models, so that the expressions for standard errors do not involve terms explicitly taking into account 
uncertainty associated with these tasks, this is evidently optimistic. Undercoverage of confidence intervals is 
apparently due in part to estimated standard errors for ft for all of the FOR, ALAS, and TRUE cases that are 
too small. Based on our experience, we anticipate that our comprehensive study in sub-aim 1 will demonstrate 
this phenomenon more generally under configurations involving smaller n, suggesting a second-order effect 
of estimation of Cg and model selection not captured by the usual theory We will thus study approaches to 
understanding and "correcting" for these effects. 

A straightfonward, brute-force approach to gaining insight on this effect is to carry out second-order calcu
lations to deduce the effect of estimation of Cg (p x l)> say, on the sampling variance of the estimator for 13 
(e.g., Carroll, Wu, and Ruppert, 1988). To illustrate in a simple case, we focus on estimation of the single mean 
ft = EiY\Z = 1) in the difference of two treatment means model above. Letting n = ni and A = /(Z = 1), it 
is straightfonward to show in the case that the model gi(X,Ci) is correctly specified and fitted by least squares, 

yielding Ci, that var[ni/2{^i(Ci) - ft}] = var{n-V2Er=iC/i-t-n-V^^^^j (^^^^ V ,̂̂ .)(Er=i W û)} + oin'^), 
where we emphasize dependence of ft onCi; Ui ̂  AiYi/n - {iAi-n)/n}qiiXi,Ci) - Pi] Vij isthejth element 
ofG-iAigî (X,Ci){yi-gi(X,Ci)}/7r,gic(X,Ci) = a/aCi{gi(X,Ci)}.andG = £to,ax,Ci)qic(^,Ci)'}:and 
Wij = {(Ai - 7r)/7r}9î (Jf ,Ci). If we assume var(y|^ = 1) = cr̂  and var(F|X,Z = 1) = o-̂ es' say assumed 
constant over X, then it is straightfonward to show using combinatorial arguments that var[n^/^{ft (Ci) - ft}] = 
var([/) -f n-Hrace{EiVV')EiWW')} + oin~^). Under our assumptions, E i W ) = al^fi-^/n and EiWW) = 
(1 - n)G/n, SO that the trace in this expression is equal to a^^ îl - n)p/n'^; also, var([/) = o-̂  -f (Tres(l - ^)A-
Letting p̂  = (CT̂  - a^eJ/o-^, we thus obtain 

var[ni/2{^i(Ci) - ft}] = cr l̂l + (1 - p2){(i _ 7r)/7r + (p/n)(l - Tr)^^}] + o(n-i). 

This expression makes clear that there is a trade-off between gain of efficiency effected by increasing p̂  through 
using larger models (p) versus the penalty involved In increasing p. This result, although in an admittedly 
special case, may explain the simulations above. Generalization of these calculations is possible and will be 
investigated. These second-order results may be useful for correcting the first-order asymptotic variance for any 
fixed treatment-specific regression model and may be helpful in choosing among a set of competing models. 

An alternative practical approach is to use bootstrap techniques to effect a correction. Although it has 
been argued Leeb and Potscher (2005, 2006, 2008) that use of bootstrap methods after model selection may 
be problematic, we conjecture that use of a nonparametric bootstrap-f approach, which is based on a pivotal 
quantity and has been shown to be second-order correct in regular problems (Hall, 1986), may be fruitful: 
forming pivotal quantities based on the first-order asymptotic variance for ̂  may not yield exact pivotal statistics, 
but these may be close enough to pivotal to yield desirable results. Tsiatis et al. (2008) demonstrate how a 
"principled analysis" may be conducted using bootstrap methods. Yet another strategy will be to adapt the 
methods of Shen, Huang, and Ye (2004) for correcting inference on regression parameters in the selected 
models themselves to our setting. Because of the asymptotic equivalence of the semiparametric adjustment 
methods to ANCOVA methods in certain cases (Tsiatis et al., 2008), we expect that this will be straighffonward. 

During the project period, we will derive general second-order results and investigate all of these methods 
via extensive empirical study 
Methods for Handling Missing Covariates. All approaches for covariate adjustment, including the semi
parametric methods we advocate, assume that all baseline auxiliary covariates potentially useful for enhancing 
efficiency are recorded on all n subjects in the trial. Missing such information is commonplace, where covariates 
are typically missing intermittently in different patterns across subjects with incomplete information. This reality 
leads many analysts and policy-makers to eschew adjusted analyses in favor of standard unadjusted ones that 
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do not use covariate information. Alternatively, an ad hoc and clearly problematic approach is to base the anal
ysis only on the subjects with complete covariate data, which has the potential to lead to biased inferences if 
the missingness is not completely at random (MCAR). Even under MCAR, this approach is inefficient and could 
be grossly so, as subjects with even one missing covariate would be eliminated. Another approach is to limit 
the analysis to consideration of only the subset of covariates for which all subjects have complete data; which 
may exclude important predictors of outcome from which gains of efficiency might arise. 

Missing covariates would appear at first glance to present a challenge for practical use of the semiparametric 
covariate adjustment methods, including the model selection efforts. We propose to develop and study several 
approaches to address this issue during the project period. 

An advantageous feature of the semiparametric theory underlying the adjustment methods is that consid
eration of the assumed class of joint probability distributions for iY,X, Z) under which it is developed it makes 
explicit that yet another tactic for handling missing covariates has a formal rationale. One may adopt the broader 
perspective that "X" represents not necessarily a vector of specific covariates available at baseline but instead 
the more general "information" available at baseline, which includes the fact itself that some covariates are 
missing for some subjects according to an observed pattern. That is, we may view X as the collection of all 
such observed information, and redefine X accordingly For example, we could take X to include indicators 
of whether or not particular variables are missing in addition to their values if they are not; that is, for the 
fcth potentially observable baseline covariate Xk, X would include Afc = l iXk is observed) and AkXk. The 
semiparametric theory that leads to the covariate adjustment methods is unaffected by this redefinition of'X; 
randomization still ensures ZJLX under the redefinition. Consequently, the analyst is justified in defining X 
in this way and incorporating missingness patterns and indicators themselves in model-building. Indeed, that 
missingness of baseline information itself may be associated with prognosis supports this view. We will study 
the performance of this approach under a range of missingness mechanisms, patterns, and severity 

Under the foregoing rationale, making an assumption on, for example, on the nature the mechanism of the 
missingness, e.g., that it is MAR will have no implications for form of the adjustment methods, and hence offer 
no opportunity to take account of the missingness in a way that could enhance efficiency over the foregoing 
approach. In order to take the problem outside this class of estimators for (3 requires that the underlying 
probability model also include a specific assumption on the nature of the baseline covariates, e.g., that they 
are MAR and arise according to a specific model. Model selection to develop the treatment-specific regression 
models would then incorporate such assumptions. Approaches to model selection in a likelihood framework 
in this spirit have been proposed (e.g., Cavanaugh and Shumway, 1998; Hens and Molenberghs, 2006). We 
propose alternative approaches based on making "working" assumptions on the covariates (and possibly the 
outcome) and modern shrinkage methods (LASSO, adaptive LASSO) and Fast FSR that, while somewhat ad 
hoc, can exploit existing methods arid software and have practical appeal. 

For illustration, consider the admittedly restrictive working assumption that X is multivariate normal. A 
simple, accessible approach is to fit this parametric model via the EM algorithm and impute missing covariates 
via best linear unbiased predictors; the mix package in R is available for this purpose. Any model selection 
strategy may then be used with the "filled in" data set and the predicted values substituted in the semiparametric 
estimator for /3; we will consider the LASSO, adaptive LASSO, and Fast FSR with fonvard selection. Taking 
adequate account of the variability due to imputation, along with possible effects of model selection, is then 
necessary for inference on j3. One obvious approach is to use multiple imputation (Rubin, 1987), with standard 
errors for the estimator for /3 possibly corrected for model selection. Alternatively, model selection could be 
based on bagging; as discussed above, the effects of model selection may be less pronounced with this method. 

In a more realistic setting with continuous and categorical covariates, the strategy of factorizing the joint 
distribution and modeling the components for the categorical subset and the continuous given the categorical 
could be used (Little and Schluchter, 1985; Schafer, 1997, Chapter 9), also implement in the R package mix. 

A second approach involves extending the working assumption to the joint distribution of Y and X . Of 
course, the semiparametric model underlying the adjustment methods does not require an assumption on the 
distribution of Y,X given Z, indeed, that is part of the appeal; thus, such a "working" assumption would be 
made only to facilitate the missing covariate problem, and sensitivity to it will need to be evaluated. To illustrate, 
again consider the restrictive case where the working joint distribution assumption is multivariate normal. Fitting 
this parametric model via the EM algorithm as above would yield estimated treatment-specific regression rela
tionship for Y given all of X . To carry out model selection to get closer to the "true" relationship, armed with the 
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estimated coefficients, one could invoke the least squares approximation (LSA) to the adaptive LASSO (Wang 
and Leng, 2007). This methods facilitates model selection for virtually any model by working with estimated co
efficients of a "full" model rather than the model itself; in our context, the coefficients of "unimportant" covariates 
would be "zeroed out," yielding the final model to be substituted in the semiparametric adjusted treatment effect 
estimator. This idea could in principle be extended to working models using the approaches above. 

The foregoing approaches, while practically appealing, have obvious limitations. E.g., the LSA adaptive 
LASSO approach limits the regression relationships that can be considered. An alternative approach would 
be to consider as a starting point a semiparametric model that incorporates missingness mechanisms and 
assumptions on the covariates; e.g., that they arise from a specific distribution. Semiparametric theory could 
then be used to characterize the class of all estimators under this model, similar to Zhang et al. (2008). 

During the project period, we will study all the performance of of the all of these approaches via empirical 
studies in scenarios in sub-aim 1 with the additional feature of covariate missingness, where we will base the 
missingness patterns and covariate assumptions to be considered on a review of data from Core B. The extent 
to which "going to the trouble" to adopt additional assumptions on the covariates will be evaluated; our conjec
ture is that, unless very strong parametric assumptions are justifiably made, possible efficiency gains over the 
current semiparametric approach with the redefinition of X discussed above will be negligible. Robustness of 
the methods that rely on assumptions on X to departures from these will be systematically explored. 

In all of these sub-aims, we will apply the methods to re-analyze cancer clinical trials compiled by Core B to 
assess the extent to which the proposed methods would have strengthened or altered primary inferences. 
Adjustment Methods for Partially Randomized Trials. Consider a two-arm partially randomized trial with 
univariate outcome Y, where a subject recruited to the study is asked whether or not s/he is willing to be 
randomized. Denote those unwilling by P = 1; such a subject is assigned to his/her preferred treatment. Willing 
subjects have P = 0 and are randomized. The observed data are thus iid (Yi, X i , Zi,Pi),i = l , . . . ,n , where X 
is as above, and Zi is observed treatment assignment, which, for ease of exposition we now denote by Z = 0,1, 
made by preference or randomized as Pj = l or Pj = 0, with randomization probability P(Z = i|p = o) = vr. 
To make explicit our assumptions, we exploit ideas from causal inference and define Y/°^ and Y/^^ as the 
potential outcomes (e.g., Lunceford and Davidian, 2004) for subject i; i.e., the outcomes s/he would exhibit 
were s/he to receive each treatment 0,1. The goal is to estimate £^(Y( '̂) - EiY^^^), that is, the difference 
in population means were the entire population of patients to receive each treatment. We make the usual 
assumption (e.g., Rubin, 1974; Robins, Hernan, and Brumback, 2000) Yj = Y/^^Z, -\- Y } ° \ I - Zi) that the 
outcome actually observed for subject i is his/her potential outcome under the treatment that s/he actually 
received. This implies that outcome is the same regardless of how treatment was assigned (preference or 
randomization), which should be reasonable for objective treatments such as chemotherapeutic agents and 
vaccines, as opposed to behavioral interventions such as those studied by Long, Little, and Lin (2008). We 
also assume that iXi,Y}°\Y}^^)JlZi\Pi = 0; this is of course true for all subjects in a fully randomized trial, 
for which it is well-known that EiY\Z = 1) - EiY\Z = 0) = E i Y ^ ) _ £'(y(o)), so that inference has the 
desired causal interpretation. Note that our focus on this overall population quantity is different trom that of 
Long et al. (2008), who consider treatment effect with the preference group. For the preference group, assume 
(Y/°^ , Y/^^)JlZi|Xj, Pj = 1, the strong ignorability or no unmeasured confounders assumption. Which, similar to 
MAR, implies that X captures all information necessary to explain treatment preference among these subjects. 
Such an assumption is necessary to make progress and is implicit in the competing empirical likelihood methods 
presented in Project 2, Aim 3. Whether or not it is plausible must be critically assessed, and we will investigate 
sensitivity to its violation during the project period. 

Under this set-up, we assume P(Z = 1|X,P) = eiX,P,n,^) = n^^'^UcpiXi,^)}'", where ipiX,P,^) is a 
propensity score (e.g., Lunceford and Davidian, 2004) model for the probability of receiving treatment 1 among 
those with a preference, which may be fitted to the data from {i : Pj = 1} by maximum likelihood techniques 
for binary regression, yielding ^, and n may be estimated by the sample proportion 7i= among {i : Pj = 0} 
randomized to treatment 1. The proposed estimator for the treatment mean difference has the form 

r^- 'E 
ZiYi (1 - Zi)Yi 

eiXi,Pi,Tf,$) 1-e(Xj,Pj,7f,4) n,$) " \ eiXi,Pi,7i,i) \-e{Xi,P„<ii , i) J 
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in practice, EiY\X,P,Z = g), g = 0,1 would be replaced by postulated regression models specific to each 
of the four combinations of preference and treatment. Among randomized subjects (P = 0), this estimator 
has the form of (5.1); for jDreference subjects (P = 1), it has the form of the most efficient estimator for the 
treatment difference under the usual causal inference assumptions (Lunceford and Davidian, 2004, equation 
(9)). Thus, the estimator combines adjustment both to enhance efficiency and account for the selection bias in 
the preference group, as required. It follows from standard theory that the estimator should be consistent and 
asymptotically normal and that sandwich standard errors may be derived (Stefanski and Boos, 2002). 

The empirical likelihood approach in Project 1, Aim 3, has the advantage of simplicity of implementation, as it 
involves no modeling; however, this is at the expense of potential bias. Both estimators require a no unmeasured 
confounders assumption, but that proposed here takes complete account of the selection bias through models 
for the full probability distribution of treatment preference, while the empirical likelihood methods attempt to 
achieve this approximately by constraining the moments of the confounding covariates in these models to be 
equal in each treatment for the preference group. This may eliminate some of the selection bias, but cannot 
resolve it all. During the project period, we will compare these approaches in extensive simulation studies to 
develop guidelines outlining the sample sizes and situations where the more complex estimator here is required. 

During the project period, we will extend this approach to the general setting of fc > 2 treatments and 
more complex estimands and outcomes (e.g., censored survival), and investigate the role of model selection 
for the required models. We will also carry out a comprehensive evaluation of performance under sample 
sizes and conditions consistent with these trials in cancer research, and investigate consequences of model 
misspecification and departures from the no unmeasured confounders assumption. 

5.2 Aim 2: Methods for Primary and Longitudinal Analyses In the Presence of Drop-out 
Covariate Adjustment Methods Under MAR Drop-Out. Consider a fully randomized trial as in Aim 1. For 
simplicity, restrict attention to fc = 2 treatments, and let Y denote outcome and Z = 0,1 denote assignment to 
the two treatments, where P(Z = l) = TT. AS before, we are interested in infererTce on a parameter (3 involved 
in treatment comparisons in a model describing aspects of the conditional distribution of Y given Z depending 
on e. We now allow the possibility that some subjects drop out prior to the time T at which Y is to be recorded, 
which we refer to as the lag time, so that the outcome is time-lagged or a marked point process (Huang and 
Louis, 19998; Anstrom and Tsiatis, 2001). If the outcome of interest is survival time, then Y = T, but we allow 
the possibility that T might be time to ascertainment of some other outcome Y, which could be the same for 
all subjects or vary The time lag T itself may be unobserved if a subject drops out prior to the recording of the 
response. We denote by C the potential drop-out time. Under these considerations, the observed data from the 
trial are lid Oi = {t/j, Ai,AjYj,Xj(C/i),Zj}, i = l , . . . ,n , where Ui = min(Ti,Ci) and Aj = /(Tj < d ) . Thus, Yj 
is observed only if Aj = l . XiiUi) contains all auxiliary covariate information bbserved from baseline until drop
out or ascertainrnent of outcome, which we represent as XiiUi) = {Xii,X2iiUi)}, where X i , is a vector of 
baseline auxiliary covariates for which randomization guarantees ZALXi, and X2iiUi) = {X2iiu),0 < u < U i } 
is the observed post-randomization covariate history observed on i up to time Ui. 

If there were no drop-out, then the "full data" that could be observed are Fi - {Tj, YJ,XJ(TJ),ZJ}, i = 
l , . . . ,n . Let Xci'd'lT > u,F) be the conditional hazard of dropping out given the full data, which includes 
information subsequent to drop-out We operationalize the MAR assumption as, in obvious notation, AcC ÎT > 
u, F) = Xc{u\T > u,Xiu), Z\, i.e., the probability of dropping out at time u, given that one has not achieved the 
lag time or yet dropped out, depends only on information that is observed up to u and not on future information. 

Let miY,Z;9) be an estimating function for the unadjusted analysis if one had full data, and, assuming 
XcW\T > u,Xiu),Z} is known for the moment, let Kc{ t ,X i t ) ,Z} = exp{- J^ Xc{u\T > u,Xiu),Z}du] be 
the conditional survival function for drop-out. Let dMc{u, X(u), Z} be the increment of the martingale process 
dNciu) - Xc{u\T > u,Xiu),Z}Aiu)du, where dNciu) is the increment of the counting process for drop-out, 
i.e., Nciu) = /(t/ <u ,A = 0), and Aiu) = /( [ / > u) is the "at risk" process. Then, from the theory of Robins 
and Rotnitzky (1992) and Tsiatis (2006, sec. 9.2), it estimating functions for (3 based on O should have the form 

- ^ ^ ^ ^ ^ ^ + (Z-n)aiX,).^ jdMc{u,Xiu),Z}h{u,Xiu),Z), (5.2) 

where a(Xi) and h{u,Xiu),Z) are arbitrary functions. The drop-out survival function Kc{U,XiU),Z) will 
not be known in practice and may be modeled, e.g., a stratified (by treatment) proportional hazards model, 
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and the fitted model substituted in (5.2). If this model is correct, the estimator for fi be consistent; moreover, 
following the theory, the optimal a(Xi) and b{u,Xiu),Z] leading to the most efficient estimator are a(Xi) = 
E{iZ - 7r)m(Y, Z; 0)|Xi}/{7r/(l - TT)} and 6{u, X(ul , Z] = E{miY, Z;9)\T > u, Xiu),Z}/Kc{u,X(u), Z}. In 
practice, as before, one would postulate (parametric) models for these conditional expectations, In the special 
case of the difference of two treatment means ft in Aim 1, one may use (5.2) to estimate the two treatment 
means separately and form the difference; in this case, letting p.g - EiY\Z = g), g = o, 1, the optimal estimator 
for iig should take the form 

AiZfil-Zi)'-sYi , , ,,„,^ ^ . ^ , ^ , ^ rr.^yg,, ^M-p [dMc{u,X{u],Zi]E{Y\Ti>u,X{u),Z] 

' g [ K J U i : ^ ^ ^ + ^ - ' ^ ' ^ ' ^ - ^)^(^i^- '^^+' '^' - '^^'" I Kc{u,X(u),Z} 

During the project period, we will use semiparametric theory to validate rigorously the above results, and we 
will use the results in Tsiatis (2006, sec. 9.1) to derive standard error formulae for estimators for fi found using 
(5.2). We will derive the form of estimators in the particular case where the outcome is a possibly censored 
time-to-event. Consistency of treatment effect estimator requires the model Kc to be correct; to relax this, we 
will derive a doubly robust version of the methods via a continuous time version of the methods in the next 
sub-aim. We will carry out extensive simulations to evaluate performance of the methods under sample sizes 
and scenarios reflecting those in cancer clinical trials from Core B and elsewhere, and apply the methods to 
studies involving drop-out. Studies of sensitivity to modeling assumptions will be conducted. 
Doubly Robust Methods for Longitudinal Analysis Under MAR Dropout. The development is related to 
that in the previous sub-aim; here, we consider specifically the case of a longitudinal study in a cancer trial 
where a measure such as QOL score is to be recorded at pre-specified times to, t i , . . . , iM+i > yielding observed 
outcomes YQ, Y i , . . . , YM+I ; we include the possibility of measurement at baseline (time io = 0) as in El694, but 
this is not necessary If a subject drops out between times tj and tj+i, only (YQ, ..., Yj) would be observed, and 
iYj+i,. . . , YM+I ) would be missing. Let Lo be baseline covariates, and suppose that X^, j = 0,... ,M-t-l , is the 
vector of information collected at time t j , which includes Yj but also may include auxiliary variables. Let R be 
the index of the last time at which information is available prior to drop-out, so R = j means drop-put occurred 
between tj and tj+i and R = M-+-1 that drop-out did not occur. Write L j = (LQ, • • •, Lj) to denote all information 
collected through t j , and write L = L M + I - The observed data can be summarized by iid (Pj,L/jJ, i = l , . . . ,n. 
The MAR assumption may be formalized as PiR = j \L) = nj(Lj), j = 0, . . . ,M; i.e., the probability of dropping 
out between tj and t j^i conditional on all intended information (depends only on the data available through t j 
and not on data not observed under drop-out. PiR = M-\-l\L) = nu-^iiL), the probability of not dropping out, 
in fact depends only on L M because n^-^iiL) == 1 - E^o ^ j (^ j ) ' and we write nM-^iiLm). 

Sup£Ose we are interested in a parameter fi in some statistical model for the full, intended data, and suppose 
that miL_j3) is an unbiased estimating function such that one would estimate fi based on full data by solving 
Er=i"^(-^i'/3) = 0. For instance, if interest focused on the mean change in QOL from baseline to ^M+ I , 
/? = EiYM+i - Yo), which would be estimated by solving E"=i(^M+i,i - Yo,i - ft = 0. Robins et al. (2005) 
showed that, when the drop-out probabilities are known and MAR holds, all consistent and asymptotically 
normal estimators for fi are solutions to estimating equations of the form 

E 
1=1 

/ ( i ^ ^ M + lM£j,/3) ^ ^ {IjRj = j) - XjjLjMRj > j)} ĵ ĵ̂ ^^) 
7rM+i(Li) . „ KjiLj^i) 

0, (5.3) 

wherever j = 0, ..._^M. XjiLj) = PiR = j\R > j,Lj), KjiLj)_= PiR > j\Lj) = Ui=A^->^jiLe)}, nu+iiL) = 
nm-i-iiLu) = KmiLM); and fjiLj) are arbitrary functions of Lj. 

The optimal choices f j iL j ) , j = 0,..., M, those leading to the estimator of fi solving (5.3) with smallest 
asymptotic variance, are f j iL j ) = E{miL,fio)\Lj}, where fio is the true value of fi. In practice, we know neither 
the drop-out mechanism, summarized by the discrete hazards XjiLj), j = 0,. . . ,M, nor these conditional 
expectations, and the usual strategy is to postulate parametric models. For the discrete hazards, we write 
XjiLj,ip), j = 0, . . . ,M, depending on a parameter I/J; typically, these would be binary (e.g., logistic) regression 
models, and V would be estimated by maximum likelihood, so maximizing l\f^oIli:Ri>j{^ji^j,i>'^)y^'^^^^{^~ 
Aj(Lj,i,V')}^^^'^''^ to obtain ^ . Similarly, in a way analogous to the approach in Zhang et al. (2008), models 
for the conditional expectations of the form f j {L j , i ) , j = 0, . . . ,M, depending on a parameter ^, could be 
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developed and ^ estimated by some estimator ^; we discuss estimation of ^ in detail shortly Substituting in 
(5.3), one would thus solve 

E IiRi = M + l)miLi,fi) A {liR, = j) - XjiLj,i,^)IiRi > j)} - ^ 
= 0. (5.4) 

KMiLi,tp) fr'o KjiLj^i,rp) 

It may be shown that the estimator for fi obtained by solving (5.4) is doubly robust. That is, it wil[be consistent 
and asymptotically normal if eitherXhe model for drop-out is correctly specified, P(P = j \ R > j , L j ) - XjiLj,tp) 
for all J = 0,..., M; or if the model for the conditional expectations is correctly specified, i.e., £'{m(L, fio)\Lj} = 
f j (L j , i ) for all j = 0,... ,M and some C in the parameter space. As noted in Section 3.2, the doubly robustness 
property is desirable because only one set of models need be correctly specified to ensure consistency of the 
resulting estimator for fi. In the present context, this implies that the analyst need only do a good job at modeling 
the drop-out mechanism or the conditional expectations to obtain reliable inferences; in a complex setting such 
as this, this feature is especially appealing. 

In (5.4), tjj is estimated by the maximum likelihood estimator (MLE). However, how best to estimate ^ is not 
clear. For the double robustness property to hold, | must converge to the value ^Q such that E{miL,fio)\Lj} = 
f j iLj,^o)' j - 0, . . . ,M, regardless of whether or not the drop-out probabilities are correctly specified, Such 
estimators may be obtained as solutions to estimating equations based on the estimating function 

M 

^ / ( i l > j)qjiLj){fj+riLj+i,0 - f j iL j ,^ ] , (5.5) 
j = 0 

where qjiLj) is a vector of functions of L j for each j of dimension the same as ̂ , and / M + I ( L , ^ ) = m(L,fi). 
Bang and Robins (2000) suggested such an estimator for $,. 

As recounted in Sections 3.2 and 4.2, usual doubly robust estimators can perform poorly, as shown in 
simulations by Kang and Schafer (2007) in the case of estimation of the mean of a single outcome, where the 
outcome_may be MAR, which can be deduced as a special case of the drop-out set-up here by taking M = 0, 
so that L = Lo\ miL,0) = YQ - /3, with 0 the unconditional mean of Yo; and foiLo) = £(Yo|Lo) - p, so that 
^ is the parameter in a regression model for EiYo\Lo). As noted in Section 4.2, Kang and Schafer considered 
the doubly robust estimator with ^ estirnated by least squares based on the complete cases, corresponding to 
taking qoiLo) in (5.5) equal to d/d\'{foiLo,^)}. Their results translate iji the current context to suggesting that, if 
the drop-out model and models for the conditional expectations E{miL,fio)\Lj} are misspecified even slightly, 
then the resulting estimator for fi may be unstable, especially so when the probabilities KMiLi,'^) are very 
small for some i. In Cao et al. (2009), in the case of a single mean (M = 0 as above), we have shown that the 
performance of doubly robust estimators for the mean p is highly dependent on how the parameters ̂  in a model 
for E(Yo|Lo) are estimated. We demonstrate that, if we consider the class of doubly robust estimators indexed 
by 4, then there exists an optimal estimator for p even if the regression model foiLo,i) is misspecified, and 
we derive an estimator for (, that leads to this optimal estimator by deducing an appropriate, alternative choice 
of qoiLo) in (5.5). The resulting estimator for p is doubly robust and optimal in that it has smallest asymptotic 
variance among all doubly robust estimators even if the regression model foiLo, 0 is misspecified. Importantly 
it does not exhibit the unstable performance of standard doubly robust estimators using least squares based on 
the complete cases to estimate 4 as above, and analytical arguments are presented supporting why this so. 

In the considerably more complicated setting here of a longitudinal study with drop-out, we believe that it 
should be possible to derive similar results, thus providing analysts with for analysis of longitudinal studies that 
both have the appealing double robustness property and offer stable performance and reliable performance. 
We conjecture that the optimal estimator (in the sense described above for the simple case of M = 0) for $, will 

be,oundby.a.ns ^^_ ^ _a,..,(r,Wam(r,.ff l /K,(Z,) . ^ ^̂  ^^ ,^^, 
KtiLj) 

(5.6) assumes that the drop-out model defined by the discrete hazards is known. Similar to Cao et al. (2009), 
we will find the optimal qjiLj) when these hazards are modeled in terms of tp and %p is estimated by the MLE. 

During the project period, we will verify that (5.6) leads to the optimal doubly robust estimator for fi, and we 
will derive its large sample properties. We will develop feasible computational algorithms to combine estimation 
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of V in the drop-out model and solution of (5.5) with the optimal choice (5.6) for estimation of ^ with solution 
of (5.4) to obtain the optimal doubly robust estimator for fi. We will carry out extensive simulations based on 
longitudinal studies In cancer clinical trials such as El 694, El 684, CALGB 90401, CALGB 49907, and those 
compiled by Core B to evaluate the performance of the methods. This will also involve study of the impact 
of different severity and types of misspecification of both sets of models, and especially the case of "slight" 
misspecification of both, in order to confirm that the choice (5.6) achieves the desired performance. Based on 
these results, similar to Cao et al. (2009), we will derive an analytical argument to explain this behavior. 

5.3 Aim 3: Diagnostic Measures for Longitudinal and Joint Models in the Presence of Missing Data 
We outline three sub-aims. First, we will develop new sensitivity methods for assessing minor perturbations to 
general parametric and semiparametric models. As an initial step toward methods for joint models, we will use 
these results to develop diagnostic tools for random effects models for longitudinal data with possibly missing 
outcomes and/or covariates; we will then extend these to joint models for longitudinal and survival data under 
these conditions. For each sub-aim, we will first carry out methodological/theoretical development and iterate 
this with empirical studies based on simulated data with known ground truth to assess performance and validate 
relevance of the theory in practice. Application of the methods to data from the studies discussed in Section 3.3 
will then be undertaken to demonstrate the utility of the methods. The tools developed here will formally help 
clinicians to characterize the relationship between the longitudinal measure (e.g., QOL or immune response) 
and survival within each treatment arm as in ECOG 1694. 

General Methodology for Sensitivity Analysis. Let Dobs and Dmis be the observed data and the missing 
data, and Dcom = iDmis,Dobs) be the complete data. We develop a new geometric framework, the perturbation 
manifold, to measure each perturbation w in a perturbation set fi to statistical models with incomplete data, 
denoted by piDcom^d). The perturbation model J ^ = {piDcom;S,^) ; w e fi} has a natural geometrical 
structure. Because fi can be an infinite dimensional set, we must develop a manifold for the infinite dimensional 
space, which includes the finite dimensional manifold as a submanifold (Friedrich, 1991; Lang, 1999; Zhu et al., 
2007). Assume that C(^) :pc{w(t)} =p{jDco7n;0,'^(t)} is a differentiable function mappingfromt G I c Ktothe 
manifold M with Pc{w(0)} = piDcom\ 6, w), where I is an open interval covering 0. At each u>, there is a tangent 
space T u M o i M defined by T^At = [i;(a;) = d\ogpc{LJit)}/dt\t=o • -E{u(a;)} = 0 and i;(w) e L^iP) < oo], 
where L^(P) = {g : Jg'^dP < oo} is a Hilbert space. The inner product of any two tangent vectors ui(u)) 
and V2icj) in T^jM is defined as givi,v2)ioj) = £ ' {U I (W)D2(W)} . We can calculate the Levi-Civita connection, 
denoted by S/vu, and the geodesic on J i i , and then introduce the notion of exponential and logarithm maps 
to generalize the concept of moving "straight" in the direction of a tangent vector. In particular, an appropriate 
perturbation to any model corresponds to choosing the orthogonormal basis of T ^ M . 

We develop several global influence measures for quantifying the effects of perturbing piDcmn^O). Without 
loss of generality, let Pc('*'°) and pc(w) represent the unperturbed and perturbed complete-data distributions, 
respectively Let Cit) = pc{w(*)} : [-7,7] -» M be a smooth curve on M joining Pc(w°) and pdu) such that 
C(0) = Pcii^°) and C(l) = pdi^), where 7 > 1. Consider a smooth function of Interest /(u>) = / { P C ( W ) } : 
M ^ K for sensitivity analysis, which is often chosen to be a functional of the unperturbed and perturbed 
distributions (Cook, 1986; Zhu et al., 2007). We introduce a global influence measure along the smooth curve 
Cit) as Gl/,c(j)(w^w) = { / (w) - / (wO)}V{5c(w^w) }^ where Scii^'^,oj) is the length of the curve PC{W(S)} 

as s € [0,1]. Considering the geodesic joining Pc('*'°) and j)c(w), we can define an intrinsic global influence 
measure, denoted by IGI/(u>'^,a;). Moreover, we can extend these global influence measures to quantifying a 
set of perturbations a; 6 fii c fi to piDcom', 0) by using sup^g^^ IGI/(u;°, w). 

We develop first- and second-order local influence measures for quantifying effects of perturbing piDcom\ Q) 
by considering the local behavior of / {w( i ) } as i -> 0 along all possible smooth curves. Let /{u;(0)} and 
/{u>(0)} denote the first- and second-order derivatives of / {a;( i )} with respect to t evaluated at t = 0. We 
distinguish two cases: /{u>(0)} 7̂  0 for some smooth curves u i t ) and /{w(0)} = 0 for all smooth curves 
Ljit). If /{u;(0)} 7̂  0 holds for some (*)(t), introduce the first-order local influence measure as Fl/[t;]{u;(0)} = 
liint^oGI/,(7(£)W(0),w(t)} = \df\v\{u)iO))f Igiv,v){u}iO)), where df[v\ denotes the directional derivative of 

/ (w) in the direction o\ v e T ^ M . Fl/[i)]{u;(0)} is independent of specification of C(i). We use /{^(O)} to 
assess second-order local influence of w. However, for a general smooth curve u)(t) on M , /{w(0)} is not geo-
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metrically well-behaved (Lang, 1999; Zhu et al., 2007), thus we only consider the geodesic and define a second-
order influence measure in the direction v e Tf̂ ^̂ o)-/̂  as Sl/[v]{w(0)} = Hess(/)(u,t;){w(0)}/9(i;,i;){w(0)}, 
where Hess(/)(u,r){u)(0)} is a covariant (or Riemmanian) Hessian (Lang, 1999). 

We will apply these measures to sensitivity analysis in longitudinal and joint models with/without missing 
data as discussed below, examining various perturbation schemes to choose the appropriate ones. 
Methodology for Diagnostic Methods for Longitudinal Data. Consider a general random effects model 
for longitudinal outcome vectors Vi involving completely and partially observed baseline covariates Xi and Zi, 
random effects bi, and vector of missingness indicators r-j and define the associated n independent clusters 
Dcom = {di = ibi,Xi,Zi,ri,yi), i = l , . . . ,n}. Moreover, let Zm.i and Zo.i denote the missing and observed 
components of Zi, respectively Assume that the density for the ith cluster can be written pibi,Xi,Zi,ri,yi\7i) 
= piyi\xi,bi,Zi,r))pibi\r})pixi,Zi\r)) p(ri|yj,Xi,21,77), where r? denotes the vector Of unknown parameters. As 
an illustration, consider the simpler case where Dcom = {di = ibi,Xi,yi), i = l , . . . ,n ] , and assume that 
pibi,yi\xi,T]) = piyi\xi,bi,ri)pibi\ri). Consider two classes of perturbation schemes UJ to the longitudinal mod
els: The single-case perturbation scheme is defined by Y\"=iPibi,yi\xi,ri,uj) - YYl=,iPibi,yi\xi,r},uji), where 
u>i denotes the perturbation to the ith observation; in the global perturbation scheme, mainly for assessing the 
robustness of model assumptions to small perturbations (Copas and Eguchi, 2005; Troxel et al., 2004; Huang et 
al., 2009), the perturbed complete-data density is defined by Yl1=iPibi,yi\xi,r),u)) = T['l=iPibi,yi\xi,r},<j,ei), 
where ej may be independently simulated observations (Huang et al., 2009). 

To apply the general sensitivity analysis, we will first calculate the metric tensor and other geometric quan
tities such as curvatures tor a given perturbation scheme (Zhu et al., 2007). Based on the metric tensor 
9ivi,v2), we can choose an appropriate perturbation scheme at least locally. Second, we choose an ob
jective function, such as the MLE rjiui) under the perturbed model and the likelihood displacement function 
(Cook, 1986). For most finite-dimensional perturbation schemes, it is straightfonward to calculate the local influ
ence measures Fl;[v]{w(0)} and Sl/[u]{u»(0)}, which are simply vectors and matrices. For the global measure 
G\f^c{t){^iO),^}, we need to calculate /(w), /{u>(0)}, and 5c{w(0),a'} using numerical methods. E.g., if we 
choose the MLE as /(w), we need to compute the MLEs for both w(0) and u>. 
Case-deletion Measures. To detect outliers and influential points, we define case-deletion measures, including 
Cook's distance and the Q-displacement, to examine the effects of deleting individual observations/clusters 
on the MLE of 77, 77. To quantify the effects of deleting the ith cluster on fJ, define an estimator of 77 for 
a subsample Dcornii\> in which dj is deleted from Dcom- Then define 77[j] as the maximizer of Q[J](77|T7) = 
E{logpiDcom\i]>'n)\Dobs,'n}y where the expectation is taken with respect to piDmis\Dobs,v). Recall that 77 = 
argmax (̂5(77|77). Thus, Cook's distance is CDj = irĵ q - ri)'{-9rfQi'n\v)}\r]=fii^ii] ~ ^) (Cook and Weisberg, 
1982; Zhu etal. 2001). The Q-displacement is defined by QDj = 2{(5(77|r7)-(5(77[jj|f7)}. We can similarly define 
case-deletion measures for deleting each observation and a subset of observations. It can be shown that QDj 
and CDj have nice decompositions, whereas standard Cook's distance and likelihood-displacement do not. 

An intriguing issue is that the cluster sizes mj may vary dramatically across i so that CDj and QDj are not 
directly comparable. We will develop a size correction Ai for the ith cluster dj, which accounts for the cluster 
size and the specific model for dj, and calculate an adjustment factor 1̂(77) and the corrected case-deletion 
measures QDii)'^ = QDii)/Aiifj), i = 1 , . . . , n. We propose an empirical Bayes method based on a "two-group" 
model to identify rigorously influential observations. Specifically, for a particular observation, compare the cor
rected case-deletion measures with a benchmark to determine whether it is influential or not. Thus, for the ith 
cluster (or observation), we might regard the corrected case-deletion measures as pseudo-test statistics and 
set up the null and alternative pseudo-hypotheses as Hf : the ith cluster is not influential vs. Hj : the ith cluster 
Is influential. If the ith cluster is influential, then H^ is true. In this way, we formalize the detection of influential 
observations as a multiple hypothesis testing problem. Following Efron (2004, 2007), we assume that the the 
corrected case-deletion measures follow a mixture distribution given by /(z) = nofoiz) + ( l - no)fiiz), where 
TTo = P{null}, and foiz) and f i iz) are the distributions of non-influential and influential clusters, respectively. 
We can then define the local pseudo false discovery rate and use the 9-value, denoted qiz), as a reference 
quantity for deciding which observations are influential (Storey 2002; Efron, 2007). 
Conditional Residuals. For simplicity, we focus primarily on residuals for piyi\xi,bi,Zi,.r]). Define the resid
ual for the ;th observation in the ith cluster as Ri,jirj) = y i j - Eb{gixi,Zi,bi,T])}, where Eb is taken with 
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respect to pibi), and p(ccj,Zj,6 ,̂77) = Eiyij\xi,Zi,bi). However, because Zm.i and yi j may be missing, 
Ri,jiv) cannot be directly calculated for cases with missing data. There are many ways of eliminating y i j 
and Zm.i from Riirj). We will focus on CR|̂ ^̂ (̂77) = rf j ly i j - E{gixi,Zi,bi,r])\xi,Zo,i}]/Aij and CH\^^irj) = 
r f j ly i j - E{gixi,Zi,bi,rj)\xi,Zo.i,ri,yi}]/Aij, where A j j can be either 1 or some probability weights (Robins 
et al., 1995). We will choose different A j j to increase power for detecting model misspecification. 
Goodness of Fit Test with/without Incorporating the Missing Data. We use the proposed conditional residuals 
to construct various goodness-of-fit statistics to evaluate Ho •• Eb{gixi,Zi,bi,ri)} = Eb{Eiyij\xi,Zi,bi)} for 
some 77. Due to the presence of missing outcomes and covariates, it is not trivial to construct test statis
tics for Ho- First, we only consider Xi j in constructing stochastic processes as follows: j [ ' ' \ i(p,t};f j) = 

^"^''^ Er=i Er=i ^(<j¥' < t)CRf ̂ (77) for fc = 1,2, where iip,t) e U ^ { < p e W ' : v?V = 1} x [-00,00]. Sec
ond, we use E{zm,i\xi,a} to fill in Zm,i, which results in a new value, z*„_j, and then construct several stochastic 

processes, such as J2{i^,t};fi) = n-^/^Y17=i JlY=iHc'i,j^ < 0 x CRf^(77), in which Cjj = (xJ ,,,2^,,.)' and 

(p e {(p e R̂  : <p'ip = 1}. Because / ( xV < t) in j[''\i(fi,t};Tj) does not involve the missing covariates 2, this 
can lead to loss of power in detecting the misspecification involving 2. In particular, if the fraction of missing 
covariates is moderate to large, then it is inefficient to drop all the information in z. We will develop test statistics 
based on these stochastic processes, such as the integrated conditional moment (ICM) test of Bierens (1990) 
and establish their asymptotic null distributions and power (Bierens and Ploberger, 1997; Inglot and Ledwina, 
2001,2004, 2006). Finally, we will use a resampling method to approximate p-values of the ICM statistics (Lin, 
Wei, and Ying, 2001; Zhu et al., 2008; Kosorok, 2008). 

Methodology for Diagnostic Methods for Joint Models for Longitudinal and Survival Data. Because 
the development for joint models is close to that for longitudinal models above, we just highlight their differ
ences. Consider n independent clusters do,i = {X j = (x j j : j = l,...,mi),Zi,5i,Vi}, i = l , . , . ,n , where 
Zj is a vector of baseline covariates, V, ^ T j A Cj and 5i = /(Tj < d ) , where Tj and d are the poten
tial failure and censoring times. Let bj be a vector of random effects for the ith cluster, and assume that 
p(6i,Xi,2i,Vi,5j;77) = p(yj,5j|bj,2i,77)p(Xi|bj,2j,T7)p(6j;77). Assume that the hazard and survival functions 
of Tj are At(Vj|ci) = /io(Vi)exp{fc(6j,Zj,77)} and 5«(Vi|cj) = exp[-exp{fc(6i,2i,77)}/fo(Vi)], where Hoiy) = 
j ^ hoiv)dv, and assume that the cumulative baseline hazard function HoiV) is a step function with jumps only 
at the Vi so that HoiV) = E K J < ^ hoiVj),i = i , . . . ,n. 
Case-deletion Measures. Because of the presence of the infinite dimensional parameter hoi), we develop a 
profile likelihood method to quantify the effects of deleting a particular observation/cluster on the finite dimen
sional parameter 77. Let Lc{v,hoi-)\Dcom} be the logarithm of the complete-data likelihood. Define Qo(^l^) ^ 
E[Lc{v,hoi-\r})\Dcmn}\Dobs:fi] and Qoi^ iv lv) = E\Lc{r),hoii]i-\v)\Dcmn\i]}\Dobs,v] for each i , where hoi-\v) = 

argmaXf^^E[Lc{r),hoi-)\Dcam}\Dob8,ri] and^o[i](-|^) = argmax^^i:[ic{»7,'io(-)l-Ccorn|ii}|^o65,^] for fixed 77. Then 

define Cook's distance and the Q-displacement as CDj ^ (77[j] - rj)'{-drfQoiv\v)}\r)=r)iri[i] - v) and QDj = 
2{Qo(^|^) - QoiV[i\\ri)}< respectively, where r7[j] = argmax^(5o[i](^l^). H can be shown that both CDj and QDj 
have a nice decomposition, which facilitates model diagnostics. For hoi), we use dho,j = maxj |^o(T4)~^i](^)l 
to measure the difference between ̂ o() and/io[i](') and dHj = maxj |^o(V})-.&oiii(^)l to measure the distance 
between ^o(-) and •Ho{i\i), where Hoiu) = Ev,<u/io(Vj) and Ho\i]iu) = Ev'.<„/^o[ii(^j)-
Conditional Martingale Residuals. Define a conditional martingale residual process as follows: CMiit,ri) = 
Niit) - /o/(Vj > u)£;[exp{fc(bi,zj,77)}|do,j,77]/io(u)du, i = I,-.- ,n, where Niit) = Siliyi < t) and the expec
tation is with respect to the conditional distribution of bj given do.i. The conditional martingale residual process 
CMj(t) evaluated at 77 is given by CMj(i,^) = Ni t ) - /Q/(Vj > ii)£[exp{fc(6j,2j,77)}|do,j,77]/io(u)o!'u. We will 
define and examine score vector residuals, Cox-Snell residuals, censoring consistent residuals, and Schoen
feld residuals (Lawless, 2003; Leon and Tsai, 2004) in the presence of missing data and study their theoretical 
properties as with the conditional martingale residuals. It should be noted that we can also define residuals for 
the model p(Xi|6i,2j, 77) of longitudinal data as discussed above. 
Goodness of Fit Tests. We will use the proposed conditional martingale residuals to construct various goodness-
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of-fit statistics to check formally correct specification of the joint models. We will develop a resampling method to 
approximate the p-value of the corresponding test statistics and theoretically examine the asymptotic properties 
of the test statistics under the null and alternative hypotheses. We will also develop specific strategies for 
incorporating the missing data into goodness-of-fit statistics, and consider goodness-of-fit statistics based on 
other types of residuals, such as the censoring consistent residuals (Leon and Tsai, 2004). 

5.4 Aim 4: Inferences for Sensitivity Analyses of Missing Data 
Profile Estimation. We consider a much more general framework than that described in Section 4.2 for con
ducting formal inferences for sensitivity analyses. Our set-up does not require specifying the entire model for 
both the full data and missingness mechanism; as in the case where a likelihood analysis would be undertaken. 
A partially specified model is sufficient as long as the parameter of interest, fi, can be estimated for each value 
of the sensitivity parameter, 6, which make the proposed methods more broadly applicable; in particular, there 
is an extensive literature on estimating equations having this structure. 

Assume, then, for a general problem, an iid sample of size n is available, and, for inference on fi, there exists 
an estimating equation Unifi,S) such that 3(5) satisfies Un{fiiS),d)} = 0 for fixed 5. With maximum likelihood, 
Un is the score equation. Although one might try to estimate 5 by solving simultaneously for fi and 6, the model 
used to define [/„ is generally unverifiable, so thafresults based on this approach may be very misleading, as 
there may be multiple competing models which are equally compatible with the observed data. Even if one has 
a strong prior belief about the model form, there may be insufficient information in the data to identify the model 
parameters, leading to instability in estimation. To make indirect inference on fi, one needs to consider how the 
estimate of fi behaves as 6 is varied, which demands careful analysis of /3(5). 

Consider fiiS) for J in a compact set, i.e., (5 < A, 0 < A < oo. The upper bound A on J may be chosen 
to reflect a level of informativeness which is not expected in practice, but represents an extreme scenario. It Is 
straightfonward to permit 6 to have dimension > 1 with little additional complexity beyond defining the relevant 
region for 5. It is well known that, under a correctly specified model fit with a given 5 = do, where 6o is the 
true value of 5, and under mild regularity conditions, the estimator for fi is consistent for the true value fio and 
asymptotically normal, assuming L7„ is a valid estimating equation. 

Under a misspecified dropout process, i.e., 6 j ^ 6o, and for large n, assume that fiiS) ^ fid^), where fid^) 
satisfies lim„_oo Un{fi*i^),S} = 0 with /3,(5) not necessarily equal to fio- Moreover, even with misspecified 6, 
as n —> oo, the score function Un is generally roughly quadratic in the neighborhood of /3»(<5) for fixed 6, and 
the limiting distribution of n /̂̂ {3((5) - /3,(<5)} is mean zero normal with variance-covariance matrix r(J), which 
has a sandwich form, similar to that for the maximum likelihood estimator under a misspecified model (Stefanski 
and Boos, 2002). In certain applications, it may be possible to develop robust variance estimators r((5), say, 
along the lines of Todem and Fine (2008). However, with a general model and estimating equation C/„, a simple 
plug-in variance estimator is unclear. An alternative variance estimator is described below. 

These results are important. If one is fitting several models with different missingness mechanisms, then it 
is not generally possible for all models to be correct. At best, one model might be valid. Presentation of from 
multiple analyses would then in theory need to account for the fact that model misspecification is present in at 
least one of those analyses. Moreover, it may not be clear which of the analyses is correctly specified, if any 

Following the arguments in Todem and Fine (2008), these pointwise results may be made uniform under 
certain smoothness conditions, using empirical process arguments (Kosorok, 2008). That is, one may show 
that fiiS) is uniformly consistent for fi^S) and J(5) = 7̂ /̂̂ {3(<5) - fi*i^)} converges weakly to a Gaussian 
process with mean 0 and positive definite covariance function. In general, estimators fii5) at different values 
of J will be highly correlated, and treating the estimates as independent could lead to misleading inferences. 
Uniformity may seem highly technical and of limited practical relevance; however, it provides a key technical 
justification for the inferential methods described below. 

One may use the bootstrap method to estimate the standard errors of the estimators of fid^) (Efron and 
Tibshirani, 1993); it may also be used to approximate the distribution of fiiS) as a process, which is quite com
plex and does not lead to simple analytic testing procedures. The validity of the bootstrap follows automatically 
from empirical process theory under the regularity conditions given in van der Vaart and Wellner (2000), and 
holds even under model misspecification, as the estimators are functions of the empirical data distribution. 
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Sensitivity Testing. In general, we wish to use fiiS) to evaluate the null hypothesis Hoi : Cfi = c, where fi 
p X 1 is a parameter of the outcome process, C r- x p is a contrast matrix and c is a r x l vector of constants. 
This framework allows for composite hypotheses. In the special case of testing a particular covariate effect, 
such as treatment or some risk factor, on the outcome process, C is the l x p vector with a one in the position 
of the regression parameter for the covariate and zeros elsewhere, and c = 0. If a non-identifiable, non
ignorable model is assumed to generate both the outcome and dropout processes under investigation, HQI 
cannot be tested without additional restrictions. For 6 e 1R+, if the true value ô of the sensitivity parameter is 
known, the true hypothesis is H02 • Cfid^o) = c, where fid^o) = fi- As discussed above, in many cases, 5o is 
unknown and may not be estimable from observed data. We propose a global sensitivity test that uses the trivial 
inequalities inf^ \\Cfidd) - c\\ < WCfid^o) - c\\ < sup^ \\Cfid^) - c\\ to make rigorous inferential statements 
about HQ2, where ||.{| is the Euclidean norm. We can evaluate if02 by conservatively testing the hypothesis 
infi \\Cfid^) - c\\ = 0. Clearly, when inf<s \\Cfid^) - c|| is strictly greater than 0, \\CfidSo) - c\\ will be greater 
than 0 as well. The infimum hypothesis is formally defined as H03 : mis \\Cfid^) - c\\ - 0. In the case of a 
one-dimensional covariate, an ad hoc test may be conducted by constructing simultaneous confidence bands 
for fidS) given 5. If the band includes 0 for any 5, then if02 cannot be rejected. In general, if a simultaneous 
confidence band for Cfid^) excludes c for all 6, then one rejects the associated null. Such bands also identify 
those S at which the null of Is rejected, which may be useful in understanding how covariate effects change as 
a function of the missingness model. 

We now propose a formal infimum statistic to evaluate ifo3> 

T=inf [icm - cncmcT'icm - c)} 
where fiiS) is the corresponding estimator for fid^) and f((5) is an estimator of the variance-covariance matrix 
of 3((5), as described above. The test statistic T rejects the null for unusual large values. While for each fixed 
5, the test process follows a simple chi square distribution under the null, the asymptotic distribution of the 
estimator fiiS) as a process in 5 is quite complicated, and the distribution of T is analytically intractable. 

One may use the nonparametric bootstrap to generate the distribution of the infimum test statistic and to 
construct the confidence bands, using the approach described in Section 2. Let fi\S) and T \ s = l,...,S 
denote the estimators and infimum tests computed in S bootstrap samples. One rejects the null at level a if 
the observed test statistic is larger than the (l - Q) percentile of empirical distribution of T^s = l , . . . ,5. To 
define the confidence bands for the fcth component of fid^), denoted by fi„^ki^ - 1 , . . . ,p), we define I9Q as 
the (1 - a)th empirical percentile of {sup,5g[o,A] WPlî ) - 3fc('5)||}f=i. where the subscript fc refers to the fcth 
component of the corresponding vector. A (1 - a) simultaneous confidence band for {/3, ̂ .̂(J) : 5 e [0, A] is 
{6„,fc(J) : [0, A] -> W\ ||{»,,fc(5) - 3fc('̂ )ll < "^o]- In general, simultaneous confidence bands for Cfid^) - c 
take the form {xi5) -. [0, A] - ^W; \\xiS) - CfiiS) -1- c\\ < da}, where 'da is the (1 - a)th empirical percentile of 

{sviPse[o.A\\\Cfi\5)-Cfii5)\\}Lv 
A pointwise approach might also be used to carry out sensitivity testing for \\CfidS) - c|| = 0 given a 

finite number of values for 5. The method consists of letting the sensitivity parameter take values in a set 
A = {Sl , . . . ,5Q} C M+, Q < 00, and evaluating the hypothesis \\CfidS) - c\\ = 0. Specifically, for 5 € A, si
multaneous pointwise confidence Intervals may be constructed for {Cfid^) - c] using standard error estimates 
for 3((S), with a multiplicity adjustment If all intervals exclude 0, then C/3J5) 7̂  c at those 5. This approach 
should be undertaken carefully as the choice of points in A may be arbitrary and may miss 5 where F03 holds. 
Thus, one cannot formally test Ho\ using finite 5. Moreover, there may be reduced power with large Q, where 
the multiplicity adjustment lor controlling the overall type I error may be quite conservative. The global approach 
described above provides a systematic method for dealing with these issues. 
Numerical Studies. Extensive simulation studies will be carried out to evaluate performance of the procedures 
in small, moderate, and large sample sizes typical those in cancer clinical trials. Simulation scenarios will be 
based on data sets compiled by Core B, the International Breast Cancer Study Group (IBCSG) Trial VI, and 
other CALGB studies. Size and power of the infimum tests and coverage of the simultaneous confidence bands 
will be assessed; the former will be compared to standard tests that assume ignorability and to alternative tests 
procedures that attempt to estimate the sensitivity parameter instead of profiling in estimation. Analyses of 
El 684, El 694, and other cancer trials compiled by Core B will be conducted to develop experience in applying 
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the sensitivity testing procedures. Comparison with naive approaches, in which multiple analyses are presented 
without formal adjustment will be undertaken. 

5.5 Software Development and Dissemination 
All public-use software developed in this project will be made available on dedicated pages on the Program 
Project website, including downloadable code and instructions, documentations, and examples. 
Aim 1: We will work with Core C to translate our code into a software package for covariate adjustment that 
has modules to carry out treatment-specific model selection according to a user-specified choice (among those 
recommended for this purpose) and to construct the final treatment effect estimate; naive and adjusted (for 
model selection and estimation of the regressions) standard errors and confidence intervals will be provided. 
Depending on our results, we may include a module to carry out imputation or model selection using the LSA 
adaptive LASSO approach in the case of missing covariates. Because our target users are trialists who may be 
involved in regulatory submissions, it will be essential to provide a SAS implementation. We will also develop a 
separate software package that can be used to obtain the proposed estimator for partially randomized trials. 
Aim 2: We will work with Core C to adapt our code for both methods for handling drop-out into user-friendly 
software. For the covariate adjustment methods, we will develop a separate module handling this case. . 
Aim 3: Each of the new methods will first undergo developmental implementation until the procedure has been 
validated via simulation studies and data analyses. Core C will then assist with taking the implementation 
and developing it into a usable and robust software package appropriate for dissemination in both R and SAS 
formats. In addition to the materials on the web page, the new software will be communicated through presen
tations and short courses at appropriate professional meetings. 
Aim 4: Software will be developed for R and SAS, which will be compartmentalized, so that the end user pro
vides a function that carries out the analysis at a fixed value of 5, enabling broad applicability in oncology The 
user will also need to specify a range of interest for the sensitivity parameter. The software will provide as output 
the infimum test and its corresponding p-value, as well as point estimates of the parameters 13 asa function of 
6, and simultaneous confidence bands. Bootstrap variance estimates will be provided. 

5.6 Timetable 
For all Aims, manuscripts will be prepared and submitted as results worthy of publication become available. 
Aim 1: Years 1 and 2 will be devoted to the comprehensive study of model selection methods. Once recom
mended model selection strategies have been established, in Year 3 we will begin work on the approaches 
to inference after model selection and missing covariates. In Year 4, we will study the proposed method for 
partially randomized trials. Throughout, as methods mature, we will begin working with Core C on translating 
them into software. In Year 5, we will complete software development and manuscripts, including a paper for a 
clinical audience explaining and promoting the covariate adjustment methods. 
Aim 2: Years 1 and 2 will on focus study of the extension of the covariate adjustment methods to the case 
of drop-out and their implementation in software. Years 3 and 4 will be devoted to study of the methods for 
longitudinal analysis and software implementation. In Year 5, we will wrap up work on both tasks. 
Aim 3: Each of the three phases of research will require about one year of development and theoretical work, 
about 6 months of simulation and data analysis evaluation, and 6 months to 1 year of implementation and de
velopment. We will stagger initiation of each phase so that they are a year apart and the theoretical work can 
be done sequentially Results of the first phase will be completed by the middle of Year 2, and we should be 
able to complete the first three phases and start the fourth phase before the end of Year 5. 
Aim 4: Years 1 and 2 will be spent on work related to the foundations of the methodology. A proof of concept 
paper will be written for an applied statistical audience to disseminate the main ideas. Years 3 and 4 will involve 
rigorous theoretical study of the methods, extensive simulation work, and data analysis. Years 4 and 5 will be 
focused on software development and preparing additional papers for publication. These will include a paper on 
the theoretical aspects for a biostatistical methods journal and a paper targeted to practitioners and clinicians 
in the oncology community explicating in layman's terms why such sensitivity analyses should be undertaken, 
the methods at a conceptual level, and the piffalls of reporting results without such adjustments. 
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6 INCLUSION ENROLLMENT REPORT 

N/A 
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8 PROTECTION OF HUMAN SUBJECTS 

Although the proposed research indirectly involves human subjects through the preparation, in Core B, of de-
identified data sets from identifiable patient data sources, the investigators on Project 2 will have access only 
to the de-identified data. Thus, the investigators on Project 2 will have no access to any identifiable patient 
information. 

9 INCLUSION OF WOMEN AND MINORITIES 

The methods we develop will be applicable to studies with both women and minorities and also to studies 
which examine treatment differences adjusted for gender, ethnicity and race. This is accomplished through the 
general formulation of the statistical designs, models and methods studied that allow for many possible kinds of 
risk factors. Moreover, many of the existing data sets to be studied and provided by Core B include women and 
minorities, although we will not be generating any new data involving human subjects. 

10 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

11 INCLUSION OF CHILDREN 

The methods we develop will be applicable to studies with children and also to studies which examine treatment 
differences adjusted for age. This is accomplished through the general formulation of the statistical designs, 
models and methods studied that allow for many possible kinds of risk factors. Moreover, some of the existing 
data sets to be studied and provided by Core B may include children, although we will not be generating any 
new data involving human subjects. 

12 VERTEBRATE ANIMALS 

N/A 
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13 SELECT AGENT RESEARCH 

N/A 

14 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

15 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute subcontracts 
with the consortium institutions (Duke University and North Carolina State University). These inter-institutional 
agreements will be written consistent with the NIH consortium agreement policy 

16 LETTERS OF SUPPORT - None 

17 RESOURCE SHARING PLAN(S) 

(a) Data sharing plan: The data-related resources generated by the proposed research consists of new statis
tical methodology, software packages for implementation of the methodology and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy. Summaries of the methodology, the software and tutorials will 
be shared through a public web site managed by Core A, while Core C will assist in preparation of the 
software and tutorials for dissemination. This project will use de-identified data prepared by Core B to test 
the methods and to create demonstrations of use of the methods to be included in tutorials. This project 
will not be involved in sharing of these data; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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PROJECT SUMMARY (See instructions): 

The Sentinel Initiative mandated by the Food and Drug Administration will lead to an enormous number of 
studies being planned post-market that will require analyzing and combining data from several different 
studies. The proposed project will address this challenge through developing new and flexible methods for 
meta-analysis using a variety of models, including models for binary and discrete data, models for 
longitudinal data, and models for time-to-event data. A related issue that will also be addressed is design, 
sample size, and power considerations using these types of meta-analytic models. Such models and data 
collected post-market can be quite useful in designing future clinical studies such as non-inferiority, 
equivalence, and superiority cancer clinical trials. The proposed project will also develop methods for meta-
analytic studies of diagnostic tests to facilitate evidence-based medicine. We will also create flexible and 
robust methodology for accurately comparing rare adverse event rates in cancer for different drugs and for 
determining how those rates are affected by important prognostic factors. The proposed project will also 
explore statistical methods for the analysis of large cancer data sets for calibrating treatment dose in the 
presence of potentially conflicting factors, such as length and quality of life and economic costs. We will 
explore these tradeoffs rigorously, using a utility based approach traditionally employed in the analysis of 
health policy at the population level. The proposed statistical methodology will be broadly applicable to 
complex, large scale, data sets arising in phase III clinical trials and post-marketing studies. 

RELEVANCE (See instructions): 

The proposed statistical methodology will be broadly applicable to the statistical analysis and interpretation 
of complex, large scale, data sets arising in phase III clinical trials and post-marketing studies. The research 
will improve public health be facilitating discovery of important benefits and risks of cancer treatment. 

PROJECT/PERFORMANCE SITE(S) (if additional space is needed, use Project/Performance Site Format Page) 

Project/Performance Site Primary Location 

Organizational Name: The University of North Carolina at Chapel Hill 

DUNS: 608195277 

streeti: Offico of Sponsored Rosearch, CB #1350 street2: 104 Airport Dr., Suite 2200 

City: Chapel Hill County: Orange state: NC 

Province: Country: U S A Zip/Postal Code: 2 7 5 9 9 - 1 3 5 0 

Project/Performance Site Congressional Districts: NC-004 

Additional Project/Performance Site Location 

Organizational Name: North Carolina State University 

DUNS: 042092122 

Street 1: Research Admin/ SPARCS street2: 2701 Sullivan Dr.,Admin Serv HI, Box 7514 

City: Raleigh County: W a k e state: NC 

Province: Country: U S A Zip/Postal Code: 2 7 6 9 5 - 7 5 1 4 

Project/Performance Site Congressional Districts: N C - 0 2 

PHS 398 (Rev. 11/07) Page 309 Form Page 2 



Program Director/Principal Investigator (Last, First, Middle): KOSOrok , M i c h a O l R., Ot a l . 

SENIOR/KEY PERSONNEL. See instructions. Use continuation pages as needed to provide the required information in tine format shown be\ovi. 
Start with Program Director(s)/Principai Investigator(s). List all ottier senior/l<ey personnel in aiphabetical order, last name first. 

Name 

Ibrahim, Joseph G. 

Bondell, Howard D. 

Carpenter, William R. 

Chu, Haitao 

Fine, Jason P. 

Kosorok, Michael R. 

Sandler, Robert S. 

Zhang, H. Helen 

eRA Commons User Name 

JOEJBRAHIM 

Wcarpenter 

hchul l 

JasonpSp 

Michael_Kosorok 

ROBERT SANDLER 

Organization 

UNC-CH 

NC State University 

UNC-CH 
UNC-CH 

UNC-CH 
UNC-CH 
UNC-CH 
NC State University 

Role on Project 

Project 3 Leader 

Co-lnvestigator 

Co-lnvestigator 

Project Co-Leader 

Co-lnvestigator 

Project Co-Leader 

Co-lnvestigator 

Project Co-Leader 

OTHER SIGNIFICANT CONTRIBUTORS 
Name Organization Role on Project 

H u m a n E m b r y o n i c S tem Cel ls [X| No \Z\ Yes 
If the proposed project involves human embryonic stem cells, list below the registration number of the specific cell line(s) from the following list: 

http://stemcells.nih.qov/research/req istry/. Use continuation pages as needed. 

If a specific line cannot be referenced at this time, include a statement that one from the Registry wili be used. 

Cell Line 

PHS 398 (Rev. 11/07) Page 3 1 0 Form Page 2-continued 
Number the following pages consecutively throughout 
the application. Do not use suffixes such as 4a, 4b. 

http://stemcells.nih.qov/research/req


Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

RESEARCH PLAN 

1 INTRODUCTION TO RESUBMISSION/REVISION APPLICATION - N/A 

2 SPECIFIC AIMS 
The primary goal of this project is to develop, test, and evaluate new statistical methodology for Bayesian 
meta-analysis; design, sample size, and power considerations for future studies using meta-analytic models; 
meta-analysis of diagnostic tests; meta-analysis for regression analysis of rare adverse events; and for identify
ing optimal individualized therapies. To achieve this goal, we have developed five specific aims as follows: 
Aim 1. Develop methodology for Bayesian meta analysis. We will develop novel Bayesian parametric and 
semiparametric models for meta-analysis for aggregated data, time to event data, discrete data, and longitudinal 
data. Specifically, we will consider: 1) Normal random effects models and develop novel Bayesian derivation of 
Q function for assessing heterogeneity across different studies for aggregated data; 2) Random effects general
ized linear models for continuous or discrete data; 3) Mixed effects models for longitudinal data; and 4) Random 
effects Cox models with gamma process priors for time-to-event data. We will incorporate missing covariates 
and/or responses in all these models for various data types. 
Aim 2. Develop methodology for Bayesian trial design using meta-analytic models. We will develop a 
new Bayesian approach of sample size determination (SSD) for the design of non-inferiority clinical trials using 
the novel meta-analytic models developed in Aim 1. First, we will extend the fitting and sampling priors of Wang 
and Gelfand (2002) to Bayesian SSD using meta-analytic models with a focus on controlling type I error, type 
II error, and power. Second, we will develop novel simulation-based Bayesian SSD using meta-analytic ran
dom effects generalized linear models, generalized linear mixed models, and random effects Cox models with 
gamma process priors. 
Aim 3. Develop meta-analytic methodology of diagnostic tests without a gold standard. First, we will 
develop statistical methods for estimating accuracies of two and multiple (i.e.,>3) diagnostic tests in a meta
analysis in the absence of a gold standard using maximum likelihood and full Bayesian methods. Second, we 
will reanalyze the meta-analysis data of 17 studies to evaluate the accuracy of microsatellite instability testing 
(MSI) and mutation analysis (Chen, Watson, and Parmigiani 2005), and a multi-center data set from NCI Col
orectal Cancer Family Registry Study to evaluate the accuracy of 10 biomarkers in predicting Lynch syndrome 
and other data sets. 
Aim 4. Develop methodology for regression analysis of rare adverse events for post-marketing safety 
evaluation. First, we will develop semi-parametric methods of inference for evaluating drug and risk factor 
effects for rare time-to-event outcomes in clinical trials and epidemiological studies. Second, we will develop 
semi-parametric methods of inference for extremely rare time-to-event outcomes. Third, we will extend both of 
the results to the adjudicated endpoint setting. Fourth, we will extend these results to the meta-analytic setting 
involving collections of clinical studies, registry data and health insurance claims data. 
Aim 5. Develop methodology for identifying optimal individualized therapies from existing clinical trial 
data using meta-analysis, utility functions, classification and regression. We will develop a general infer
ential tool for determining optimal individualized therapies. First, we will propose an multi-attribute utility function 
for accommodating complex survival information, as well as cost and quality of life considerations. Second, we 
will develop rigorous inferential procedures for optimal dosing which will be broadly applicable to individualized 
therapies based on subject specific characteristics, including genomic as well as demographic and disease 
severity predictors. Third, we will utilize machine learning and other high dimensional statistical learning and 
regression techniques in addition to more traditional approaches to statistical modeling. 

For each of the new methods developed for each aim, there will be four phases to the research: a method
ological phase in which we construct new methods, create beta software for development, and establish univer
sal properties based on statistical theory; a simulation phase were we verify validity of the theoretical predictions 
using highly controlled simulation studies; a data analysis stage where we evaluate performance using real 
data; and a software implementation and dissemination phase where we refine our software, test it in practical 
settings, and disseminate the software in a manner useful and accessible for practitioners. 
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3 BACKGROUND AND SiGNlFlCANCE 

3.1 Bayesian Meta-analysis 
The recent FDA mandate through its Sentinel Initiative that all approved drugs must undergo post-marketing 

assessment of safety will lead to the collection and analysis of large datasets from multiple studies. Dr. Ibrahim 
has taken a great interest in this issue due to his direct involvement with the Sentinel Initiative for establishing 
guidelines for conducting such post-marketing studies. Assessment of safety of a post-market drug is a much 
more different and difficult problem to address than the assessment of safety in the course of a cancer clinical 
trial. In a clinical trial, a regimen leading to severe adverse events in 1% of the patients enrolled in the trial 
may be deemed acceptable whereas such a figure is generally not acceptable in the general population once a 
drug gets marketed. These types of post-market studies, many of which are now ongoing, will involve analysis 
of large datasets from multiple studies in order to accurately assess safety as well as efficacy of a given drug. 
There has been an enormous literature on frequentist methods using random effects models for meta-analysis 
for the past 20 years. Now, random effects modeling for meta-analysis has become a well accepted standard 
from both a frequentist and Bayesian perspective. See, for example. Whitehead and Whitehead (1991), Hardy 
and Thompson (1996), Higgins and Whitehead (1996), Biggerstaff and Tweedie (1997). Aitkin (1999), Normand 
(1999). Brockwell and Gordon (2001), Lopes. Muller, and Rosner (2003). Burr" and Doss (2005), McLeod et 
al. (2007), and Sutton and Higgins (2008). However, frequentist methods based on random effects models, in 
general, cannot accommodate complex modeling schemes and the associated inference is often very difficult 
and unwieldy For example, since it is not straightfonward to obtain model-based estimate of heterogeneity 
between studies, exact confidence regions, and the null distributions of test statistics for tests of hypotheses 
in the context of generalized linear models, models for longitudinal data, and survival models. One must rely 
on asymptotic methods in this context. On the other hand, due to the nature of the random effects modeling 
in meta-analysis, Bayesian methods appear much better suited and more powerful inferential tools for handing 
meta-analysis from both a parametric and semiparametric perspective. 

Although clinical trials are the gold standard for evaluating the safety and efficacy of cancer therapies, only 
less than 2% of patients with incident cancers enroll on NCI sponsored clinical trials. Furthermore, the fraction 
of trial enrollees is lower in racial/ethnic minority groups as well as older patients (Murthy Krumholz and Gross 
2004). Those limitations have created huge gaps tor the generalization of clinical trial findings to general popu
lations. To overcome those limitations, it is very important to develop comprehensive analysis methodology to 
pool different data resources together to maximize our understanding of hard-to-measure outcomes. Motivated 
by our collaborative work with Drs Carpenter, Goldberg and Sandler at UNC, using the integrative analysis of 
the Developing Evidence to Inform Decisions about Effectiveness (DEclDE) Network. Accelerated Community 
Oncology Research Network Data Warehouse (ACORN), Cancer Care Outcomes and Research Consortium 
(CanCORS), the Surveillance, Epidemiology and End Results (SEER) and the Adjuvant Colon Cancer End 
Points (ACCENT) and other data sets, we will develop novel Bayesian parametric and semiparametric mod
els for meta-analysis of continuous or discrete data, longitudinal data, and time to event data. We will also 
use the above-mentioned datasets in designing future clinical trials as discussed in Aim 2. There are several 
challenges in the meta-analysis using Bayesian methods compared to standard Bayesian methods in mixed 
models. These include (i) the development of general and flexible meta-analytic models that can account for 
(a) subject-to-subject heterogeneity and study-to-study heterogeneity, (b) aggregate and/or individual response 
and/or covariate data, and (c) missing data; (ii) the methods for assessing subject-to-subject heterogeneity and 
study-to-study heterogeneity; (iii) the properties such as the propriety of posteriors; and (iv) the computation. 
In the proposal, we will precisely address these important issues. In particular, we develop novel and general 
Bayesian meta-analytic models by introducing subject random-effects and treatment random-effects to account 
for subject-to-subject heterogeneity and study-to-study heterogeneity. We also develop new methods for as
sessing subject-to-subject heterogeneity and study-to-study heterogeneity and new meta-analytic models to 
account for aggregate and/or individual response and/or covariate data as well as missing data, and new semi
parametric Bayesian meta-analytic models for time to event data. In addition, we will examine the properties 
such as the propriety of posteriors of the proposed meta-analytic models and develop efficient Markov chain 
Monte Carlo sampling algorithms to carry out challenging posterior computations under the complex parametric 
and semiparametric Bayesian meta-analytic models. 
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3.2 Bayesian Design of Trials Using Meta-analytic Models 
Recently FDA released "Guidance for the Use of Bayesian Statistics in Medical Device Clinical Trials" (May 

23, 2006, www.fda.gov/cdrh/meetings/072706-bayesian.html). This document provides guidance on statistical 
aspects of the design and analysis of Bayesian clinical trials for medical devices. It lays out detailed guidance 
on the determination of sample size in a Bayesian clinical trial. This document also provides guidance on 
the evaluation of the operating characteristics of a Bayesian design. Specifically, the evaluation of a Bayesian 
design should include type I error (probability ol erroneously approving an ineffective or unsafe device), type II 
error (probability of erroneously disapproving a safe and effective device), and power (the converse of type II 
error: the probability of appropriately approving a safe and effective device). 

In this aim, we are particularly interested in sample size determination (SSD) in non-inferiority therapeutic 
trials. Non-inferiority cancer clinical trials have become quite frequent and popular in recent years since design
ing superiority or equivalence trials for many regimens, especially in cancer, may not be realistic or practical. 
Thus, methods for design of non-inferiority trials are greatly lacking and there is a great need for new method
ology in this area. There has been a vast literature on the frequentist methods of SSD in various non-inferiority 
trials, which includes, for example, D'Agostino Sr., Massaro, and Sullivan (2003), Hung et al (2003), Rothmann 
et al. (2003), Wang and Hung (2003a, b). Hung, Wang, and O'Neill (2005, 2007), Kieser and Friede (2007), 
and Fleming (2008). As discussed in Wang and Gelfand (2002), the limitations of the frequentist approach 
are evident. For instance, the frequentist methods require an estimate of the variability in the data or of the 
standard error of the parameter estimate in certain cases or models. In some other cases, one needs a value 
of the parameter vector in order to calculate the non-centrality parameter as a function of sample size. 

The Bayesian approach in this context may be more attractive as it does not require an estimate of the vari
ability or the specification of any nuisance parameters. The literature on Bayesian SSD has been growing due to 
recent advances in Bayesian computation and Markov chain Monte Carlo sampling in particular The articles by 
Joseph, Wolfson, and Du Berger (1995a,b), Lindley (1997), Rubin and Stern (1998), Katsis and Toman (1999), 
and Inoue, Berry, and Parmigiani (2005) are the ones cited in the 2006 FDA Guidance Document. Some recent 
work includes Rahme and Joseph (1998). Simon (1999). Adcock (1997). Wang and Gelfand (2002). and M'Lan, 
Joseph, and Wolfson (2006, 2008). The existing literature on Bayesian SSD, however, primarily focuses on sim
ple normal and binomial one or two sample problems and standard normal linear regression, and generalized 
linear models. Although the literature on Bayesian SSD discusses a variety of performance criteria, the widely 
used ones include Bayes factors (Weiss, 1997), the average posterior variance criterion (APVC) (see, for exam
ple, Wang and Gelfand, 2002), the average coverage criterion (ACC), the average length criterion (ALC), and 
the worst outcome criterion (WOC) (e.g., Joseph, Wolfson, and Du Berger, 1995a.b, and Joseph and Belisle, 
1997). Lindley (1997), Pham-Gia (1997), and Lam and Lam (1997) provide SSD through a maximization of 
expected utility or a minimization of the Bayes risk. M'Lan. Joseph, and Wolfson (2006. 2008) extend ACC and 
ALC to ACCfc and ALC^. However, most of these criteria do not directly link to or do not control the type I error, 
type 11 error, and power, which are the most important operating characteristics of a Bayesian design specified in 
the 2006 FDA Guidance Document. In addition, none of the aforementioned Bayesian articles directly address 
the important yet practically most useful design and analysis of non-inferiority trials. 

From both the frequentist and Bayesian perspectives, the literature on trial design using meta-analytic mod
els is essentially non-existent. In addition, there is virtually no literature on addressing sample size and other 
trial design issues for random effects generalized linear models, generalized linear mixed models, and random 
effects survival models, such as the random effects Cox model with gamma process priors on the cumulative 
baseline hazard in the meta-analytic framework. In this aim, we wish to develop a general methodology for 
Bayesian trial design using meta-analytic models, with an emphasis on non-inferiority trials, since it is precisely 
in these types of trials that meta-analytic models can be most useful, efficient, and powerful. We then extend 
the fitting and sampling priors of Wang and Gelfand (2002) to Bayesian SSD in meta-analytic models with a 
focus on controlling the type I error, type II error, and power. We will develop novel simulation-based Bayesian 
SSD in meta-analytic models for random effects generalized linear models, generalized linear mixed models, 
and the random effects Cox model with gamma process priors. The use of meta-analytic models for trial design 
is quite new and in particular the use of these models for trial design in non-inferiority trials is quite innovative. 
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3.3 Meta-analytic Methodology of Diagnostic Tests without a Gold Standard 
Accurate diagnosis of a disease status such as cancer is often the first step toward its control and preven

tion. The rapid growth of evidence-based medicine has led to a dramatic increase in attention to evidence-based 
diagnosis by meta-analysis of diagnostic test accuracy studies (Egger, Smith, and Altman 2001). The perfor
mance of a binary diagnostic test is usually represented by sensitivity and specificity (Zhou, Obuchowski, and 
McClish 2002; Pepe 2003). When a "gold standard" is available, random effects models including the hierar
chical summary receiver operating characteristic model (Rutter and Gatsonis 2001) and the bivariate random 
effects model on sensitivities and specificities (van Houwelingen, Arends, and Stijnen 2002; Reitsma et al. 2005; 
Chu and Cole 2006). which are very closely related and sometimes identical (Harbord et al. 2007; Chu and 
Guo 2009), have been recommended to take into account the potential heterogeneity between studies (Zwin-
derman and Bossuyt 2008; Riley, Thompson, and Abrams 2008). In the absence of a gold standard reference 
test, there is a considerable literature discussing the challenges and approaches to assess the performance 
of diagnostic tests from a single or two population (Gart and Buck 1966; Hui and Walter 1980; Joseph, Gy-
orkos, and Coupal 1995; Andersen 1997; Johnson, Gastwirth, and Pearson 2001). Generally, the literature on 
meta-analytic studies of diagnostic test accuracies using random effects models to account for heterogeneity in 
the absence of a gold standard is very sparse. In a recent meta-analysis of seventeen studies to evaluate the 
accuracy of microsatellite instability testing (MSI) and mutation analysis (MUT) in predicting Lynch syndrome, 
the most common familial colorectal cancer syndrome, a Bayesian approach was proposed to handle missing 
data resulting from partial testing and lack of a gold standard (Chen, Watson, and Parmigiani 2005). However, 
the existing meta-analysis assumed that the sensitivities and specificities of both tests did not differ from study 
to study Furthermore, after categorizing the studies into a registry-based recruitment group and a family-based 
recruitment group, the prevalence was assumed to be homogeneous within each group. Due to the differences 
in study design, study population, and laboratory techniques, between-study heterogeneity is intrinsic in almost 
all meta-analysis. Not adequately accounting for this heterogeneity when it is present may result in biased 
estimation and/or underestimation of uncertainty 

It is crucial for us to develop cutting edge statistical methods that can be directly applied to meta-analysis 
of diagnostic accuracy studies when a gold standard is not available. In this project, we will tackle some of 
the most important and most challenging issues. The methods to be developed will be used to reanalyze the 
meta-analysis data of 17 studies to evaluate the accuracy of microsatellite instability testing (MSI) and mutation 
analysis, and a multi-center data set from NCI Colorectal Cancer Family Registry Study to evaluate the accuracy 
of 10 biomarkers in predicting Lynch syndrome, and other data sets. The statistical methodology for estimating 
accuracies of diagnostic tests without a gold standard in a meta analysis setting is quite new and innovative. 

3.4 Regression Analysis of Rare Adverse Events for Post-marketing Safety Evaluation 
Proper rare adverse event analysis is crucial in both cancer treatment and cancer screening studies. This 

issue can potentially have enormous public health consequences if not addressed in an effective and timely 
manner. The most famous, recent example of this is the drug Vioxx which was used to treat inflammation and 
was pulled from the market in September, 2004. even though early indications of an increased risk of heart 
attack had emerged as early as 2001 (Mukherjee et al., 2001). While the risk of heart attack was low, when 
cumulated over a large number of patients, it had a dramatic public health impact Cancer registries (see, e.g., 
Lucas, 1993), meta-analysis of clinical trials (Berlin and Colditz, 1999; Temple, 1999), and the FDA's active 
surveillance system MedWatch (Kessler. 1993) are important and key sources of data for monitoring for rare 
adverse events, and there are special added levels of oversight for pediatric drug surveillance (Smith et al., 
2008). Rare events are also important in cancer screening studies, such as the Prostate. Lung, Colorectal, 
and Ovarian (PLCO) cancer screening trial conducted by the National Cancer Institute (Gohagan et al., 1994) 
which is still being actively evaluated (Ahn et al., 2008). We are also motivated by the need for property tools of 
analysis for data such as the ACORN and SEER data sets mentioned above in Section 2.1. Rare event analysis 
is crucial for many disease in addition to cancer, including cardiovascular disease, as highlighted by the Vioxx 
example, vaccine safety, and in many other health settings. 

The key issue, however, is correct analysis and interpretation of rare event data. Without this, the best data 
possible will not improve human health. Indeed, some intellectuals believe that our current financial crisis is due 
to improper use of statistical methods for the analysis of rare event data in the financial markets: see the very 
provocative article by Taleb (2008). The issue is that rare events behave differently in a probabilistic sense than 
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Other statistical quantities for which society has an intuitive feel for and that many non-statistical professionals 
were interpreting probabilities as certainties and not appropriately adjusting for the true uncertainty. Clearly, 
correct statistical methodology is crucially important for studying rare health events. What is different about rare 
events? The main issue is that the central limit theorem no longer holds for rare event statistics. Consider, 
for example, trying to estimate the probability of a rare event (or collection of rare events) p from the observed 
proportion p„ out of a large sample of size n. As long as the true probability is not too small, y/nipn - p) will 
have an approximately normal distribution with mean zero and variance p(l - p). For rare events, when p is 
close to zero as n gets large, this result is not longer true. We will classify the setting where p goes to zero but 
np goes to infinity as n goes to infinity as the "rare" event setting; we will classify the setting where np goes to a 
constant 0 < fco < oo as the "extremely rare" setting; and we will classify the setting where np goes to zero as the 
"almost impossible" setting. We will not study the almost impossible event setting further, since it is unrealistic 
to expect to learn about such events since they may never be observed even in extremely large studies with 
extensive followup. For rare events, \/n/pniPn - Po) is approximately standard normal (even though the usual 
version of the central limit theorem does not hold); but for extremely rare events, np„ goes to a Poisson random 
variable with rate ko. The point of this is that there are fundamental differences in the statistical properties of rare 
event analysis from moi-e standard analysis settings. Another complication for many rare event settings is the 
presence of events that need adjudication before being confirmed as actual primary events. Many late phase 
clinical trials and post-submission safety studies require the adjudication of primary event outcomes in order to 
ensure that events are classified correctly with minimal bias, and consistently across clinical centers involved 
in the study and across the entire study period. Consider, for example, risk of endometrial and breast cancer 
in patients taking raloxifene to reduce postmenopausal osteoporosis as evaluated in a follow-up to the Multiple 
Outcomes of Raloxifene Evaluation (MORE) trial (Cummings et al., 1999; Cauley et al.. 2001). Screening for 
endometrial cancer requires confirmation (adjudication) by an independent board of gynecologists based on 
complete clinical data. This issue can be even more complicated for cardiovascular endpoints for which the 
adjudication process can be very complex and involve several primary endpoints (see, e.g.. Barter at al., 2007). 
At the time of data analysis, some endpoints have been adjudicated and some have not, and thus the factuality 
of some of the purported endpoints is uncertain. 

The goal of the proposed research is to develop effective and valid methods of analysis for regression of 
risk factor and treatment effects on rare and extremely rare events for both adjudicated and un-adjudicated 
data. This includes developing flexible semi-parametric approaches for survival (time-to-event) data with rare 
and extremely rare rates of events. We also develop methods for both single post-marketing epidemiological 
studies as well as meta-analytic approaches. We note that logistic regression, while sharing some similarities 
with survival models in the rare event setting, is importantly different from survival analysis in several key ways, 
including the fundamental difference that patient follow-up times must be factored into survival analysis. For this 
reason, we will not discuss it further except for a few brief instances where it is useful for illustration. 

Although some work has been done for rare analysis, there are many unresolved issues, especially for semi
parametric methods and adjudication. Exact conditional permutation approaches have been developed for both 
logistic regression (Hirji et al., 1987) and the log-rank test under equal (Mehta and Patel, 2000) and unequal 
(Heinze et al., 2003) follow-up. Unfortunately, these exact approaches can be very computationally intense, 
have a limited range of possible models, and are not suitable for sample size formula development. These 
concerns can largely be addressed through the development of large sample approximations we propose. 
Another method for addressing rare events in the design of studies is to oversample the rare event, as is done, 
for example, in case-control studies and other biased-sampled studies. However, this approach is not useful 
in monitoring for events yet to occur, as is the focus of this research, and so we will not pursue sample-based 
approaches further Important large sample approximation work for rare events include the logistic regression 
methodology of King and Zeng (2000) which has been implemented in commercially available software. Other 
work on logistic regression for rare events includes Buzas and Stefanski (1996) and an evaluation by Cepeda 
et al. (2003). Methodology and theory for the semi-parametric log-rank test for rare survival events—as in the 
context of the PLCO cancer trial—was developed by Buyske et al. (2000). although their results do not apply to 
the extremely rare event setting. The use of the Cox model for rare events is studied in Li at al. (2007), but they 
did not derive any theoretical properties and asymptotic (large sample) approximations, and thus their results 
do not provide insight into solving the necessary inferential problems. Some results for survival analysis tor rare 
events in a meta-analytic setting are developed by Shuster et al. (2007) that may be at least partly applicable to 

PHS 398/2590 (Rev. 11/07) Page 328 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

our setting. Shuster et al. show that standard use of random effects to adjust for intra-study heterogeneity may 
be problematic for rare events. All of these results are applicable to the rare setting but not the extremely rare 
setting for which are we are not aware of any such work. 

Cook and Kosorok (2004) developed rigorous semi-parametric survival analysis methodology for adjudi
cated endpoints. but their approach has not yet been extended to the rare event setting. Thus theoretically 
and scientifically valid methodology for sehii-parametric methodology is very much underdeveloped, with the 
exception of the log-rank test for rare events, and the area is very much open to development. Moreover, no 
work has been done for extremely rare events or for adjudicated rare events. Thus the proposed research will 
fill a very important vacuum in the study of rare events, and the new statistical methods can lead to significant 
public health improvements in cancer and other diseases. 

3.5 identifying Optimal Individualized Therapies from Existing Clinical Trial Data Using Meta-Analysis, 
Utility Functions, Classification and Regression 

In clinical trials, like those in oncology, it is common to report separate analyses of endpoints of interest. 
A typical example of such a study comes from a clinical trial conducted by the International Breast Cancer 
Study Group (IBCSG) Trial VI (IBCSG, 1996). This study was conducted in premenopausal women with node-
positive breast cancer to explore both the duration of adjuvant chemotherapy and the reintroduction of delayed 
chemotherapy The design was a 2 by 2 factorial, comparing three versus six cycles of oral cyclophosphamide, 
methotrexate, and flouracil with or without the introduction of three single courses of delayed chemotherapy. 
.Each participant was randomly assigned to receive either the six Initial courses of CMF at months 1 through 
6 with or without reintroduction of CMF at months 9, 12, or 15, or to receive three initial courses of CMF at 
months 1 through 3 with or without reintroduction of CMF at months 6, 9. and 12. In addition to the survival 
endpoints, disease free survival (DFS) and overall survival (OS), there was considerable interest in the impact 
of the treatment regimens on toxicity outcomes and their influences on quality of life, which was assessed using 
a self-assessment questionnaire. In understanding these benefits in absolute terms, it is important to adjust 
for other patient specific factors, like age, number of positive nodes, and estrogen receptor (ER) status, which 
are tightly linked to the natural history of breast cancer. IBCSG VI is a large, international collaborative, with 
data from multiple continents. Randomization was stratified by participating institution, type of surgery, and ER 
status. To control for culture, country of residence may be used as a proxy, see Chen and Ibrahim (2006). 

The study is prototypical, in that there are several endpoints of clinical interest. Each of these endpoints 
will impact the overall evaluation of treatment benefit and influence patient management. Typically, one would 
conduct separate regression analyses of each of the endpoints to understand the impact of patient specific 
predictors and treatment. In IBCSG VI, a proportional hazards model (Cox, 1972) would ordinarily be fit to 
DFS and OS. For repeated QOL measurements, longitudinal data models would be utilized, accounting for the 
potential missing QOL measurements due to dropout and or death (Zeger and Xu, 2001; Tsiatis and Davidian, 
2004). In other studies where cost data is available, similar longitudinal regression models might be employed. 
In addition to the longitudinal analyses, one might consider regression analysis for summary measures of QOL 
and cost, quality adjusted lifetime (Glasziou, Simes, and Gelber. 1990; Fine and Gelber, 2001) and lifetime 
medical cost (Lin, Feuer, Etzioni, Wax, 1997; Lin, 2003). respectively While such analyses are very useful 
in understanding the effects of treatment, disease severity factors, and other predictors, it may be difficult to 
synthesize these results in order to determine optimal treatment strategies for individual patients. The challenge 
is that it is not clear how to formalize the potential tradeoffs amongst the endpoints, e.g., a decrease in quality 
of life due to more aggressive treatment may be counterbalanced by better survival outcomes. Typically such 
tradeoffs are evaluated informally, without a systematic quantitative evaluation. 

The goal of this aim is to address the lack of inferential methodology to address these tradeoffs. To our 
knowledge, issues related to inference for optimal dose determination have not been considered in the setting 
considered here. Considerable work has been done on dose calibration using for example, linear regression, 
where the dose to achieve a minimally acceptable mean response is of interest, or logistic regression, where 
the dose necessary to achieve a particular response level is of interest; see Davidian (2002) for a review of 
this area. The work involves modeling a single response and multi-attribute utility functions does not need to 
accommodate tradeoffs between multiple outcomes. 

The use of utility functions has been examined in the context of reinforcement learning, where optimal 
regimens may be determined either adaptively in clinical trials or using existing data. Recent work on dynamic 
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methods for adaptively and efficiently identifying such regimens have been studied, as surveyed in the seminal 
discussion paper of Murphy (2003). A limitation is that while such methods may be helpful in incorporating 
utility weights, formal inference may be difficult, with almost no results available. An assessment of uncertainty 
in estimates of the optimal regimes and an evaluation of the sensitivity of regime choice to changes in the utility 
function has not been considered. The current research will provide new methodology to fill these gaps. 

4 PRELIMINARY STUDIES 

4.1 investigators 
Dr. Ibrahim is Project Leader. Drs. Chu, Kosorok and Zhang are project co-Leaders; and Drs. Bondell,, 

Carpenter, Fine and Sandler are project co-Investigators. Joseph G. Ibrahim. PhD, is Alumni Distinguished 
Professor of Biostatistics and Director of Biostatistics in the Lineberger Comprehensive Cancer Center at the 
University of North Carolina at Chapel Hill (UNC-CH). His research expertise is Bayesian inference, missing 
data problems, and cancer genomics. He has written two texts on Bayesian inference (Ibrahim et al., 2001; 
Chen et al., 2002). Haitao Chu. PhD, MD, is Research Associate Professor of Biostatistics at UNC-CH. His 
expertise is in clinical trials, statistical methods in epidemiology, and meta-analysis. Michael R. Kosorok, PhD, 
is Professor and Chair of Biostatistics at UNC-CH. His expertise is in clinical trials, survival analysis, semipara
metric inference and empirical processes. He has written a text on the last two topics (Kosorok, 2008), Hao 
Helen Zhang. PhD, is Associate Professor of Statistics at North Carolina State University (NCSU). Her exper
tise is in model selection, machine learning and nonparametric smoothing methods. Howard D. Bondell, PhD. 
is Assistant Professor of Statistics at NCSU. His expertise is in variable and model selection and nonparametric 
and semiparametric statistical methods. William R. Carpenter, PhD, MHA, is Research Assistant Professor of 
Health Policy and Management and a Research Fellow at the Cecil G. Sheps Center for Health Services Re
search at UNC-CH. His expertise is in the analysis of large data sets for understanding public health aspects 
of cancer treatment. Jason R Fine, PhD, is Professor of Biostatistics at UNC-CH. His expertise is in survival 
analysis, and nonparametric and semiparametric inference. Robert S. Sandler, MD, is chief of the Division of 
Gastroenterology and Hepatology and Nina C. and John T. Sessions Distinguished Professor of Medicine in the 
UNC School of Medicine. Dr Sandler is an oncologist and has a wealth of expertise in cancer, especially in 
gastrointestinal (Gl) cancer. Dr Sandler has a joint publication with Drs. Chu and Ibrahim (Qu et al., 2008). Dr. 
Ibrahim also has a highly influential joint publication with Drs Goldberg and McLeod (Hoskins et al., 2007) on 
meta-analysis for the UGT1 A1*28 allele (see Project 4), 

4.2 Preliminary Studies 
We have made some preliminary progress on developing statistical methods for diagnostic accuracy studies 

in meta-analysis using random effects models in the presence of a gold standard (Chu and Cole 2006; Chu and 
Guo 2009). To simplify the discussion, we focus on a bivariate random effects model without any covariates 
here. Let n\i, nj)o, njji and n\o be the number of true positives, true negatives, false positives and false negatives, 
and n{. and nj,. be the number of diseased and non-diseased patients in the i'-^ diagnostic accuracy studies 
from a meta-analysis, respectively Conditional on the number of diseased and non-diseased patients in each 
study, the bivariate random-effects meta-analysis model assumes, njjo ~ Bin in}i.,Spi), n\i ~ Bin in\.,Sei), 
logit(S'ei) = no+fj-i, and logit(5pi) = i/o+î i where logit(u)) = log (•u;)-log (1 - w) and the random effects im, Ui)'̂  
are bivariate normally distributed with mean zero. The expected sensitivity for a chosen specificity is given iDy 
logit(S'e) = a+6logit(5p) where a = /io - pi'oaf./a^ and b = pa^/a^. The median sensitivity for a given specificity 
on the back-transformed scale is given by expit{a -j- 6logit(l - Sp)} where expit(ui) = l/(H-exp(-u))). The area 
under the summary operating characteristic (sROC) curve (AUC) based on the median sensitivity for a given 
specificity on the back-transformed scale can be estimated as /J expit {a -f 6logit(l - Sp)}dSp. 

We have made some preliminary progress on developing two new technical tools in empirical processes that 
pave the way for developing methods of inference for semi-parametric techniques for both rare and extremely 
rare time-to-event data. Let Nit) be a counting process for the rare endpoint events in a sample under study 
and let Yit) be the corresponding at-risk process. This is the standard counting process notation for time-
to-event data (Fleming and Harrington, 1991). We will let time t be on the scale of time since enrollment for 
each individual, i.e.. Nit) is the number of endpoints observed for all patients who have been enrolled for no 
more than time t. Also let A(i) denote the hazard for this endpoint (allowing it to become smaller and smaller 
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as the total sample size n -^ oo), and let A(t) = J^ A(s)ds. A good choice for an estimator of A Is the well-
established Nelson-Aalan estimator A(t) = J^lYis)]'^ dNis). Provided we have no covariates, one can use 

the usual continuous-time martingale central limit to establish that JQ y ^ J/Q ^ ^ - A(t)} ~> Ar(0,1), 
where •^ denotes convergence in distribution. This result can be extended to uniform in t weak convergence 
to a Gaussian process. This permits a large variety of possible inference approaches; see also Buyske et al. 
(2000) for developing log-rank tests for rare events. 

The challenge with the martingale approach is that it does not directly apply to certain more complicated 
statistics, such Cox regression, especially under model misspecification, nor does it apply to other more com
plicated semi-parametric modeling settings. Fortunately, there is a very general central limit theorem for i.i.d. 
data that allows for the model to change with the sample size (a requirement, almost by definition, for rare 
events). There are several versions of this theorem, including Theorems 2.11.1 and 2.11.9 in van der Vaart 
and Wellner (1996) and also Theorems 11.16 and 11.18 in Kosorok (2008). The last theorem establishes va
lidity of a modified bootstrap procedure that enables construction of confidence intervals and critical regions 
for hypothesis testing in this complex setting. The main idea is to view the statistics as sums of independent 
stochastic processes whose distributions are allowed to change with the sample size but whose index set does 
not change. Provided the complexity of this index set is reasonable, as measured by various kinds of entropy, 
such as uniform entropy bracketing entropy, and "manageability," the standardized statistics can be shown to 
converge to a Gaussian limiting distribution. Our early studies show that this applies to the rare event setting. 

A challenge with both the martingale and empirical process central limit theorems is that they are not appli
cable for extremely rare events. It turns out that some newer empirical process techniques have considerable 
promise here. We have discovered an unexpected connection between the behavior of Nit) for extremely rare 
events and the behavior of an estimator of the change-point in change-point regression problems. Consider 
the very simple example where we observe a sample of random pairs (F, Z), where Y = fi i + e \i Z < ^ and 
y = ^2 + e otherwise, and where /^i ^ H2, ^ is a real number, and e is Gaussian with unknown variance a^. The 
parameters of this model are MI. M2, CT^, and the change-point ^. If least-squares estimate is used to estimate 
these parameters, the estimates of f i i , /i2 and a'̂  are all Vn-consistent and asymptotically normal (as would be 
expected), but the estimate of £, is n-consistent and converges to a compound Poisson process which we will 
describe in more detail later. It turns out that Nit), after suitable standardization, also converges to a compound 
Poisson process. The reasons for this similarity are not obvious, but the similarity does emerge under 

careful analysis using delicate empirical process arguments. We have also developed novel empirical 
process-based approaches for more complex change-point estimation and inference settings (see, for example. 
Kosorok and Song, 2007; and Song, Kosorok and Fine, 2008) that will be generally useful in developing semi
parametric methods of inference for extremely rare event data. These two powerful empirical process tools, the 
flexible central limit theorem and the compound Poisson process methodology, in combination with more clas
sical statistical tools such as martingale methods, will enable us to make dramatic progress on this challenging 
research aim. Part of the reason that more progress has not been previously made on rare events is that the 
needed technical tools, and the connection with the change-point problem, were not available until recently 

5 RESEARCH DESIGN AND METHODS 

5.1 Bayesian Meta-analysis 
Bayesian justification of the heterogeneity measure Q. Suppose we consider K studies or random trials 
and let yk denote the aggregate response with a known precision parameter Wk. Then, the standard normal 
random effects model for the meta-analysis assumes 

Vk = P-k + ^k, tk^NiO,wl^) (5.1) 

l̂ k = ii + ik, a ^ M O . T ^ ) (5.2) 

for fc = 1,2,...,K. In (5.1), yk may be viewed as the estimated effect size and (Xk is the true effect size. 
For example, in a collection of n two-arm randomized clinical trials, yk is simply the observed log-odds ratio 
and Wk is the corresponding estimated precision of the observed log-odds ratio for the /c*'' study/trial (Higgins 
and Whitehead, 1996; Brockwell and Gordon, 2001). In the frequentist literature, a formal test of statistical 
homogeneity is performed using the test statistic proposed by Cochran (1954) given by 
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K 

Q = J2Myk-f^)\ (5.3) 
k = l 

where fl = J2k=i ̂ kyk/iJ2k=i '^k)- Under the hypothesis of homogeneity (T^ - 0), Q follows a X K - I distribution 
(Cochran, 1954). Although Q is the most popular test statistic for assessing heterogeneity across K studies, 
there is virtually no literature on a Bayesian justification of Q. 

We will provide two Bayesian justifications of Q. Our first justification is based on the Deviance Information 
Criterion (DIC). Under the model specified by (5.1), the likelihood function is given by 

fiy\^) = l l '^exp{-^iyk-^tk) '}=[ l [ '^]e^p{- l^wkiyk- ixk) '} , (5.4) 

where t / = (yi,y2,--,i/K)'and/x = (/ii,^2,--,/^i<r)'- According to Spiegelhalter et al. (2002), we define the 
deviance function as Din) = -21og/(y|/i) -\-2\ogfiy\p.*iy)), where p.*iy) is an estimate of the pseudotrue 
parameter fj.K Let HQ denote the hypothesis of homogeneity and Dobs be the observed data. Then, we define 
the Bayesian Q function as 

QB = Diii,Ho), (5.5) 

where p. is either the posterior mode or the posterior mean of p. under HQ, denoted by E\p,\Dobs,Ho]. For the 
normal model (5.1), p,*iy) = y and fiy\ti*iy)) = Y[k=i V'^k/i^n). Suppose we take an improper uniform prior 
for n, i.e., niu) oc 1. Then, we have E\fi\Dobs,Ho] = fi and 

K 1/2 K K 1/2 

QB = -'2\os\Yl\^-^'£wkiyk-p)' +210^111^] ^Q. 

Our second justification is based on the Bayes factor Instead of (5.2), we assume 

l̂ k = l̂  + ^k, ^k-^NiO,T^/wk). (5.6) 

Let Hi denote the hypothesis of heterogeneity (r^ > 0). We specify an inverse gamma prior G(a, b) for r̂  with 
density 7r(r^) oc {T'^)-("-+^^ exp(-6/r^), where a > 0 and 6 > 0. Because both hypotheses share a common 
parameter p,, without loss of generality, we take ni/i) oc 1. After some algebra, it can be shown that the marginal 
likelihood under the hypothesis HQ is given by 

K 1/2 ^ K K 1/2 K _ j , 2 

"^0=[ n ^ ] y ^̂ p {~ 2 s *̂(yfc - ^)^}^^=[ n ^ ] ^̂ p {~ 2'^}^^( 2^ ̂ '̂ ) 

Similarly under the hypothesis Hi , we obtain the marginal likelihood as follows: 

K 1/2 K 

m,i - [n^]>/^(E-0"'7°° (TITP)""^^^{- ^of^ l rX^^ 
Thus, the Bayes factor for comparing Hi to Ho is given as follows: 

It is easy to see that .Bio is an increasing function of Q. This is intuitively appealing as the larger Q, the more 
evidence in the data supporting the alternative hypothesis H i . When (5.2) is assumed for the random effects in
stead of (5.6), an exact connection between the Bayes factor and the Q function is not available. However, in this 
case, we can show that under the same prior specification for /J, and r^, the marginal likelihood under hypothesis 
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Of heterogeneity iHi) is given by ml = [nf=i ^ ] V2̂  J^ [ ( E L I i q ^ ) " [uLi 7 = ^ ) x ^̂ P { -

iEk=i T^^ iv i^ - K r ' ) ) ' } v ( ^ a m ^ ^ M - ^ d r \ where Kr ' ) - ( j l t i T ^ ) ' ' Ef=i T ^ V k - After 
some algebra, it can be shown that the corresponding Bayes factor is given by 

ml f°°\( Y k̂=l̂ k \l/2 /Iv-^ WkT^ 2 , I v ^ 'Wk , . . , 2SN2\ 

Using (5.8), we obtain that the upper bound of J5J*Q is 

and the lower bound of B\Q is 

/o W t T . ^ ^ --P{2(l + . o . . „ r ^ ) ^ + 2 g r T ^ ( ^ - ^ ( - )) }f(^)P)^exp(--,) . . , (5.10) 

where tt;™™ = min{iufc, /c = 1,2,.. . ,K} . Due to the two bounds of the Bayes factor B*Q given by (5.9) and 
(5.10), we expect that BIQ increases as Q increases. In the proposed grant, we will empirically examine this 
property via several simulation studies and examine further theoretical connections between S*o and Q for 
the normal model and a variety of other models, including meta-analytic models based on generalized linear 
models, models for longitudinal data and survival models. The Bayesian justification of Q is important and 
significant as it sheds light on the use of Bayesian model criteria such as DIC or Bayes factor for assessing 
heterogeneity across K studies without resorting the asymptotic distribution of Q and the extension of the Q 
function to more complex models such as meta normal mixed-effects models below. 
Bayesian meta-analysis for multiple aggregate responses data per study. We consider meta-analysis 
models that accommodate q aggregate responses, p aggregate covariates of interest that we model as fixed-
effects, and r aggregate covariates that we model as random-effects across K studies. The q aggregate 
responses typically would correspond to q treatments for example. Let yjk denote the aggregate response with 
a known precision parameter Wjk, Xjk denote a p-dimensional vector of aggregate fixed-effect covariates, and 
Zjk denote a r-dimensional vector of aggregate random-effect covariates. The meta-analysis model assumes 
that for fc= l , . . . , i<'andi = l , . . . ,q, 

Vjk = x'jkfi + z'jklk + Hk + €jfc, ejk ~ JV(0,wj^), (5.11) 

independently, where fi = i l3i,..., Pp)' is the vector of regression coefficients corresponding to p aggregate 
fixed-effects covariates, 7^ = (7^1,.. .,^kr)' is the vector of random regression coefficients corresponding to r 
aggregate random-effects covariates. and 

fXk = iPik, • • •,l^gk)' = M + ^A, 4 = (6fe, • • •,^gk)' ~ N^O, V), and 7fc ~ A r̂(0, r ) , (5.12) 

where p. — i)i-[,p,2,--•,P'q)', t̂  is a g x ĝ  covariance matrix, r is a r x r covariance matrix, and /x^ and 7 .̂ are 
independent. In (5.11). the random-effects covariates Zjk may be useful in correcting potential study bias. In 
(5.2), when V — 0 and r = 0, then fi.^ - • • • = fij^ = fj, and 7^ = • • • = 7^ = 0, indicating that there is 
no heterogeneity across K studies. As p,k in (5.12) is a g-dimensional vector of random effects, the classical 
definition of Q given in (refQstat) is not well defined. However, the Bayesian QB defined in (5.5) can be easily 
extended to this case. Specifically assuming 7r(Ai) oc l, after some algebra, we can show that Q B = Y,k=iiyk -

eyWkiyk - ^), where yk = (j/u-,• • •,y^k)', Wk = diag(u;u,.• .,w,k), 0 = (Zt i^k 'WkX;^) ' 'ELI^^ 'WkVk, 
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X^ = iXk, Iq) is a qx ip -F q) matrix, Xk = ixik,..., x^k)' \saq x p matrix, and Ig is the q x q identity matrix. 
Similar to Cochran (1954), we can show that under the hypothesis of homogeneity, i.e., V = 0 and r = 0, 
QB ~ XIK-Q-P 9'V6" *^a^ P "^ l i ^ " !)• "'o carry out Bayesian analysis of the meta-analysis model specified 
by (5.11) and (5.12), we may further take independent inverse Wishart priors for V and F. In the proposed 
research here, an efficient Gibbs sampling algorithm will be developed for carrying out posterior computations, 
and the theoretical connections between QB and the Bayes factor will also be examined in detail. 
Bayesian meta-analysis via random effects generalized linear models for continuous or discrete data. 
To accommodate subject level continuous or discrete responses and subject level or aggregate covariates, 
we propose random effects generalized linear models (REGLM) for meta-analysis. Suppose that there are p 
covariates of interest that we model as fixed effects, r covariates of interest that we model as random effects, 
and q random treatment effects across K studies. Let yijk denote the subject level response, let the fixed-
effects covariates for subject i be denoted by Xijk = (^fei, • • •, Xijkp)' with corresponding regression coefficients 
fi = (/3i,...,/?p)', and let the random-effects covariates for subject i be denoted by Zijk = izijki,• • •,Zijkr)' 
with corresponding regression coefficients 7 ,̂ = i'yki,---,ikT)' for? = 1,2,...,njk, j = 1,2,...,q, and k = 
1,2,...,K. As discussed in Aitkin (1999). we let Xijk = Xjk for all i for aggregate covariates. We propose a 
REGLM for meta-analysis as follows: 

fiyijk\xijk,fi,'rk^lt-jk,o-) = exp \a~\ia)iyijk9ijk - bi0ijk)) + ciyijk,a)j , (5.13) 

where %fc = 6iriijk) is the canonical parameter, rjijk = a;̂ ,̂/3 -h z'̂ jĵ jk + l̂ jk> and cr is a dispersion parameter. 
The functions a, b and c determine a particular family in the class. The functions aijkia) are commonly of the 
form aijkia) = a~^u;~A, where the Uijk's are known weights. When 6ijk = %jfc, the link is said to be canonical. 
Furthermore. (5.12) is assumed for (ijk and 7 .̂. The REGLMs are quite general, which include the normal linear 
regression, logistic and Poisson regression with random effects. 

Under the REGLM, we allow for missing data in either responses or covariates. We assume that miss
ing response or covariates are nonignorably missing. Let fixijk,Zijk | a) denote the joint distribution of 
the covariates. The missing data mechanism is defined as the distribution of the (p -f-1) x 1 random vector 
dijk = idijko, dijki, dijk2, • • •, dijkp,dijk,p+i, •••, dijk,p+r)', where dijko = 0 if yijk is missing and dijko = 1 if yijk is 
observed, dijki = 0 when Xi.jki is missing and dijki = l when Xijki is observed for / = 1,2, • • • ,p, and dijki = 0 
when Zijki is missing and d ĵki - 1 when Zjjki is observed for / = p -i-1,2, • • • ,p + r,. The joint distribution of dijk 
is written as fidijk\yijk, Xijk, Zijk, 4>). We assume that Xijk, Zijk and Vijk are independent of the random effects 
p,k and 7fc. Note that when some components of Zijk are identical to those in Xijk, the dimension of dijk will be 
reduced. We model both distributions by a sequence of one-dimensional conditional distributions proposed by 
Lipsitz and Ibrahim (1996), Ibrahim, Lipsitz and Chen (1999), Ibrahim, Chen, and Lipsitz (2001). Huang, Chen, 
and Ibrahim (2005), and Chen et al. (2008). Since dijk is a vector of binary missing indicators, we use a binary 
regression model with probit for each one-dimensional conditional distribution in fidijk\yijk,Xijk,Zijk,(f>). Due 
to the weak identifiability of the dijk model, the collapsing technique proposed by Huang, Chen, and Ibrahim 
(2005) will be used in the development of an efficient MCMC sampling algorithm. 
Bayesian meta-analysis via generalized linear mixed models for longitudinal data. We extend the REGLM 
given by (5.13) to the generalized linear mixed model (REGLMM) with random effects to account for longitudinal 
data in meta-analysis. To this end, at time t, we let yujk denote the subject level response at time t, let the 
fixed effects covariates for subject i be denoted by xujk = ixtijki,---,xujkp)' with corresponding regression 
coefficients fi = iPi, . . . ,j3p)' for i = l , 2,.. .,njk, and let the random effects covariates for subject i be denoted 
by ztijk = iztijku- • •,ztijkr)' with corresponding random regression coefficients 7̂ ,̂ = if iki,. • • ,'yikr)', for t = 
l , . . . ,Ti jk, i - 1,2, . . . ,n jk , j - l , 2 , . . . , q , ar\d k - 1,2, . . . ,K. Following Ibrahim, Chen, and Lipsitz (2001). we 
propose the following GLMREM for longitudinal data: 

fiytijk\xujk,Ztijk,lik^fi,liiki,P'jk2^<^) = exp \a'̂ ^ f̂̂ ia-)iytijk6tijk - biSujk)) + c(2/(yfc,(7)|, (5.14) 

where dujk = divnik) is the canonical parameter, 

Vtijk = x'ijkfi + z'tijklik + Hk\ + P-mQit). (5-15) 
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git) is a g*-dimensional vector of known functions of t, and o- is a dispersion parameter. Let /ẑ . = (^ifci,..., Hqki, 
Mifc2' • • • 'Kfcs)'- ^® assume that fik an6 p,k si's independent, -jik ~ A'r-(0,r) and p,k ~ •Wg(n-g')(M. V)> where 
r and V are unknown covariance matrices. In (5.15), pjjti and /x^j capture the main treatment effects and 
the treatment and time interaction effects. The proposed GLMREM is more general than the one proposed by 
Lopes, Muller, and Rosner (2003). In the proposed research, we will carefully examine model identifiability and 
develop an efficient computational algorithm. In addition, we will also allow for nonignorably missing responses 
and/or covariates. 
Bayesian meta-analysis for semiparametric models for survival data with gamma process priors. Let 
yijk denote the subject level time-to-event (failure time) and let t/ijk denote the censoring indicator such that 
î ijk = 0 if yijk is a failure time and i/ijk = 1 if yijk is right censored. Also.Jet TZit) = { i i , j , fc) : yijk > t} denote 
the set of subjects at risk at time t. We develop semiparametric models for the yijk with gamma process priors 
for meta-analysis. Assume the Cox proportional hazard regression model (Cox, 1972,1975) for yijk with hoiy). 
Let r]ijk = expix'iji^fi -\- z'̂ jî T̂k + /J'jk), then the full likelihood function is given by 

K q "j/c K q •n-jk 

. [ n flfl(^o(2/i^^)%fc)''"'] exp{ - 5 ] ^ j]//o(y,,fc)77i,fc}, (5.16) 
A;=l j=lj=l k=lj=l i=l 

where Dofcs = {iyijk,î ijk,Xijk,Zijk), i == 1,2,... ,njk,j ^ l , . . . , q , k ^ l , . . . ,K}, and ifo(y) = J^ hoiu)du is the 
cumulative hazard function. Then, (5.12) is assumed for the random effects Hjk and 7 .̂. 

Let Lpifi,fii,...,p,j^,'Yi, • • • jjKl^obs) denote the partial likelihood. Sargent et al. (2000) treat the par
tial likelihood Lpifi,fj,i^,... , ^^^ ,71 , . . . ,7j<-|I?obs) as the 'likelihood" and then carry out Bayesian inference for 
the random-effect survival analysis. In this proposal, we carry out Bayesian inference based on the full like
lihood given by (5.16) via a gamma process prior for Hoiy). Kalbfleisch (1978) and Sinha, Ibrahim, and 
Chen (2003) show that the partial likelihood can be obtained as a limiting case of the marginal posterior of 
(/3, /Ltj,..., /Lt;̂ , 7 i , . . . , 'yj^) with continuous time survival data under a gamma process prior for Hoiy) using the 
likelihood function (5.16). Thus, the full likelihood based approach is more general than the one based on the 
partial likelihood of Sargent et al. (2000). Assume the baseline cumulative hazard function Hoiy) ~ GPiH*,CQ), 
where GVi, •) denotes a gamma process, H*iy) is a known increasing differentiable function and CQ > 0. Let 
2/(1) < y(2) < < y{n') be ihe n* distinct failure and censoring times of the yijk's. Write y(<) = yijk, and I'ijk, 
denotes tne corresponding censoring indicator for / = l , 2,... ,n*. Following Chen, Ibrahim, and Shao (2006), 
we can show that after integrating out Hoiy), (5-16) reduces to 

exp 
_ , ., fco + A + i \ i TT I" u*( M f̂  ^Mx'ijkP + z'ijk'Yk + l̂ jk)̂  ooHiy(t))los{^-^-^-^)\ l l -co/. (,(,))log 1 ^ - ^ ^ 

(.i,j,k)eV[y^i)) L 

^ i jk i • 

(5.17) 
where Viy î)) = {i -. ŷ ĵ  = ŷ i),î ijk = 1} (i.e., the failure set at ŷ i)), Ai = J2{i,j,k)€ny l̂̂ )^Mx'ijk/3 + 
'̂ijkTk + l^ik), ar\6h*iy) = ^ ^ ^ . ltcanbeshownthatlimco_o^(co), i(/3,Ati,...,/i^,7i,...,7K|-Do6.,co) = 

Lpifi, P l , . . . , p,K>li >•••> iKlDobs), where K(co) is a parameter-free function of co, which is the partial likelihood 
used in Sargent et al. (2000) for the meta-analysis of survival data. 

We specify an improper uniform prior tor fi (the coefficients for the fixed-effects covariates) and /x (the 
overall mean of the random-effects p-k) and inverse Wishart priors for V and r (the covariance matrices of 
random-effects Pk and 7^). In the proposed research, the conditions for the propriety of the resulting pos
terior will be established, and an efficient Markov chain Monte Carlo (MCMC) algorithm via the introduction 
of several sets of latent variables will be developed by extending the novel MCMC algorithm proposed by 
Chen, Ibrahim, and Shao (2006) to the semiparametric survival model with random-effects. In (5.17), we 
also allow missing covariates. Furthermore, we will also develop a more general semiparametric survival 
model to allow the baseline hazard function to vary across different studies. Specifically instead of (5.16), 

we assume Lifi,n^,...,pji,hoi,... ,hoK\Dobs) - [U.k=iUUiYlZMf^okiyijk)expix'--ĵ fi -{- z'.jĵ -fk + ixjk))'"'̂ '' 

exp { - Ef=i El=i E Z \ fJokiVijk) ^M^'ijkP + '̂ijklk + Hk)], where Hokiy) - /J' hokiu)du is the cumulative 
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hazard function. Then, we assume Hokiy) ~ GViH*,co) independently In this case, H* is allowed to.depend 
on certain unknown parameters. 
Nonparametric models for random-effects in meta-analysis. In (5.2) and (5.12), we assume parametric 
normal models for random-effects /x^ and 7/.. The parametric assumption can be removed by assuming a 
mixture of Dirichlet process (MDP) for the random effects. Burr and Doss (2005) develop a version of MDP for 
random-effects in the context of meta-analysis. Following Kleinman and Ibrahim (1998a, 1998b), we assume 
/ifc - /Lt ~ G and 7̂  ~ F, where G and F are general distribution functions and then assume G ~ DPiMg • 
NqiO,V)) and F ~ DPiMp • NriO,V)), where V and r are unknown covariance matrices, and M G and Mp 
are two positive scalars, which reflect a prior belief about how similar the nonparametric distributions G and 
F are to the base measures NqiO,V) and NriO,V). In the proposed research, computational algorithms will 
be developed to carry out posterior computations and the properties of the posterior with a MDP prior will be 
examined in detail. All of the proposed models above will be applied using datasets from ACORN, CanCORS, 
SEER, and ACCENT, as mentioned in Section 2.1. 

5.2 Bayesian Trial Design Using Meta-analytic Models 
Bayesian design of non-inferiority trials. We first develop a new but general method to determine Bayesian 
sample size for a non-Inferiority trial. Denote the data associated with a sample size of n by y "̂̂  and let 6 be 
the vector of all model parameter Then, the joint distribution of y^") and d is written as /(y(")|0)7r(0), where 
7r(0) denotes the prior distribution. Let hid) is a scalar function that measures the '1rue" size of the treatment 
effect. Let 5 denote the non-inferiority margin. Similarly to Hung et al. (2003), we assume that the hypotheses 
for non-inferiority testing can be formulated as follows: Ho: gid) > 6 versus Hi : gid) < 5, where gi6) is a known 
scalar function of 6. Consequently, we let ©0 and 61 denote the parameter spaces corresponding to Ho and 
Hi. In terms of non-inferiority, Hi defines a successful trial. 

Following Wang and Gelfand (2002), let n^^^d) denote the fitting prior and n^^\6) the sampling prior. Further 
we let /(''^(y"^) denote the marginal distribution resulted from the sampling prior. Now, we introduce the key 
quantity 

^(") = E,[l{Pihie) < <S|y("),7r(/)) > 7}], (5.18) 

where the indicator function l{yl} is 1 if ̂  is true and 0 otherwise, 7 > 0 is a prespecified quantity the probability 
is computed with respect to the posterior distribution given y(") and n^f\9), and the expectation is taken with 
respect to the marginal distribution of y'"^ under the sampling prior n[^ (6). _ 

Now. we propose a new Bayesian SSD algorithm as follows. Let 9o and 61 denote the closures of ©0 and 
©1. Let TT̂  (9) denote a "sampling prior" with support QB = ©Q n ©i. Also let n[^\d) denote a "sampling 
prior" with the support Ql c ©1. For given ao > 0 and ai > 0, we compute no = min{77 : (3̂ ^̂  < ao} 
and ni = min{n : /J^"^ > 1 - a i } , where /3̂JQ and /3̂ "̂  are given in (5.18) corresponding to n̂ '̂> — TT̂ *̂  and 
7r(*) = Trp. Then, the Bayesian sample size is given by 

ns = max{no,ni}, (5-19) 

According to'the 2006 FDA Guidance Document, we choose 7 > 0.95. Common choices of 0:0 and ai include 
ao - 0.05 and Ql = 0.20 so that the Bayesian sample size UB given in (5.19) guarantees that the type 1 error 
rate is less than or equal to 0.05 and the power is at least 0.80. In addition, for a given sample size UB, the 
operating characteristic curve can be constructed by varying ©J inside of ©1. If /i(9) is a monotonic function of 
the distance between ©J and QB, then the far ©J is away from ©s, the higher the power will be. We will examine 
the properties of the proposed Bayesian SSD via several examples and apply this algorithm to Bayesian clinical 
trial design using the meta-analytic models developed in Aim 1. 
A simple illustration: i.i.d. normal case. Suppose yi, 1/2,•••,2/n are i.i.d. Ni9,w~'^), where w \s a known 
precision parameter Suppose the hypotheses for non-inferiority testing are formulated as follows: HQ: 6 > 5 
versus Hi. 0 < 5.\Ne specify an improper uniform fitting prior for 9, i.e., n^^\0) a 1. In addition, we specify two 
point mass sampling priors for Q such that n^'iO) = l\t 9 = 5 and TTJ (0) = 1 if ^ = 0. After some algebra, we 
can show that (i) a necessary condition for achieving a type I error rate of ao is 1 - 7 < ao and (ii) if 1 - 7 < ao, 
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the Bayesian sample size in (5.19) is the smallest integer TIB satisfying 

TIB > - ^ h - \ l - ai)-^ ^ - \ ^ ) \ \ (5.20) 
wd'̂  L J 

where $ denotes the NiO, 1) cumulative distribution function. It is interesting to note that for this simple case, 
Po ^ "0 always holds for all n when 1 - 7 < ao. We also note that the Bayesian sample size UB in (5.20) is 
identical to the classical sample size formulation for a one-sided alternative hypothesis. However, if we apply 

ALC to a one-sided alternative hypothesis, the resulting Bayesian sample size is given by UALC > ^ ^ " H T ) 

by considering a one-sided 1007% credible interval, which implies that ALC leads to a 50% power at S - 0. Thus, 
if ai < 0.50, the sample size obtained from ALC cannot achieve the desirable power of 1 - a i . 
Bayesian trial design assuming a single aggregate response per study. Suppose we consider a Bayesian 
trial design of K random non-inferiority trials and let yk denote the aggregate response with a known precision 
parameter Wk. We assume the meta-analysis model given by (5.1) and (5.2) for the yk- Suppose the hypotheses 
for non-inferiority testing are formulated as follows: HQ: IJL>5 versus Hi : n<5.V\le are interested in determin
ing K to achieve a prespecified type I error and a prespecified power We specify an improper uniform fitting 
prior for p., i.e., n^^^p) oc 1. Assume 1 - 7 < ao- In this case, QB = {fi — 5}. We specify point mass sampling 
priors for p, such that n^ \̂)j.) = 1 if /x = 5 and n["\fi.) - l \ t f j , -0. The fitting conditional posterior distribution of fj, 
given r is ofthe form /x|r2,yW ~ Nif,iT^),a^ir^)), where yW = (2/1,... ,2//^)', Kr^) = a^ir^)Y:k=i j ^ y k , 

and cr2(T )̂ = ( l ^ j ^ i 14^^ ) • We assume the same proper inverse gamma for r̂  for both the fitting prior 
and the sampling prior. Underthese assumptions. (5.18) reduces to 

e) = E,(l{E,[*(*^)]>,}), (5.21, 

where the expectation E j is taken with respect to the marginal fitting posterior distribution of r .̂ When r̂  is 
fixed, the Bayesian size of meta-analysis is available in closed-form. Specifically, when 1 - 7 < ao, we can show 
that K B is the smallest integer K satisfying the following inequality 

ft* 

k=i - "^ ̂ ^'^'^ "̂̂  

When T̂  is unknown, we propose a simulation-based procedure for computing /?^^' in (5.21). We specify 
fitting and sampling priors for r̂  and also assume p and r̂  are independent apriori. Let /^^Hl/^^') denote the 
marginal distribution of y'^) under the sampling prior n^ '̂>in,r^). Also let {y-^ \ i = l , . . . ,N} denote a Monte 
Carlo sample from /^^^y^^^). For each y \^ \ we generate a Monte Carlo sample {rfj, j = l , . . . ,M} from the 
fitting posterior iT'^f\T'^\y\^^). Then, a Monte Carlo estimate of /Sî ^ is given by 

i = l '^(^) 

Applying (5.23) to the sampling priors 7r^*^(^,r^) and n[^\i.i,T'^) yields the Monte Carlo estimates of filP and 
p l f \ Then, we choose K B to be the smallest integer satisfying K B > mm{K : fii^' < ao and fii^ > 1 - ai} 
to achieve the prespecified type I error rate of ao and the power of 1 - ai . Thus, the implementation of the 
proposed simulation-based procedure is straightfonward. 
Bayesian trial design with random effects generalized linear models. We propose a general simulation-
based approach for Bayesian trial design in the REGLM. Suppose we have the subject level continuous or 
discrete responses yijk's and we are interested in the REGLM model in (5.13) for ŷ jk for i = 1,2,...,njk, 
j = i,2,...,q, and k = l,2,... ,K. Since there are q treatment arms, we assume that the hypotheses for 
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non-inferiority testing can be formulated as follows: Ho: gip) > S versus Hi : gip.) < S, where gip) denotes 
a vector of G linearly or functionally independent contrasts of treatment effects p and 5 is a G-dimensional 
vector of prespecified margins. When q = 2,we may simply consider a scalar contrast gip) = /U2 - / i i , which is 
sufficient for most applications in clinical trials. 

For the subject level meta-analysis model, our design problem becomes much more complex than the case 
with only aggregate responses. To make the design via meta-analysis models more feasible, we assume 

rijk — (t>iknk for j — l,2,...,q, and rik — Kkn \or k — 1,2,... ,K, (5.24) 

where both (t>jk and Kk are prespecified nonnegative constants such that J^j^i 4>jk = 1 and Y^k=i % = 1-
Under this setting, the total sample size based on the entire meta-analytic model is n. We note that (5.24) is 
quite general and flexible, which allows cjijk — 0 for certain treatment arms. This implies that our setting allows 
an unbalanced design for certain studies. We further assume that the covariates ixijk,zijk) are generated 
from a prespecified joint distribution, fixijk,Zijk \ a), where a is determined from the prior studies. From 
the design point of view, fi, a, T, and V are considered as nuisance parameters. Let d - ip,fi,a,T,V). We 
specify the fitting prior as follows: n^^\9) oc n^^\fi,a,r,V), which assumes an improper uniform fitting prior 
for /Lt. The sampling priors are specified as follows: 7r̂ *'(0) = n^^\p)n^^\fi,a,r,V), where nl)^\p) is a proper 
prior with the support {p. : gip.) = S} and n^^\fi,a,r,V) denotes the sampling prior for fi, a, r, and V, 
and n[^\d) = n[^\p,)n^^\fi,a,r,V), where n[^\p) is a proper prior with the support {p -. gip) = 0}. This 
essentially assumes that the same fitting prior for nuisance parameters fi, a, T, and V in computing the type I 
error and the power. 

Under the above setting, (5.18) reduces to 

/?(") = E,(l{Ef[l{gip) < S}] > 7}), (5.25) 

where the expectation E j is taken with respect to the marginal fitting posterior distribution of p and the expec
tation Es is taken with respect to the sampling distribution of the yijk under the sampling prior. We will develop 
a simulation-based approach for computing /3r . Specifically, we generate ixijk,Zijk) from fixijk,Zijk \ a.), 
then generate d from the sampling prior 7rW(0), which is either n^o'iO) or n^'iO), and finally we generate yijk 
according to (5.13). For each set of the data iyijk,Xijk,Zijk), we generate a Monte Carlo sample of p from 
the fitting posterior. Using these Monte Carlo samples, we can easily obtain a Monte Carlo estimate of ^fli"^ 
and then calculate the Bayesian sample size UB for the entire meta analysis. Moreover, for the random effects 
normal linear models or the random effects normal linear mixed models, we will develop a more efficient Monte 
Carlo estimates of p i^ \ Finally we note that the design of the meta-analysis given in (5.24) can be used in 
three different scenarios/applications: (i) no individual trials are completed; (ii) individual trials are partially com
pleted; and (iii) all individual trials are completed. In (ii), given that Ko individual trials are completed and the 
desired power is not met yet, the proposed Bayesian SD allows us to add K - Ko additional new individual 
trials to achieve a prespecified power In (iii), the proposed Bayesian SD can be used to determine how many 
studies are needed to achieve the desired power In addition, the proposed Bayesian SD can easily account for 
covariates in the design of a meta-analysis. 
A simulation study for random effects binomial models. We conduct a small simulation study to examine 
the performance of the proposed Bayesian SSD using meta-analytic models in non-inferiority clinical trials. 
We consider random effects binomial models with the logit link for the aggregate responses yjk's as follows 
fiVjkli^jk) = expiyjkp,jk)/[l + expii.ijk)p'' and p,jk ~ NiiJ.j, a"̂ ) independently for i = l , 2 and fc - l , 2,.. . , 8, 
where "j = 1" denotes the test group and "j - 2" denotes the control group. The hypotheses for non-inferiority 
testing are given by HQ : /ii - M2 > ^ versus Hi : m - 1̂2 < S. We consider a balanced design for four trials 
and an unbalanced design for other four trials. The sample sizes are given as follows: 

Group 
Test 
Control 

Sample Size 
154 279 284 694 716 269 174 221 
254 282 - 520 382 -
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Based on the prior information from actual previous clinical trials, the non-inferiority margin, 5 = 0.42, was 
determined. The fitting prior is specified as follows n'-^^p) oc 1 and independently a'j ~ c?(o.001,0.001) for 
j = 1,2. Similarly to Wang and Gelfand (2002), let ^2 ~ t/(-2.4,-2.0), reflecting the non-inferiority rates 
between 0.08 and 0.12. Then we set /xi - IJ,2 + S for TT̂ '̂ and fii = fj.2 for TTJ*' . 7 - 0.95 was used throughout the 
simulation study When the fitting prior for a? is C/(0.001,0.005), reflecting a small heterogeneity across 8 trials, 
using the Monte Carlo sizes A'' = i , 000 and M = 5,000. the Monte Carlo estimates of the type I error and power 
are 0.004 and 0.794. When the fitting prior for o-̂  is f/(0.01,0.05) reflecting a moderate heterogeneity across 
8 trials, the estimated type I error and power are 0.01 and 0.573. When the fitting prior for a^ is J7(0,02,0,08) 
reflecting a large heterogeneity, the estimated type I error and power are 0.012 and 0.464. These results are 
expected because the power using these meta-analytic models decreases when the heterogeneity increases. 
Surprisingly under various sampling priors for afs, the Bayesian type I errors are well controlled and all are 
less than 0.05. These empirical results demonstrate that the proposed Bayesian SSD is quite promising. 
Design of Bayesian meta-analysis for semiparametric models for survival data with gamma process 
priors. For the semiparametric models for survival data with gamma process priors, the full likelihood function 
is given by (5.16). For the subject level meta-analysis model for survival data, we consider the same design 
setting, the same hypotheses for non-inferiority testing, and the same fitting prior and sampling priors as the 
ones for the random effects generalized linear models. However, for survival data, it becomes more difficult for 
Bayesian SSD, which may be partially due to the censored failure times and partially due to the use of gamma 
process priors for the cumulative baseline hazard. In particular, it is quite challenging to generate the survival 
times yijk from their joint marginal distribution under the sampling priors as well as to sample from the posterior 
distribution under the fitting prior Our major effort here will be on developing efficient Monte Carlo algorithms 
for generating Monte Carlo samples from these distributions. 

We first develop a simulation algorithm for sampling the yijk from the marginal distribution under the sampling 
prior. To generate Hoiy) ~ QViH*,co), let fo = 0 < ti < 2̂ < ... i j to be J knots so that tj - t j - i is small 
and t j is sufficiently large so that the failure time will not exceed t j practically. Let hoj = Hoitj) - Hoitj-i) 
and h*Qj = H^itj) - H^t j - i ) for j = 1,2,..., J. Due to the property of the gamma process prior, we generate 
hoj ~ ^(coftSj,'^) independently for j = 1,2,..., J. Then, we compute ifo(%) = Sf=i^oj for j = 1,2,..., J. 
Similarly to the random effects generalized linear models, we generate ixijk,Zijk) from fixijk,Zijk \ a), and d 
from the sampling prior n^^\d), and compute exp(x-̂ /̂3 -1- ẑ fc7fc + p-jk)- Then the failure time Tijk is generated 
as follows. Let Uijk ~ C/(0,1). Let j * be an integer such that 

exp { - Hoitj'+i) expix'ijkfi + z'ijkJk + l^jk)} < 1 - Uijk < exp { - Hoitj*) expix[jkfi + z'ijkn/k + IJ-jk)}-

Using the linear interpolation technique, we set 

[(1 - Ujjk) - exp { - Hoitj*+i) expix'.ji^fi + z'̂ -f̂ -fk + l^jk)}]Hr-^-i - tj*) 
Hjk — t j ' T exp { - Hoitj') expix^ji^fi -|- ẑ fc7fc -f p.jk)} - exp { - Hoitj>+i) exp(x^j.^ + z^^.7^ -f fijk)}' 

Independently we generate a censoring time Cijk from a uniform distribution [/(Ci, C2). Then yijk = mm{Tijk, 
Cijk} and i/ijk = 1 if yijk = Tijk and î ijk = 0 otherwise. 

Next, we discuss how to sample from the posterior distribution under the fitting prior. Let y(a) < ŷ 2) < 
••• < y(„.) be the n* distinct failure and censoring times of the yijk's. Write ŷ ^ - yijk, and î ijkf denotes 
the corresponding censoring indicator for I - l ,2,...,n*. Following Chen. Ibrahim, and Shao (2006), after 
integrating out Hoiy), we have 

Lifi,pi,... ,/x^,7i,... ,7/f l̂ ofcs.co) = n ] ^̂ P [co^*(y(;)) log ( ° _̂  "̂̂  

X n 
(i,j,k)eV{y^i)) 

- Coh (,(,) log 1 - ^ - ^ ^ -
n V, 'ijki ' 

,(5.26) 
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Where Viy î)) = {I -. yijk = y(i),Uijk = l}, Ai = T.(i,j,k)i•R(v̂ ,̂ ) ^M^-jkl^ + 4^7^ + l̂ jk), and h*iy) = ^ ^ . 
Observe that 

- coh (,(o) log 1 ^ ^ 
"Hh, -1 »oo 

= / / ew{'̂ ijk,iXijkfi + Zijk'rk + Hk)} 

X exp ^ - tijk (1 - î ijki) + î ijk, [co + A i - Uijkexpix'ijkfi + ẑ jk-Yk + l^jk)j jdtijkd^ijk (5.27) 

and exp [co/i(* log [ ^ ^ \ J = / expi-hiAi) ^ ' expi-cohi)dhi, (5.28) 

where /IQ, = -ff*(y(/)) - H*iy^i_i)). Using (5.26) to (5.28), we can develop a very efficient Markov chain Monte 
Carlo sampling algorithm via three sets of latent variables w = iuijk), t = itijk), and h = (/i;). Once these two 
Monte Carlo samples are obtained, computing /3l"^ in (5.25) is straightfonward. 
Missing data and other considerations. Missing data are inevitable in clinical trials. In Bayesian design of 
for non-inferiority trials using these proposed meta-analytic models, we will carefully investigate the impact of 
missing data on the power and the type I error rate. 

We will develop a simulation-based approach to quantify the effective sample size due to missing responses 
and/or covariates. In the proposed research, we will also examine theoretical and empirical connections be
tween the proposed Bayesian SSD method and other existing criteria such as ACC, ALC, and WOC. The prior 
specification plays an important role in Bayesian SSD. The prior specification tor the unknown variance and 
covariance parameters under the random effects generalized linear models or generalized linear mixed models 
becomes even more crucial. Based on our preliminary analysis here, the sampling priors should be much more 
informative than the fitting priors. In the proposed research, we will consider and extend the priors discussed in 
Gelman (2006) for the unknown variance and covariance parameters and we will also conduct various sensitivity 
analyses of the specification of fitting prior and sampling priors. 

5.3 Meta-Analytic Methodology of Diagnostic Tests without a Gold Standard 
Meta-Analytic methodology of two diagnostic tests without a gold standard using maximum likelihood 
and full Bayesian methods, estimating the accuracy of two imperfect diagnostic tests (A and B) in a meta
analysis or a multi-center clinical trial. According to convention, we focus on dichotomized test results as the 
outcome of interesL For study i(i = l , 2,. . . , I), let Pijk = Pr(A = j , B = fc) be the'joint probability of test results 
and Uijk be the corresponding observed count, j , fc = 0, l. Let m be the study-specific disease prevalence, and 
let iStiA, SciB, SpiA, SpiB) be the corresponding sensitivities and specificities for test A and test B. Under the 
assumption that the two tests are independent conditional on the true disease status, study-specific prevalence, 
sensitivities and specificities, we have the following relationship: 

Pill = niSeiASeiB + (1 - 7ri)(l - Spa)(l - SpiB),Piw = n.SeiAil - Seis) + (1 - 7r0(l - SpiA)SpiB, (5.29) 
-PiOi = niil - SeiA)SeiB -f (1 - 7rj)5pM(l - SPIB), PiOO = M l - 5ej^)(l - Scis) + (1 - ni)SpiASpiB-

It is well known that if the conditional independence assumption is falsely assumed, parameter estimates can 
be biased (Vacek 1985; Torrance-Rynard and Walter 1997; Dendukuri and Joseph 2001). When the possi
bility of conditional dependence cannot be completely ruled out, as a sensitivity analysis to the conditional 
independence assumption, we extend the model in equation (5.29) to allow dependence. Specifically, we will 
incorporate the residual dependence of the two tests given the latent disease status and study-specific random 
effects by assuming homogeneous residual dependence across all studies. Let pi and po denote the correlation 
of the two tests when the true disease status is positive and negative, respectively, equation (5.29) becomes 
(Vacek 1985; Shen. Wu. and Zelen 2001; Dendukuri and Joseph 2001). 

Pill = ni[SeiASeiB + (5ii] + (1 - 7r0[(l - SpiA)il - Spie) + 6oi], (5.30) 
•Piio = ni[SeiAil - SeiB) - Su] -I- (1 - 7ri)[(l - SpiA)SpiB - Soi] 
Pm = nilil - SeiA)SeiB - Su] -I- (1 - ni)\SpiAil - Spis) - 5oi\, 
PiOO ^ ni[il - SeiA)il - SeiB) + Su] -I- (1 - ni)\SpiASpiB + Soi], 

PHS 398/2590 (Rev. 11/07) Page 340 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., Ot a l . 

where Su = pis/SciASeiBil - SeiA)il - SC^B) and % = Po\/SpiASpiai^ - SpiA)il - SpiB) are the covari
ances between two tests among the diseased and non-diseased subjects in study i, respectively. The feasible 
range of correlations is determined by the sensitivities.among diseased subjects and specificities among non-
diseased subjects in each study Specifically the correlation coefficients pi and po satisfy 

SsiASeiB j i l - S e i A ) i l - Se iB) \ ^ <'".'"! jSeiAil - S t i s ) j i l - SeiA)SeiB 

SeiA)il - SeiB)' V SeiASciB \ \ \ i l - SeiA)SeiB'y SeiAil - SeiB) 

SpiASpiB i l - SpiA)il - Spis) \ . .min j jSpiAil - Spis) i l - SpiA)SpiB 
S Po S I (1 - SpiA)il - SpiB) ' V SpiASpiB I 1 V (1 ~ SpiA)SpiB ' V SpiAil - SpiB 

Although negative associations are possible, it seems more plausible that pi > 0(i = 0,1), which corresponds to 
positive dependence conditional on the latent disease status and study-specific randonri effects. If homogeneous 
conditional dependence between studies looks suspicious, methods allowing more complex dependent errors 
need to be considered, for example, by considering study-specific correlation coefficients pu and poi in equation 
(5.30). The homogeneous conditional dependence can also be specified by other parameterizations such as 
homogeneous odds ratio or relative risk (Bohning and Patilea 2008). In the presence of missing data'due to 
partial testing, structure and notation tor a study we denote the probabilities of study i to fall in categories A 
and B by wj^ and UiB-

Under the missing at random (MAR) assumption, the likelihood function can be factored into LiSi,'di) = 
Li0i) X Li'di), where 0i = ini,SeiA,SeiB,SpiA,SpiB,po,Pi) and ^i = (wî .Wijg). Assuming independence 
among subjects conditional on 6, the log-likelihood for6= i9i,02,... ,6i) is given by 

\ogLid\data) = ^ { n i n log(Piii) + naolog(Pao) + ^ioi log(Pioi) + r̂ too log(Pioo)+ 
i 

num log(Pni + -Pilo) + niOm log(Pi01 + PiOo) + rUml log(Piii -1- Piol) + TlimO log(Piio + Pioo)}, (5.31) 

where the relations among the components of Oi and Pijk are summarized in (5.29) under conditional inde
pendence or (5.30) under conditional dependence. Between-study heterogeneity commonly exists in a meta
analysis since studies usually differ in their subject recruitment methods and laboratory techniques as well as 
arguably in overall study quality as reflected in the study protocol and adherence to the protocol. Thus, mea
surements within a study tend to be correlated beyond what would be anticipated for measurements between 
studies. To take into account of the potential between-study heterogeneity of the prevalence, sensitivity and 
specificity, we consider a random effects model. We introduce covariate vector X to model study-level covari
ates effect on prevalence. The generalized linear mixed effects model can then be specified as follows: 

gini\ei) = Xr)-\-ei,giSeiA\P'iB) = aA + P'iA,giSeiB\p.iB) = ocB + P-iBigiSeiAlPiA) = 0A + î iA, (5.32) 

giSpiBWis) = PB + I^iB,i£i,l^iA,P-iB,'^iA,l^iB) ~-A^(0,E), 

where g(-|-) is the link function such as the commonly used logit, probit or complementary log-log transforma
tion functions. The diagonal elements of the variance-covariance matrix E capture the extent of heterogeneity 
of the parameters of interest across studies. If there is statistical or scientific evidence of homogeneity, the 
corresponding study-specific random effect(s) can be dropped from the model. We will adopt two approaches 
to make inference from the above random effects models. The first is a nonlinear mixed effects model (NLMM) 
(Davidian and Giltinan 1995; Vonesh and Chlnchilll 1997; Molenberghs and Verbeke 2005); the second is a 
Bayesian hierarchical model (Cariin and Louis 2000; Gelman et al. 1995). Since these two approaches use dif
ferent frameworks and different software, they can be considered complementary In most instances, inferences 
obtained by Bayesian and frequentist methods agree when weak prior distributions are specified. However, the 
Bayesian framework is particularly attractive when suitable proper prior distributions-can be constructed to in
corporate known constraints and subject-matter knowledge on model parameters (Davidian and Giltinan 2003). 
Furthermore, the Bayesian framework provides for direct construction of 100(1 - a)% equal tail and highest 
probability density (HPD) credible intervals of general functions of the estimated parameters without having to 
rely on asymptotic approximations. To avoid over-fitting the data with an excess of random effects, we used a 
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fonward selection procedure based on information criteria. Specifically Akaike's Information Criterion (AlC) and 
the Bayesian Information Criterion (BIC) will be used as the guideline (Burnham and Anderson 1998) lor NLMM, 
and the deviance information criterion (DIC) will be used for the Bayesian hierarchical models (Spiegelhalter et 
al. 2002). At each fonward step, we added a random-effect component that provided the largest improvement 
based on the above model selection criteria.Furthermore, we propose a graphical method, the Kappa agree
ment plot, to quantitatively validate the conditional dependence assumption for each study based on the final 
model. This plot is obtained by plotting the model-based marginal agreement between the two tests for study i 
measured by the Kappa statistics (/Cj) with 95% confidence (or credible) intervals, which corrects the agreement 
that may occur by chance alone, against the observed marginal agreement between the two tests for study i. 
The model-based Kappa statistics for study i can be computed by 

-Pill + PiOO - iPju + Piio)iPm + Pjoi) - jPioo + Piio)iPioo + fioi) ,5 33. 

1 - (-Pjll + •Pilo)(-fill + PiOl) — (-PiOO + Pilo)iPiOO + PiOl) 

If. the model based 95% confidence (or credible) intervals include the observed Kappa statistics at close to 
the nominal rate, then we would lack evidence to reject the conditional independence assumption. We will 
reanalyze the meta-analysis data of 17 studies to evaluate the accuracy of microsatellite instability testing (MSI) 
in predicting Lynch syndrome (Chen. Watson, and Parmigiani 2005), and use simulations to investigate the 
importance of including appropriate random effects and the impact of overtitting, under-fitting and misfitting on 
model performance using both the nonlinear random effects models and Bayesian hierarchical models. 
Meta-Analytic methodology of multiple diagnostic tests without a gold standard using full Bayesian 
methods, considered by Qu and colleagues for estimating the accuracies of multiple diagnostic tests in a 
single group (Qu, Tan, and Kutner 1996; Qu and Hadgu 1998), and propose statistical methods to estimate 
the accuracy of multiple imperfect diagnostic tests (> 3) in a meta-analysis or a multicenter clinical trial where 
heterogeneity is intrinsic among studies. Let the random variable Tj represent the classification based on the 
j " ' diagnostic test (j = 1,2,..., J) with Tj - IW test positive and Tj = 0 if test negative. Let D represent the 
disease status with 1 denoting a case and 0 indicating a non-case. Let Tijk represent the classification of the 
j " * test with a value 1 Indicating test positive and 0 indicating test negative on the fc"* subject (fc = 1,2,... ,ni) 
in the i*'' study (i = l , 2,.. . , / ) . For the relationship between imperfect measurements, in principle, we allow 
conditional dependent misclassification (i.e.. the imperfect measurements can be correlated conditioning on the 
latent disease status). Specifically the probability of disease in the i"^ study given study-level covariate vector 
X and random effects £j are modeled through a generalized linear regression model as, 

nikiX) = PiDik = l \ X , e i ) ^ g - ' i X r , + ei), (5.34) 

where g '^ i ) is the inverse link function. The positive classification probability for the fc"* subject in the i*'' study 
by the f^ diagnostic test is assumed to dependent on the latent disease status Dik, and a Gaussian latent 
variable Z capturing the correlation among J diagnostic tests for an individual and random effects pij and t̂ ij 
capturing the heterogeneity of sensitivities and specificities among studies for the j " * diagnostic test through a 
generalized linear regression model, 

PiTijk = l\Dtk = 1,Z = Zik,p.ij) = g ' ^ i a i j -f- a2jZik + p-ij), (5.35) 

PiTijk = l\Dik = 0,Z = Zik, Uij) = g '^iPi j + f32jZik + i^ij), 

where Zik ~ A (̂0,1) capturing the conditional dependence at individual level, and iei,tHj,Uij) ~ A''(0,E) captur
ing the between-study heterogeneity of prevalence, sensitivities and specificities, and /t^j = (Mii,/^i2, • • • ,Mij). 
i/ij - (i/ji, i/i2, • • • , lyij). Given the unusual large dimension of random effects, new technical and powerful com
putational tools need to be developed. Conditioning on the study-level random effects i£i,fHj,'^ij) ~ •/V(0,S). 
the marginal probability of observing subjects with Ti = t i , . . . , and Tj = t j In the î ^ study Pi(T,X) is 

/

+00 -^ / 

[ [ g - H c ^ i j + ĉ 2jZik + pUjY'̂ " [1 - g~\ocij + a2jZik + p^j)} '^' d$(z)+ 
•°° 3=1 

/

+0O J 

n 3 ~ \ P i j + li2jZik + uij)'^^" [1 - g-\f3ij + l32jZik + t^ij)} ' " d ^ z ) . (5.36) 
•°° j = i 
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Let Tii(T,X) be the number of subjects with covariate vector X in the î ^ study classified by the diagnostic 
test vector T = i t i , t2, . . . , t j ) . The conditional likelihood function for (»j,a,j8,E) with the study-level ran
dom effects iei,pij,t/ij) is the product of the contribution from each category, that is L(dato|ij,a„^,E) = 
n inx^ i (T,X)" ' (T,x) |_gt the prior joint distribution of (jj,a,;9,E) to be specified as /(i/,a,/3,E), then the 
posterior joint distribution /(17, a,/3,E|data) is proportional to 

/(77,a,/?,E|data) ^ll'[[PiiT,X)"^^'^''^'>fiei,fiij,,^ij)fiT),a,fi,'S). (5.37) 
i X 

We will consider commonly used link functions including logit, probit and complementary log-log functions and 
develop Markov chain Monte Carlo sampling methods to estimate the posterior distributions. We will analyze 
a multi-center data set from NCI Colorectal Cancer Family Study (data request approved as C-EX-1107-01 
and C-EX-1107-01-Al) to evaluate the accuracy of 10 biomarkers (BAT25, BAT26, BAT40, BAT34C4, D5S346, 
D17S250, D18S55, D1097, ACTC and MycL) in predicting Lynch syndrome, and use extensive simulations to 
investigate the importance of including appropriate random effects and the impact of overfitting, under-fitting 
and misfitting on model pertormance using the Bayesian hierarchical models. 

5.4 Regression Analysis of Rare Adverse Events for Post-marketing Safety Evaluation 
Methodology for rare events. Recall that our definition of a rare event means that p -> 0 but np -^ 00 as 
n -> 00. This means we are accruing more information as the sample size gets larger, and this usual means 
that the standard statistics are typically asymptotically normal, although not at the usual Vn rate. As mentioned 
previously log-rank tests have been developed for this setting (Buyske et al., 2000). but very few other semi
parametric approaches have been developed for this situation. As mentioned in Section 2.4, exact conditional 
permutation approaches have been developed for a few special logistic regression and log-rank settings (Hirji 
et al., 1987; Mehta and Patel, 2000; Heinze et al., 2003), but, unfortunately, these exact approaches can be . 
very computationally intense, have a limited range of applicability, and are not suitable for sample size formula 
development. Nevertheless, we will carefully compare performance of our proposed large sample approach 
with exact approaches when possible as part of our overall performance assessment. However, our focus 
will primarily be on developing methodology and large sample results for several settings not covered by exact 
approaches, including supremum-type log-rank statistics (see, e.g., Eng and Kosorok, 2005), covariate-adjusted 
log-rank statistics (see, e.g., Kong and Slud, 1997; Li. 2001), and Cox proportional hazards regression for rare 
events, including also sample size formulas and robust inference techniques provided we have sufficient time. 
For some of this development, continuous time martingale central limit theorems will be sufficient For the Cox 
model and robust inference, we will need to use the special empirical process central limit theorems for models 
changing with sample size mentioned in the preliminary results section. 

An important complication is that the baseline hazard function approximates zero for rare events. This 
means that accuracy of estimators must be framed as a ratio rather than as a difference. Classical statistical 
analysis tools can still be employed but more care needs to be taken since a difference between quantities going 
to zero does not imply that the ratio of the quantities goes to one. Fortunately, both martingale and empirical 
process tools are flexible enough to adapt to this challenge. An advantage of rare event data is that the number 
of patients at risk for an event are very large. Consider, for example, the Nelson-Aalan estimator A„ mentioned 
above. The variance of A„(t)/A(t) can be shown to be of order [nA(f)]"\ In the rare event setting, A(t) -> 0 
but nA(i) -» 00 as n -> 00. and thus the variance goes to zero. Hence A„(i)/A(t) -> 1 in probability, even 
though A(t) -+ 0. While this is a slight over-simplification of the problem, this same general idea is applicable 
in some generality to the problem we will be considering and will serve as a guide to facilitate success. Sample 
size formulas will be developed along the lines of Eng and Kosorok (2005), and robust Cox model will follow the 
general strategy of Lin and Wei (1989) but through utilizing more delicate empirical process arguments. 
Methodology for extremely rare events. Nelson-Aalan estimator setting, nA(t) -^ Koit) = /g fco(5)d5, as 
n -» 00, where 0 < fco(i) < 00, for 0 < i < r and some r < 00 (and assuming A is suitably bounded and smooth 
over the interval [0, rj). In this situation, it can be shown that Nit) converges in distribution uniformly to a Poisson 
process with integrated intensity Koit). As mentioned in Section 2.4, some exact methods have been developed 
for the log-rank setting (Mehta and Patel, 2000; Heinze et al., 2003), but these have important computational 
and modeling limitations. The situation is much more complicated for models involving covariates such as the 
Cox model or for other semiparametric models. Consider, for example, the Cox score statistic UniP, t) evaluated 
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at a given regression parameter value /3 € R'' and at time t e [0, r]. For large enough n, Yit) —>• 1, in probability, 
for all t e [0, r], because the number at risk is typically much larger than the number having the extremely rare 
event (by definition, essentially). Hence 

n 

Uni/3,t) = T 5 i [ Z i - " ' 7 ; „ ; 1 -1- op(l), (5.38) 

where the op(l) goes to zero in probability uniformly over t e [0,T]. It can be shown, using the techniques we 
will describe shortly, that Uni0,t) converges in distribution uniformly to the compound Poisson process ZQH), 
where Zoit) - X)f=/' ^ i ~ •̂ o(/3) , Po(i) is a Poisson process with integrated intensity Koit), Zi,Z2,... are 

an i.i.d. sequence of random variables having density foiz) proportional to e '̂o'giz), ZoiP) is the expectation 
ot Z under the density proportional to e^'^giz), and where g(z) is the true distribution of the covariate in the 
population. While this limiting distribution is complicated, it is quite manageable for doing inference with. 

The general structure and method needed to establish week convergence and to develop methods of in
ference appears to be quite similar across many rare event settings. As mentioned previously, the technical 
structure of the change-point problem shares surprisingly many features with the extremely rare event model 
estimation problem. We will employ the general strategy given in Kosorok and Song (2007) which strategy was 
also used to obtain the results in the above paragraph. Note that many of the techniques for change-point esti
mation have been around for decades, but, what is new about the approach given in Kosorok and Song is that 
a novel bootstrap procedure for confidence intervals in the compound Poisson setting is obtained. There are 
basically four or five steps to this procedure. The first step is to use empirical process entropy control methods 
to verify the proper rate of convergence (n instead of Vn in this case). The second step is to use a careful char
acteristic function argument to verify that all finite-dimensional distributions converge jointly. In the Cox model 
setting, this means that we have joint convergence of UniP, t) evaluated at any finite set of times t i , . . . , tm and 
finite set of regression parameters pi,...,pk- The third step is to establish asymptotic uniform tightness of the 
entire process. This will yield weak convergence to a Poisson, or compound Poisson, process. Sometimes a 
fourth step is needed at this point to bridge between this Poisson process and the actual estimator of interest. 
For example, for the Cox model problem, the quantity of interest is actually the solution of [ /„(/3,T) = 0. A 
delicate variant of the continuous mapping theorem may need to be invoked if the maximizer is non-unique as 
is the case for the change-point problem. The fifth step is to develop a modified bootstrap tool for inference. 

One additional challenge arises when nA(r) -^ oo very slowly, as n -> oo, so that it may be difficult to 
classify the event type as rare or extremely rare. Fortunately the limiting distributions for these two event types 
merge smoothly with each other. This follows from the simple observation that a Poisson process converges 
to a Gaussian process as the Poisson rate parameter increases. The issue will need to be explored in greater 
detail, but this merging property will be very helpful. 
Methodology for adjudicated rare endpolnts. the statistical analysis challenge is most acute when there are 
a number of un-adjudicated candidate events at the time of analysis. We will initially make the fairly reasonable 
assumption that all true events are observed as candidate events. If this is not the case, then the sampling 
and study design need to be assessed carefully and surveillance may need to be increased in its vigilance to 
reduce the chance of any false-negatives. Othenwise, some sort of estimate of false-negative rate will need to 
be obtained and the statistical model may need to be adjusted some. In addition to assuming that there are 
no false-negatives, we will also assume that the probability of conformation or refutation of a candidate event 
from adjudication is the same for both adjudicatetd and un-adjudicated endpoints after adjustment for observed 
confounders. This latter assumption (corresponding to Assumption II in Section 2.1 of Cook and Kosorok, 
2004) can be checked using the procedure given in Section 2.5 of Cook and Kosorok. The basic idea of the 
method is to estimate the counting process for the true confirmed events with jumps of size 1 at all confirmed 
adjudicated events and to use jumps of size equal to the estimated probability of being a confirmed event for all 
un-adjudicated events. The probability estimated is computed from a fitted model based on only the adjudicated 
events. This method has been successfully applied to non-rare time-to-event data for the log-rank statistics, the 
Cox model and the Kaplan-Meier estimator. Delicate empirical process arguments were used because standard 
counting process techniques like martingale methods do not work when jump sizes are estimated. 

For rare events, we expect that the techniques used in Cook and Kosorok (2004) can be extended along 
the lines described in Section 5.4. For extremely rare events, new empirical process methodology will need to 
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be developed and evaluated.using some of the approaches above. These limiting distributions will in general 
be quite complicated. However, the parametric bootstrap approach in Kosorok and Song (2007) is applicable in 
this instance, and thus a special Monte Carlo approach for inference can be developed along these lines. 
Methodology for meta-analysis of rare endpoints. how to bring the studies onto a similar footing so that 
a single, cohesive model can be incorporate for valid scientific inference. Clearly the approaches we have 
describe above are already complicated for rare events and even more complicated for extremely rare events. 
Thus it would appear that trying to perform meta-analysis in this context would be astonishingly difficult. How
ever, if the differences between studies can be summarized by a low-dimensional fixed or random effect, the 
information about specific drug and risk-factor effects on a specific rare event is larger overall than it is for a 
single study. This means that estimates can be more precise and that asymptotic results can sometimes be 
more accurate than happens with single studies. In some case the number of observed extremely rare events 
in the meta-analysis becomes large enough that the more straightfonward techniques for rare events are appli
cable. In order to utilize meta-analysis in this manner, very careful modeling is needed, as described in Shuster 
et al. (2007) for rare event meta-analysis studies in heart disease. Provided we can validate such models, the 
meta-analysis problem becomes essentially equivalent to statistical analysis of a large single study with a mod
est increase in the number of parameters that need to be estimated. This means that the methods developed 
above for both rare and extremely rare single studies can be applied. 

We plan on exploring appropriate Bayesian approaches as well. We have not discussed this in more detail 
for a number reasons, including the issue that frequentist properties of Bayesian approaches for semiparametric 
models under the rare and extremely rare event setting have not been explored and would be somewhat more 
complicated to evaluate than the proposed frequentist approaches. On the other, Bayesian approaches have 
been shown in some instances to perform better than their frequentist counterparts for semiparametric inference 
(see. e.g., Cheng and Kosorok. 2008). We will explore the Bayesian approach in greater detail if we have time. 
Evaluation by simulation study, scenarios will be used to evaluate the proposed methods for both rare and 
extremely rare events, including sequences of models that transition from the rare to the extremely rare case. 
We will utilize Core C tor assistance in developing cod for these simulation studies. One special challenge for 
rare events—and especially for extremely rare events—is that the simulated studies may need to be extremely 
large in order to arrive at the right number of events. This can be very computationally expensive. Fortunately 
the reverse time Markov model approach suggested in Frater et al. (1989) should significantly decrease the 
computational costs of such simulation studies. We will carefully evaluate both the accuracy of theoretical 
predictions as well as performance of the proposed methods under a broad range of simulation scenarios. We 
will use suitable adaptations of the simulation study design in Section 3 of Cook and Kosorok (2004). 
Evaluation by data analysis. We will evaluate the proposed methods by applying the new methods in com
parison with other approaches, such as naive approaches for non-rare events, to existing data from Cancer and 
other disease. The acquisition of such data will be accomplished through Core B. Through this core, we have 
access to data from clinical cancer studies conducted at both the Lineberger Comprehensive Cancer Center 
at UNC-CH and the Duke Comprehensive Cancer Center We also have access to the full collection of com
pleted Cancer and Leukemia Grade B (CALGB) clinical trials as well as limited access to the United Health 
Care claims data base as well as both the ACORN and SEER data. We have began evaluating rare events 
methods from a post-submission safety study of vaccine efficacy based on United Health Care claims data. 
This last data set involves both extremely rare events as well as adjudication and entails about 60,000 person 
years of follow-up for an adverse event incidence of about 1 per 2.000 person years. This means that about 
30 events are observed. This is quite sufficient for evaluation of extremely rare event methodology since a 
Poisson random deviate with 30 expected events is quite close to being Gaussian distributed. We will perform 
data analyses to evaluate performance and computational properties of the proposed methods and to refine the 
software implementations until they are robustly usable by practitioners. 

5.5 Identifying Optimal Individualized Therapies from Existing Clinical Trial Data Using Meta-Analysis, 
Utility Functions, Classification and Regression 

Formulating the statistical problem. Work to date has lead to the development of a statistical foundation for 
the optimal dosing problems encountered in cancer and other chronic disease studies with competing priorities. 
In practice, one may have a set of treatments under consideration, which may be coded in a covariate vector 
X. This covariate may specify both the choice of treatment regime as well as the dose levels and treatment 
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duration and timing within that regime. The ultimate goal is to determine optimal choices of X, controlling for 
other patient specific risk factors, which may be coded in a covariate vector Y. The goal is to optimize patient 
outcomes Z by manipulating the controllable treatment X adjusting for the effects of Y. In general, the outcome 
Z and the treatment and risk factor vectors X and Y may be multivariate. 

In IBCSG Trial VI, X would contain one component for whether the initial CMF was given for 3 months or 
6 months and a second component for whether there was reintroduction of chemotherapy following the first 
cycles. Note that in other settings, for example, meta-analysis, where multiple studies are being combined, the 
components of X may capture dose levels, which may vary across study As discussed below, the inferential 
issues may differ according to whether treatment is discrete or continuous. Patient risk factors, like ER status, 
age. number of positive nodes, would be included in Z. The outcome variable Z, say would involve data related 
to the primary endpoints. such as OS, DFS, and QOL. 

The basic idea is to formulate regression models which relate Z to iX,Y) and then optimize some criterion 
of interest, that is. a utility function, over X for a fixed value oiY = y. This optimal value of X is denoted by 
X*iy). Of course, the optimal treatment will generally depend on the value of the patient specific risk factors. 
This would especially be the case if there are interactions between X and Y. This might occur in IBCSG VI, for 
example, if the effectiveness of treatments varies by country, in which case the residency of the patient might 
strongly influence the treatment decision. Such interactions can be formulated in the context of the regression 
models, or via more complex classification and learning techniques, such as CART, neural networks, and SVM 
(Hastie, Tibshirani. Friedman, 2001). 

To be more concrete, we now consider IBCSG VI in greater detail. For DFS and OS. proportional hazards 
mo'dels might be fit. If only one of these outcomes is of interest, one might employ the appropriate overall 
or disease free survival probabilities at a time point of interest, like 10 years post treatment. Such analyses 
are commonly employed to determine treatment utility in cancer and other chronic disease studies, such as 
psychiatric disorders in the elderly, like Alzheimer's, as well as diabetes. Alternatively the outcome might be 
a biological measurement, potentially measured longitudinally, such as CD4 counts in AIDS studies, prostate 
serum antigen titers for prostate cancer patients, and blood glucose levels in diabetics. Longitudinal regression 
models, either mixed effects models or generalized estimating equation approaches could be employed. In 
AIDS studies, treatment utility might be captured by mean number of CD4 counts at a given time point, or 
averaged over several time points. In IBCSG VI. the focus is not on biomarkers, but rather on quality of life. A 
linear regression model could be fit to QOL longitudinal data, with mean QOL maximized at a particular time 
point, or quality adjusted survival maximized over the entire life course. Finally, cost of care could be analyzed, 
either as a longitudinal measurement, or cumulative lifetime cost, with goal being the minimization of such costs. 
The difficulty is how to combine these endpoints in an overall evaluation of the treatments. 

To combine models for the endpoints, we propose using a multiattribute utility function (Edwards. 1982). 
Such utility functions have been widely used in health policy applications, where economic evaluations are 
needed in understanding population level decision about resource allocation. Major successes have been 
realized In environmental risk assessment (Wilson and Crouch, 1987) and health care budgeting (Peacock, 
Richardson, Carter, Edwards, 2007). In the current setting, multiattribute functions are to be used as a means of 
optimizing individual as opposed to population level treatment policies across a spectrum of relevant endpoints. 
The scope is quite broad, permitting tradeoffs between multiple complex survival endpoints, biomarkers, quality 
of life, and costs of care. Adopting this approach enables a formal sensitivity analysis of the effect of changing 
the relative weights given to the individual endpoints in the composite utility; details are given below. 
Modelling framework. Beginning quite generally, we suppose one has a model fi6,x,y) which describes 
the relationship between some aspect of the distribution of Z and the covariates X and Y, where 6 is some 
parameter. Note that because Z may be multidimensional, fi6,x,y) = {fii9i,x,y),...,fpi9p,x,y)} may have 
dimension p greater than 1, where 9 = i9i,...,9p), and /, and 9i are the model and parameter for endpoint 
i(= l,...,p). This permits models f i , . . . , fp which may be parametric, semiparametric, or nonparametric, 
depending on the dimension and structure of the parameter 9. While the parameter 9 includes the parameters 
from all the models for the individual endpoints, the function / permits separate modelling of the different 
quantities with separate parameters, and does not require that they be artificially combined into composite 
endpoint. In IBCSG VI and other cancer studies, a proportional hazards model would ordinarily be fit for 
survival and disease free survival and / i and /2 might define OS and DFS probabilities at a time point of 
interest. Moment or mixed effects models might be fit to longitudinal outcomes like QOL and cost of care, with 
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corresponding fi's defined for mean values of these quantities at those time points. 
The utility function is central to formally combining utility information in the different endpoints. Suppose one 

has a utility function Ui9,x,y) which is a known function, differentiable in each of its arguments, and is derived 
from the models f i , . . . , fp . In the simplest case with p = 1 where overall survival at some time point r is the 
only quantity of interest, the obvious choice for U is the survival function at that time point, where 9 would be 
the parameters in the proportional hazards model. For multivariate / , it is natural to take !7 to be a weighted 
average of the utilities associated with the different quantities of interest, that is, U .=. X^Li WiUi, where Wi are 
positive weights summing to 1 and [/, are single attribute utilities involving only f i , i = 1 , . . . ,p. More complex 
nonlinear multiattribute utilities may also be utilized (Olson, 2007). A limitation of such nonlinear utilities is 
difficulty in interpretation. Moreover, a key aspect in eliciting such utility is the determination of the weighting 
factors. A pragmatic approach is to view any given choice of wi's as reflecting certain prior beliefs about the 
relative importance of different endpoints in decision making. Careful exploration of the impact of such weights 
on optimal treatment decisions is needed. 

The optimal choice of X for given Y = y, X*iy) may now be defined as X*iy) = argmin3,g;t. {Ui9,x,y)}, 
where X defines the region of interest for the treatment variables in X. Of course, X* will vary with y, so that 
the role of y in treatment decisions will be critical for Individual patients. When X is categorical, X will contain a 
finite number of values, with the simplest case being that of two treatments, where X has two atoms. One may 
restrict X outside the natural support of X to limit treatment options in the inferential process. Such restrictions 
may be useful if the investigator knows a priori that certain treatments may not be practicable for logistical 
and/or ethical reasons. The main complicating factor in the definition of X*iy) is that 9 is unknown and must be 
estimated from data. This poses inferential difficulties, which cannot be addressed using existing results. 
Inferences for optimal treatments. Suppose one has an estimator of 9, 9, say This may be achieved by fitting 
the models for ^ i , . . . , 9p, which may be accomplished by fitting them separately for each outcome. One might fit 
proportional hazards models for OS and DFS using standard partial likelihood techniques and GEE or likelihood 
analyses for longitudinal data (Dlggle, Liang, Zeger, 1994). One might also calculate the parameter estimates 
by employing joint models, in which a full likelihood analysis is carried out simultaneously for all endpoints. The 
following results are very general and make weak, high level assumptions about 9. The rationale is that one can 
proceed with all of the usual analyses in order to understand the effects of X and Y on the outcomes. One may 
then use these results in a second stage utility driven analysis to determine optimal treatment assignments. 

One may estimate U with Uix,y) = Ui9,x,y). If ^ is a "good" estimator for 9, then U should be a "good" 
estimator for U, where "good" remains to be defined rigorously. It seems natural to estimate X*iy) by X*iy) = 
arQrvi\n^^x{Uix,y)}. A closed form for X* will not exist in general. If x is one dimensional, for example, 
dose level, then one may conduct a line search to find X*, which is very stable. For higher dimensional x, 
other numerical techniques may be needed. The Nelder-Mead algorithm may be reliably employed and does 
not require differentiation of U with respect to x, unlike gradient based methods. If U is differentiable in x, 
then Newton-Raphson type algorithm may be employed and may converge more quickly than the Nelder-Mead 
algorithm. The properties of X*iy) will depend heavily on those of 9. It will be important to develop precise 
conditions under which X*iy) consistently estimates X*iy) and under which the limiting sampling distribution 
of the estimate is normal. Furthermore, for the methods to be useful in practice, an assessment of sampling 
variability is required, including variance estimation. 

To establish consistency of X*, we will assume that 9 is consistent in probability, uniformly This enables one 
to show that U converges uniformly in probability to Ui9,x,y). Now, if one further assumes that X* is unique 
for a given y, then the uniform convergence of U guarantees consistency of X*iy) for X*(y) at a fixed value of 
Y = y. This result can be strengthened to establish the uniform consistency of X*iy) for X*iy) for y in some 
set of interest. This is a strong result, which implies that regardless the patient specific risk factors, the optimal 
treatment configuration may be accurately estimated. 

To establish asymptotic normality additional conditions are needed. We will assume that as the size of the 
sample used to estimate 9, n, gets large, that n^l'^id-9) is asymptotically mean normal with covariance E which 
may be consistently estimated by £. Now, assuming X is compact subset, as would occur if X is continuous, 
like dose, and X*iy) is in the interior of X, then a Taylor like expansion of the estimated utility function gives that 
for a fixed y, v}/'^{X*iy) - X*iy)} has approximately the same distribution as \-d'^{Ui9,X*iy),y)}/d9dx]~^ x 
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n^/^(9 - 9). It then follows from Slutsky's law that n^/'^{X*iy) - X*iy)} is also mean zero normal with variance 
r = [-d^{Ui9,X*iy),y)}/ded]-^E{-dd{Uid,X*iy),y)}/d9dx]-K The variance r may be estimated by f in 
which 9 and E are replaced by 9 anti E. This involves no additional work beyond that needed to estimate 9 and 
E In the original analyses. Weak convergence of the limit distribution to a tight Gaussian process may be further 
established under regularity conditions needed to ensure applicability of advance empirical process theory (van 
der Vaart and Wellner. 1996). Confidence intervals for X*iy) may be constructed accordingly using the plug-in 
variance estimates, with confidence bands possible by bootstrapping the data used to estimate 6. 

A difficulty arises with categorical treatment covariate X, since even though U is differentiable, the utility is 
not "differentiable" at X*iy) when the support of X, X is discrete. The usual development of asymptotic theory 
for this scenario is unclear, since it relies heavily on differentiability in a local parameter space around the true 
value of the parameter being estimated. The development of variance estimators, confidence intervals and con
fidence bands is unclear. Moreover the use of the bootstrap in such irregular settings has not been theoretically 
justified and its deficiencies have been explored empirically with discrete parameter spaces (Newton, 1996). 

To evaluate the effect of small changes in the weights Wi in the utility function, we recommend exploring 
changes in X*iy) as the weights are varied. Such a sensitivity analysis may be useful in understanding how 
greater relative weights placed on certain endpoints may influence the optimal dose. This may perhaps be 
achieved with a few sets of weights, representing different perspectives on the decision making problem. 
Numerical studies. Extensive simulation studies will be conducted to evaluate the performance of the infer
ential procedures in realistic samples. Data will be generated based on fitting models to IBCSG VI and other 
available cancer studies at the Lineberger Cancer Institute and at CALGB at Duke obtained through Core B. 
This will ensure that the simulations match scenarios which are commonly encountered in oncology Small, 
moderate, and large sample sizes will be considered. The goal is to evaluate the bias and variance of the esti
mates, as well as the empirical coverage of the confidence interval procedures. Extensive analyses of IBCSG 
VI and other cancer studies at UNC and Duke will be undertaken to develop experience in applying the utility 
based methodology The sensitivity of the resulting optimal treatments to the choice of utility function will be 
assessed, varying the weights to emphasize different endpoints. Such sensitivity analyses will be useful in 
highlighting the potential tradeoffs amongst survival, quality of life, and cost, the three main considerations in 
the decision making process. 

5.6 Software Implementation and Dissemination and Timetable 
Our overall software development goal is to develop user friendly software so that the proposed methods 

can be implemented easily, accurately and at a reasonable cost both by us and other investigators. Each of 
the proposed new methods will first undergo a developmental implementation until the procedure has been 
validated via simulation studies and data analyses. Core C will then assist with taking the implementation and 
developing it into a usable and robust software package appropriate for dissemination in both R and SAS for
mats. Guidebooks and web pages of instructions and examples will also be developed and the new software will 
be communicated through presentations and short courses at appropriate professional meetings. We will also 
identify several beta testers outside of our institutions to help refine the quality of the software implementations. 

Each of the five aims will require about one year of development and theoretical work (which may involve 
simulations and data analyses to guide the theory), about 6 months of simulation and data analysis evaluation, 
and 6 months to 1 year of implementation and development. We will stagger the initiation of each phase so 
that they are a year apart, so that the theoretical work can be done sequentially. The theory for the adjudication 
component may take 1.5 years. This means that the results of the first phase will be completed by the middle 
of year 2, and that we should be able to complete the first three phases and start the fourth phase before the 
end of year 5 of the grant. 
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6 INCLUSION ENROLLMENT REPORT 

N/A 
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8 PROTECTION OF HUMAN SUBJECTS 

Although the proposed research indirectly involves human subjects through the preparation, in Core B, of 
de-identified data sets from identifiable patient data sources, the investigators on Project 3 will have access 
only to the de-identifled data. Thus, the investigators on Project 3 will have no access to any identifiable patient 
information. 
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9 INCLUSION OF WOMEN AND MINORITIES 

The methods we develop will be applicable to studies with both women and minorities and also to studies 
which examine treatment differences adjusted for gender, ethnicity and race. This is accomplished through the 
general formulation of the statistical designs, models and methods studied that allow for many possible kinds of 
risk factors. Moreover, many of the existing data sets to be studied and provided by Core B include women and 
minorities, although we will not be generating any new data involving human subjects. 

10 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

11 INCLUSION OF CHILDREN 

The methods we develop will be applicable to studies with children and also to studies which examine 
treatment differences adjusted for age. This is accomplished through the general formulation of the statistical 
designs, models and methods studied that allow for many possible kinds of risk factors. Moreover, some ot the 
existing data sets to be studied and provided by Core B may include children, although we will not be generating 
any new data involving human subjects. 

12 VERTEBRATE ANIMALS 

N/A 

13 SELECT AGENT RESEARCH 

N/A 

14 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

15 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute a subcontract 
with the consortium institution (North Carolina State University). The inter-institutional agreement will be written 
consistent with the NIH consortium agreement policy 

16 LETTERS OF SUPPORT - None 

17 RESOURCE SHARING PLAN(S) 

(a) Data sharing plan: The data-related resources generated by the proposed research consists,of new statis
tical methodology, software packages tor implementation of the methodology and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
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through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy. Summaries of the methodology, the software and tutorials will 
be shared through a public web site managed by Core A, while Core C will assist in preparation of the 
software and tutorials for dissemination. This project will use de-identified data prepared by Core B to test 
the methods and to create demonstrations of use of the methods to be included in tutorials. This project 
will not be involved in sharing of these data; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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METHODS FOR PHARMACOGENOMICS AND INDIVIDUALIZED THERAPY TRIALS 

Project Leader: Danyu Lin, PhD • 
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PROJECT SUMMARY (See instructions): 

The broad, long-term objectives of this research are the development of novel and high-impact statistical and 
computational tools for discovering genetic variants associated with inter-individual differences in the efficacy 
and toxicity of cancer medications and for optimizing drug therapy on the basis of each patient's genetic 
constitution. The specific aims include: (1) construction of robust and efficient statistical methods for 
assessing the effects of SNP genotypes and haplotypes on drug response with a variety of phenotypes (e.g., 
binary and continuous measures of efficacy and toxicity, right-censored survival time, interval-censored time 
tp disease progression, and informatively censored PSA levels and adverse events); (2) development of 
statistical and data-mining techniques for predicting drug response based on high-dimensional, highly 
correlated genomic data and complex phenotypes; (3) investigation of statistical procedures for 
providing low-bias estimation of effect sizes with complex and highly multivariate genetic data for follow-up 
and confirmation studies; (4) exploration of a new form of machine learning for identifying candidate 
individualized therapies in both pre-clinical studies and clinical trials. All these aims have been motivated by 
the investigators' applied research experiences and address the most timely and important issues in 
pharmacogenomics and individualized therapy. The proposed solutions are built on sound statistical and 
data-mining principles. The theoretical properties of the new methods will be established rigorously via 
modern empirical process theory and other advanced mathematical arguments. Efficient and stable 
numerical algorithms will be devised to implement the new methods. Extensive simulation studies will be 
conducted to evaluate the operating characteristics of the new inferential and numerical procedures in 
realistic settings. Applications will be provided to a large number of cancer studies, most of which are carried 
out at Duke University and the University of North Carolina at Chapel Hill. Practical and user-friendly 
software will be developed and disseminated freely to the general public. Our research will change the ways 
pharmacogenomic studies and individualized therapy trials are designed and analyzed, which will lead to 
optimal treatments for patients in cancer and other diseases. 

RELEVANCE (See instructions): 

The proposed research will develop new statistical methods that will significantly improve the ways 
pharmacogenomic studies and individualized therapy trials are designed and analyzed. This will improve 
public health by hastening the discovery of better treatments for patients in cancer and in other diseases. 
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RESEARCH PLAN 

1 INTRODUCTION TO RESUBMISSION/REVISION APPUCATION - N/A 

2 SPECIFIC AIMS 

There is an enormous current interest in identifying genetic determinants of inter-individual differences in the 
efficacy and toxicity of cancer medications and in tailoring treatment regimens to each patient's genomic profile. 
The volume and complexity of data from these pharmacogenomic studies and individualized therapy trials pose 
unique statistical and computational challenges. The broad, long-term objectives of this research are to develop 
novel and high-impact statistical methods and computational tools for the designs and analysis of such cancer 
studies. We will focus on four specific aims: 
Aim 1: Construction of robust and efficient statistical methods for assessing the effects of SNP geno
types and haplotypes on drug response. Our methods can handle any phenotypes, including binary and 
continuous efficacy and toxicity measures, right-censored survival time, interval-censored time to disease pro
gression, and informatively censored PSA levels and adverse events, accommodate population stratification 
and clinical factors correlated with genetic variables, and allow association analysis at the SNP level (even for 
SNPs that are not on the genotyping chip), the haplotype level or the gene/pathway level. 
Aim 2: Development of statistical and data-mining techniques for predicting drug response based on 
high-dimensional and highly correlated genomic data. We will develop efficient variable selection proce
dures for ultra-high dimensional SNP and gene expression data under a variety of parametric and semiparamet
ric regression models for all possible measures of drug response, allowing a hierarchical structure in selecting 
main effects and interactions and the inclusion of genetic variables at a group level. We will also develop ma
chine learning techniques for classification with variable selection capabilities. 
Aim 3: Investigation of statistical procedures for providing low-bias estimation of effect sizes with com
plex and highly multivariate genetic data for follow-up and confirmation studies. We will explore a con
ditional likelihood approach for producing low-bias estimation of effect sizes for follow-up and confirmation of 
effects/predictors. We will also pursue methods for a large number of simultaneous tests and penalized regres
sion techniques for clinical outcomes. 
Aim 4: Exploration of machine learning techniques for Identifying candidate individualized therapies 
in both pre-clinical and clinical studies. We will provide a unified framework that combines the discovery 
power of data mining with the stabilizing influence of statistical inference by creating a new form of machine 
learning, called "latent supervised learning", which balances the power and flexibility of data mining with the 
reproducibility of statistical inference. We will develop and validate latent supervised learning for use in both 
pre-clinical and clinical studies for discovery of candidate individualized therapies for cancer. 

In all specific aims, we will establish the theoretical properties of the new methods via advanced mathemat
ical tools, such as modern empirical process theory We will devise efficient and stable numerical algorithms to 
implement the new methods. We will conduct extensive simulation studies to assess the operating character
istics of the proposed statistical and numerical methods in realistic settings. We will apply the new methods to 
a variety of cancer studies, including several ongoing clinical trials in the Cancer and Leukemia Group B. We 
will develop practical and user-friendly software and actively disseminate it to the broad scientific community. 
The results of this research have the potential to significantly enhance our understanding of the genetic basis of 
inter-individual variability in drug response and in discovering effective new individualized therapies to improve 
the quality and longevity of cancer patients. 

3 BACKGROUND AND SIGNIFICANCE 
There is tremendous variation in the way patients in cancer and other diseases respond to medications, in terms 
of host toxicity and treatment efficacy. Although such heterogeneity Is potentially attributed to clinical factors 
(e.g., pathogenesis and severity of the disease, drug Interactions, and the patient's age, nutritional status, renal 
and liver function, and concomitant illnesses), inherited differences in the hnetabolism and disposition of drugs 
and genetic polymorphisms in the targets of drug therapy (e.g.. receptors) can have even greater influence on 
the efficacy and toxicity of medications (e.g., Evans and Rolling, 1999; Evans and McLeod, 2003). Figure 1 
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Figure 1: Polygenic determinants of drug response. The potential effects of two genetic polymorphisms are illustrated, 
one involving a drug-metabolizing enzyme (top) and the second involving a drug receptor (middle), depicting differences 
in drug clearance (or the area under the plasma concentration-time curve [AUC]) and receptor sensitivity in patients who 
are homozygous for the wild-type allele (WT/WT), are heterozygous for one wild-type and one variant (V) allele (WT/V), 
or have two variant alleles (V/V) for the two polymorphisms. At the bottom are shown the nine potential combinations of 
drug-metabolism and drug-receptor genotypes and the corresponding drug-response phenotypes calculated from data at 
the top. yielding therapeutic indexes (efficacyitoxicity ratios) ranging from 13 (65 percent:5 percent) to 0.125 (10 percent:80 
percent). Reproduced from Evans and McLeod (2003). 

illustrates the potential effects of two genetic polymorphisms (one involving a drug-metabolizing enzyme and 
one involving a drug receptor) on drug response. In cancer, irinotecan-treated patientswho are homozygous for 
the UGT1A1 *28 allele have greater risk of hematologic toxic effects than patients who have one or two copies of 
the wild-type allele (Hoskins et al., 2007), and postmenopausal women taking tamoxifen who have an inherited 
deficiency in the CYP2D6 gene have increased risk of early breast cancer compared to women without the 
deficiency (ScienceDaily 2008). 

The study of genetic variation in treatment response is called pharmacogenetics or pharmacogenomics. 
Pharmacogenetics targets one or at most a few genes, while pharmacogenomics considers the entire genome; 
however, the two terms have been used interchangeably Thanks to recent advances in human genome re
search (e.g.. The International Human Genome Sequencing Consortium, 2001; The International HapMap 
Consortium, 2005) and high-throughput genotying technologies (e.g., Altshuler et al., 2008). the field is now 
shifting from candidate-gene studies to genome-wide association studies (GWAS), which survey the entire hu
man genome with high-density genotying platforms containing 0.5-1 million single nucleotide polymorphisms 
(SNPs). There is also a rapid increase in sequence studies, as well as gene expression profiling and proteomic 
studies. 

The genetic polymorphisms that have been established to influence the metabolism and disposition of med-
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Figure 2: Molecular diagnostics of pharmacogenomic traits. DNA arrays are being made for automated, high-throughput 
detection of functionally important mutations in genes that are important determinants of drug effects, such as drug-
metabolizing enzymes, drug targets (receptors), disease pathogenesis, and other polymorphic genes that influence an 
individual's susceptibility to drug toxicities or environmental exposures (such as pathogens, carcinogens, and others). 
This figure exemplifies components of a potential diagnostic DNA array for genes that could influence a patient's response 
to chemotherapy for acute lymphoblastic leukemia, including genes that determine drug metabolism, disease sensitivity, 
and the risk of adverse effects of treatment (e.g., cardiovascular or endocrine toxicities, and infections). Reproduced from 
Evans and Relling (1999). 

ications and the targets of drug therapy can be tested for each patient, and such diagnosis can then become 
the blueprint for individualizing treatments (e.g., Evans and Relling, 1999; Evans and McLeod, 2003). Figure 2 
shows how various genes could be genotyped to guide the selection and dosing of chemotherapy for a patient 
with acute lymphoblastic leukemia. In the near future, it will be technologically and economically feasible to de
termine the entire DNA sequence for each individual. The potential use of this vast information in individualizing 
treatments is only limited by our knowledge of the genetic basis for drug disposition and response. 

In 2006, the University of North Carolina at Chapel Hill (UNC-CH) established the Institute for Pharmacoge
nomics and Individualized Therapy (IPIT). IPIT was formed as a collaborative effort of the Schools of Pharmacy, 
Medicine, Public Health, the Lineberger Comprehensive Cancer Center and the Carolina Center for Genome 
Sciences. It has launched a number of projects to create effective and precise treatment options for patients 
suffering from a wide range of conditions, with the focus on creating better tools to assist physicians in medical 
decision making on the basis of the genetic profile of the individual patient. The institute is directed by the 
world-renowned pharmacogeneticist Dr. Howard McLeod, who is an investigator of this project. Many of our 
statistical investigators, particularly Drs. Kosorok and Lin, have already established collaborative relationships 
with Dr. McLeod. 

Pharmacogenomics has been incorporated into an increasing number of clinical trials. This is certainly the 
case with the clinical trials in the Cancer and Leukemia Group B (CALGB). Currently CALGB has 108 active 
trials, 40 of which are treatment trials. Most treatment trials compare standard-chemotherapy to standard-
chemotherapy + a biologic agent or another chemo agent. The primary efficacy measures are overall survival 
and disease progression. For prostate cancer (e.g., protocols 90203 and 90401), PSA levels are also of interest. 
The toxicity measures of interest include neutropenia, hypertension, neuropathy and protoneuria. Many CALGB 
treatment trials have incorporated pharmacogenomic components. Although the pharmacogenomic companion 
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Studies were previously designed to examine a few candidate genes, most of them have switched to GWAS. 
Gene expression and protein array data are collected in several trials. The CALGB Statistical Center is housed 
at Duke University with Dr Stephen George as the director Dr Kouros Owzar, director of the bioinformatics 
unit, and Dr. Sin-Ho Jung, director of the biostatistics unit, have taken primary responsibilities for the design 
and analysis of many of the trials. Dr. Howard McLeod is the co-chair of the CALGB Pharmacology and 
Experimental Therapeutics Committee and is directly involved in 21 pharmacogenomic companion studies. 

The data from pharmacogenomic studies and individualized therapy trials are substantially different from 
those of traditional clinical trials. Indeed, new types of data are being generated every year because of evolving 
technologies. The volume and complexity of the data have presented enormous statistical and computational 
challenges. The method development has not been able to keep pace with the collection of the data! In this 
project, we focus on four specific aims addressing some of the most timely and important issues in pharma
cogenomics and individualized therapy Our research will change the ways pharmacogenomic studies and 
individualized therapy trials are designed and analyzed, which will lead to optimal treatments for patients in 
cancer and other diseases. 

3.1 Assessing the Effects of SNP Genotypes and Haplotypes on Drug Response 
SNPs are DNA sequence variations that occur when a single nucleotide in the genome sequence is altered. 
SNPs make up about 90% of all human genetic variation and have a major impact on disease susceptibility 
and drug response. Thanks to the availabilities of dense SNP maps across the human genome and precipitous 
drops in genotyping costs, SNP-based association studies have gained great popularity in pharmacogenomics. 
An increasing number of these studies are GWAS. 

Missing data present a major challenge in genetic association studies. An important form of missing data 
arises in the analysis of haplotype effects. A haplotype is a specific sequence of nucleotides on the same chro
mosome of a subject. Because haplotypes incorporate the linkage disequilibrium information (i.e., correlation 
structure) of multiple SNPs, the use of haplotypes tends to yield more efficient analysis of association than the 
use of individual SNPs, especially when the causal SNPs are not directly measured or when multiple mutations 
occur on the same chromosome (e.g., Judson et al., 2000; Bader, 2001; Schaid, 2004). Unfortunately, cur
rent genotyping technologies do not separate a subject's two homologous chromosomes, so that we can only 
observe the combination of the two haplotypes, which is referred to as the (unphased) genotype. 

Missing data are also encountered in the analysis of the effects of individual SNPs. Even with high-quality 
genotyping, some study subjects will have missing genotypes at certain SNP sites because of assay failures. 
Genotype data may also be missing by design to reduce genotyping costs. An extreme form of missing data 
arises when investigators are interested in untyped SNPs, i.e., the SNPs that are not even on the genotyping 
chip used in the study and are thus missing on all study subjects. Conducting association analysis at untyped 
SNPs can facilitate the selection of SNPs to be genotyped in follow-up studies and enable investigators to 
compare or combine results from multiple studies with different genotyping chips. 

A number of methods have been proposed to assess haplotype-disease association based on unphased 
genotype data (e.g., Schaid et al., 2002; Zhao et al., 2003; Epstein and Satten. 2003; Stram et al., 2003; 
Lake et al., 2003; Lin et al., 2005; Spinka et al., 2005; Lin and Zeng, 2006). In addition, several methods 
have been developed to analyze untyped SNPs (Nicolae, 2006; Marchini et al., 2007; Lin et al., 2008). The 
existing literature has been focused primarily on case-control studies. Pharmacogenomic studies differ from 
case-control studies in several ways. First, the phenotypes tends to be more complex. Survival time is subject 
to right censoring, whereas time to disease progression is subject to interval censoring in that the progression 
can only be determined to lie between successive visits; PSA levels and adverse events, as well time to disease 
progression, can be informatively censored in that the observations on the phenotypes of interest are terminated 
when the patients die or withdraw from the trial for health-related reasons. Secondly, pharmacogenomics is 
focused on the interactions of genetic markers and treatments in drug response rather than the (main) effects 
of genetic markers on disease. Thirdly, there is a strong interest in estimation and prediction, as opposed to 
hypothesis testing. 

In this research, we provide a unified framework for assessing the role of individual SNPs (including untyped 
SNPs) or their haplotypes in drug response. The effects of genetic markers, treatments and clinical variables 
(e.g., body size and disease severity) on drug response are formulated through flexible regression models 
that incorporate appropriate genetic mechanisms and interactions. We construct appropriate likelihoods for 
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all possible phenotypes (including right-censored survival time, interval-censored time to disease progression, 
and informatively censored PSA levels and adverse events). We establish the theoretical properties of the 
maximum likelihood estimators by appealing to modern asymptotic techniques, and develop efficient and stable 
numerical algorithms to implement the corresponding inference procedures. We also construct test statistics 
that maximize power under all possible modes of inheritance and derive power/sample size formulas. 

There is a heightened recent interest in the use of gene-based methods, which combine information from all 
SNPs in a gene, pathway or certain region of interest. A major challenge in combining information from multiple 
SNPs is to ensure that opposite effects would not cancel, which would lead to a loss of power. Indeed, many 
existing methods, including weighted-sums of genotypes (Wang and Elston, 2007), random-effects methods 
(Goeman et al.. 2004; 2006). and U-statistics (Schaid et al., 2005), would suffer from power loss when different 
SNPs act in opposite directions (Chapman and Wittaker, 2008; Wei et al., 2008). Furthermore, most methods 
assume additive effects of SNPs in a gene and cannot handle gene-gene and gene-environment interactions. 

In this research, we will use gene-trait similarity regression to aggregate information from SNPs that are in 
the same gene/pathway We seek to construct effective statistical procedures that (1) perform joint analysis 
of all SNPs (possibly non-additive) within a gene/pathway while balancing information and degrees of free
dom; (2) incorporate main genetic effects, gene-gene interactions, and gene-environment interactions; and (3) 
accommodate a broad range of phenotype (quantitative, binary or censored). 

The two approaches taken in this aim (i.e., haplotype regression and gene-trait similarity regression) are 
complementary to each other. Similarity regression tends to be more powerful than single SNP tests and 
haplotype tests, but it can only detect a global signal. On the other hand, haplotype regression methods can 
be used to to pinpoint the specific variants that cause the global significance, but may be too "refined" for 
screening purposes. The combination of the two approaches provides a comprehensive framework to study 
genetic association at the single SNP level, haplotype level or gene-based level. We will compare the two 
approaches through extensive simulation studies and apply them to the aforementioned CALGB studies. 

3.2 Predicting Drug Response Based on High-Dimensional Genomic Data 
The methods to be developed In Aim 1 and indeed virtually all existing methods are focused on one SNP or 
a few SNPs at a time and do not take full advantages of genomewide data. Although some methods use 
genomewide information to infer haplotypes and untyped SNPs, the association analysis itself is only done one 
SNP or a few SNPs at a time. In Aim 2, we will explore methods that relate genomewide data to drug response. 

There are strong reasons for considering all the markers or at least a large subset of them simultaneously 
The predictive power of a single marker tends to be fairly low. We can improve the accuracy of prediction 
substantially by utilizing a large number of important markers. The marginal effects of SNPs (i.e., the effect of 
each SNP on drug response when it is considered alone) may be quite different from their joint effects: (1) a 
SNP that is not related to drug response but is correlated with the causal SNP tends to be marginally associated 
with drug response; (2) some SNPs may have weak marginal effects but strong joint effects. 

It is very challenging to decide which set of markers should be included in the joint analysis because the 
number of SNPs in a GWAS is much larger than the sample size. This is commonly referred to as the "small 
n, large p" problem. A major challenge in this problem is that the number and extent of spurious associations 
between predictors and response increase rapidly with increasing p. 

There is a large body of literature on variable selection methods, including bridge regression (Frank and 
Friedman, 1993), least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), smoothly clipped 
absolute deviation (SCAD) (Fan and Li. 2001), elastic net (Zou and Hastie, 2005), and adaptive lasso (Zou, 
2006). However, these methods are designed for a moderate number of predictors (i.e, tens or hundreds). For 
ultra-high p, these methods may be computationally infeasible and statistically inaccurate. 

Recently, Fan and Lv (2008) developed the so-called sure independence screening (SIS) strategy for high 
dimensional statistical modelling. The idea is to first reduce the dimension from a very large scale to a moderate 
scale that is below sample size by univariate correlation learning, and then select important predictors by a 
moderate-scale variable selection method, such as LASSO or SCAD. Fan and Lv (2008) proved that the SIS 
possesses the sure screening property in that all important predictors survive after variable screening with 
probability tending to 1 as n approaches CXJ. For moderate sample sizes. Fan and Lv (2008) suggested to 
iterate the SIS procedure so as to capture predictors that are marginally uncorrelated with response. 
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Fan and Lv's work is confined to linear regression of a continuous response. In pharmacogenomic studies, 
we are more interested in binary phenotypes and potentially censored event times. Extension to such pheno
types is not trivial because residuals and prediction errors are not well-defined. The assumption of multivariate 
normal predictors for the sure screening property of the SIS used by Fan and Lv is obviously not satisfied with 
SNP data. In addition, the high correlations among genetic variants present unique challenges. Finally, the 
existing literature is focused on selecting main effects whereas we are primarily interested in interactions. 

In this research, we will develop variable selection methods for high-dimensional and highly correlated ge
nomic features (such as SNPs and gene expressions). We will extend the iterative SIS (ISIS) idea to all possible 
phenotypes, particularly binary phenotypes and censored event times. Our methods will be targeted at select
ing important interactions and thus identifying genetic variants predictive of drug response. To that end. we will 
introduce a hierarchical ISIS procedure to simultaneously select main effects and interactions. We will explore 
the selection of genetic variables at a group level so as to reduce collinearity and capture the joint effects of 
genetic variables in the same gene/pathway We will investigate a novel cross-validation criterion for censored 
event times based on prediction intervals. 

For binary phenotypes, one may apply machine learning techniques such as support vector machine (SVM) 
(Vapnik, 1995). Compared to the above regression approach, SVM is targeted at the simpler problem of clas
sifying subjects without producing estimated probabilities and does not require regression modelling; therefore, 
SVM may provide more accurate and more robust classification. It would be unwise to classify the patients by 
using all genetic variables because of accumulation of noise and reduction of interpretability. In this research, 
we will incorporate variable selection into SVM to improve classification accuracy and enhance interpretability. 
We will extend the aforementioned ideas of ISIS, hierarchical structure, and group variable selection to SVM. 

3.3 Providing Low-Bias Estimation of Effect Sizes With Complex and Highly Multivariate Data 
In comparison with other areas of applied and methodological statistics, clinical trial design and analysis have 
developed in a relatively conservative manner The insistence on randomization (in Phase III trials), the intent-
to-treat principle, and the prospective declaration of primary and secondary endpolnts have all resulted from 
hard lessons on the subtle biases that can arise from post hoc analysis decisions. A large, expensive clinical 
trial may provide the only data to guide the design of a future trial or more focused study. Thus, a considerable 
burden falls on the statistical analyst to fully consider the sampling scheme by which the data arose, and 
(importantly) the extent to which the data itself was used to guide the analysis. For traditional designs involving 
a small number of parameters, such as the effect of a new treatment therapy vs. control and perhaps a few key 
clinical variables, it is feasible to report all parameter estimates directly as the estimates are of value regardless 
of apparent statistical significance. However, this approach is not reasonable when the number of variables 
is extremely large, as occurs in pharmacogenomic studies in which hundreds of thousands of genotypes or 
expression measurements may be gathered and related to drug response. 

In GWAS, significance bias (i.e., the winner's curse) is receiving considerable attention (Zollner and Pritchard, 
2007; Ghosh et al., 2008; Zhong and Prentice, 2008) as a source of inflation of disease risk estimates. Sig
nificance bias arises in any setting in which a parameter estimate is obtained only when an associated test 
is declared statistically significant. A mathematically similar source of bias arises in the sequential analysis of 
clinical trials with data-dependent stopping rules, and has been widely studied (Whitehead, 1986). However, 
the effect of significance testing itself as a source of bias in clinical trials is not well-recognized, and is often 
conflated with the issue of publication bias (Dickersin et al., 1987; Veitch 2005). 

The availability of large numbers of -omics measurements is likely to place increasing emphasis on predic
tion of outcomes using such measurements. Microarray-based prediction rules have been used in a variety of 
cancers, including prognosis of breast cancer (Glas et al., 2006; Oh et al., 2006), colon cancer (Garman et al., 
2008), and melanoma (Mandruzzato et al.. 2006). Such prognostic rules are important in the identification of 
potential tumor subtypes (which may offer differing responses by treatment), as well as efficient trial design in 
which only patients at high risk of recurrence should be included. 

In pharmacogenetics and individualized therapy trials, future trial design will be heavily influenced by current 
studies in which the effects of numerous genotypes, potential patient subgroups, and data from other -omics 
platforms have been subject to prior significance testing. The failure to properly consider significance bias can 
result in improper trial design and analysis. While it is possible to handle these data in a complex Bayesian 
framework, a simpler frequentist conditional likelihood approach holds considerable promise in accounting for 
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significance bias in the design and analysis of clinical trials with complex data types and prediction schemes. 
However, several obstacles remain in the use of the conditional likelihood approach in clinical trials. One 
difficulty arises when hypothesis testing is performed for a primary parameter of interest, but additional inference 
is desired for a secondary parameter. One simple example arises when SNPs (other other -omics features) are 
tested for significant interaction with treatment in determining trial outcome, and inference is desired for the 
main effect of SNP on response. 

The consideration of bias in estimating multiple effect parameters also provides a new perspective on pre
diction of outcome. The conditional likelihood approach can be restated in a manner that is very similar to 
established penalized regression procedures. This perspective is used to propose a new regression proce
dure that explicitly considers significance bias in the effects of multiple predictors, and is highly suited to the 
challenges of clinical trials using pharmacogenomics data. 

Much of the methodology proposed here is relatively simple, and it is worth asking why the issue of sig
nificance bias has not been more prominently discussed in applied statistics (although it has been considered 
sporadically). Part of the answer may lie in the fact that only recently has it become routine to perform 10^ ~ 10̂  
hypothesis tests, for which significance bias becomes an important issue. In addition, the -omics literature has 
until recently been mainly concerned with testing, not estimation. We anticipate that the analysis of clinical trials 
will be a very favorable additional proving ground for the methods described here. 

3.4 Identifying Candidate Individualized Therapies in Pre-Clinical and Clinical Studies 
A very exciting recent development in cancer treatment research is the concept of individualized therapies which 
are treatments tailored to individual characteristics (e.g., Huang et al., 2003; Ramaswamy and Perou, 2003). 
A discovery that has the potential to yield individualized therapies in breast cancer appeared in the December 
13, 2008 issue of the ScienceDaily (ScienceDaily 2008), which showed that postmenopausal women taking 
tamoxifen who have an inherited deficiency in the CYP2D6 gene have about a fourfold increased risk of early 
breast cancer compared to women without the deficiency Another recent example of a potential individualized 
therapy is given by Paik et al. (2006), who described a biomarker which is a weighted sum of 21 gene expression 
levels that appears to predict the efficacy of chemotherapy on the 10-year recurrence of distant metastases. 

As opposed to traditional drug discovery, which attempts to find the best single treatment for a large group of 
patients, an individualized therapy rule has the clear advantage of providing the best treatment options accord
ing to individual needs. A second advantage is the capacity of individualized therapy studies to discover effective 
drugs that may be missed by a clinical trial. For example, if treatment A is half as effective as treatment B for 
patients whose values of a biomarker are greater than its median value but is twice as effective as treatment 
B for patients whose values of the biomarker are less than Its median, then the treatment differences will be 
completely undetected when all patients are lumped together. However, if we adopt the optimal individualized 
therapy rule, we will discover the very important latent structure that treatment A is quite effective when given to 
some people but withheld from others. Thus, individualized therapy studies are not just a nuanced improvement 
over standard clinical trials but a paradigm shift in methods for discovering effective treatments. 

Appropriate statistical methods are needed for both the discovery and evaluation of biomarkers and poten
tially latent candidate individualized therapies based on those biomarkers. Generally speaking, the form that 
individualized therapies can take is a list of rules which assign different treatments according to different values 
of patient biomarkers based on genomic data or other prognostic factors. Finding individualized therapies that 
work for most patients is a very daunting task with essentially two fundamental problems. The first problem is 
that candidate individualized therapies are very difficult to find (they can be latent as argued above) and their 
identifications typically require intensive bioinformatic data mining. The second problem is that the candidate in
dividualized therapies discovered from data mining are often not reproducible. The issue is that multiple testing 
is generally not controlled sufficiently during data mining and spurious results are not only possible but inevitable 
(e.g., Reid et al., 2005; Simon, 2005). 

In this research, we will develop analytical tools for finding biomarkers from high dimensional data that 
significantly affect drug response. There are many bioinformatic tools for high dimensional association studies 
in medicine but most tools fall into two basic categories which often delineate two stages of analysis, high 
throughput screening and machine learning. The machine learning stage is frequently in the form of hierarchical 
clustering which is a type of unsupervised learning (e.g.. Ma et al., 2004; Bertucci et al., 2005; Pawitan et 
al., 2005; Troester et al., 2006). Generally speaking, both approaches attempt to find important relationships 
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between a feature space X of genetic or other prognostic factors and an outcome Y. High throughput screening 
is widely used in the first stage of microarray analysis and in other platforms for selecting an initial set of genes 
that are associated with some phenotype of interest. Machine learning is also a very popular approach in 
medical and life science research (e.g., Cios et al., 2007), but the approach usually requires the outcome Y to 
be in the form of a dichotomous (or low-dimensional polytomous) classification (e.g., responders versus non-
responders) unless unsupervised approaches are used. This limitation makes machine learning hard to use in 
some situations but it also allows for identification of more complex biomarker interactions with clinical outcomes. 
Thus there are trade-offs between the two approaches as well as a tremendous unmet need for new statistical 
methods that appropriately balance the weaknesses and strengths of data mining and statistical inference in a 
manner attuned to the task of identifying potentially reproducible candidate individualized therapies. 

Consider the following pre-clinical in-vitro study, which our group is currently working on, of pharmacoge
nomic factors that influence colorectal cancer sensitivity to different chemotherapeutic drugs. Fresh colorectal 
cancer samples (n = 100) are obtained from patients who have consented to have their excess tissue kept 
for future research by the UNC-CH Tissue Procurement Facility A portion of the excess tumor tissue will be 
seeded into culture flasks to establish extant cultures. The extant culture system can grow enough cells for 
up to 12 different drugs and drug combinations to be assessed, with most cultures providing enough cells for 
6-8 drug assessments. After a sufficient quantity of cells have been cultured, the cells will be treated with 
multiple concentrations of the different drugs and drug combinations. The drugs and drug combinations chosen 
come exclusively from approved treatments for colorectal cancer patients or from current investigational trials 
for colorectal cancer Chemosensitivity for each drug and drug combination will be compared across samples 
by assessing the EC50s (effective concentrations of 50% cell kill) for each drug. 

Microarray-based genome-wide gene expression profiling will be performed on RNA isolated from the tumor 
samples in an effort to identify gene expression alterations that characterize drug sensitivity. Genome-wide 
profiling of DNA will also be conducted on the tumor samples in an effort to identify genetic variants that are 
associated with drug sensitivity. In order to utilize this rich data in an effective manner, it is important to have a 
valid statistical methodology that can at the very least classify the feature space (gene expression and profiling 
data) according to distinct chemosensitivity characteristics. To date, there exists no demonstrably valid and 
reproducible method of data analysis to accomplish this. 

As a second example, consider a hypothetical cancer clinical trial where high dimensional patient biomarker 
data (such as gene-expression data) is assessed and patients are randomized to two or more treatment options. 
This kind of study can be built into a standard clinical trial framework, and is thus not only scientifically valuable 
but also feasible. However, in order for such a study to be meaningful, it is crucial to have a statistically 
valid method of analysis that handles the high-dimensional feature spaces and yields reproducible results of 
a potentially latent association. The goal of the proposed research is to validly analyze data of this kind, as 
well as data of the type described in the colorectal tumor example, in order to identify candidate individualized 
therapies which have a reasonable potential of being reproducible. Our target is a statistically valid method 
of inference involving a model with sufficient parsimony to assure both internal and external validity Such an 
approach will still require a validation process, but the number of false leads and spurious results will be greatly 
reduced. 

4 PRELIMINARY STUDIES 

4.1 Investigators 
We have assembled a group of investigators from the three institutions who have the relevant expertise and 
experience to carry out the proposed research. Dr. Danyu Lin has published extensively in the areas of survival 
analysis, clinical trials, and genetic association studies. Dr. Fred Wright's research is focused on statistical ge
nomics and bioinformatics methods. Dr. Michael Kosorok's expertise includes high dimensional data analysis, 
microarrays, semiparametric inference, and applications of empirical process theory to statistical learning in 
biomedicine. Dr. Donglin Zeng's research interests include semiparametric models, empirical process theory, 
high-dimensional data analysis, and genetic association studies. Dr Howard L. McLeod is internationally rec
ognized for his expertise in pharmacogenomics and individualized therapy and has over 300 publications. Dr 
James Todd Auma is specialized in pharmacology toxicology colorectal cancer biology and the use of genomic 
profiling to investigate the molecular mechanisms underiying drug response. Dr Yufeng Liu's expertise includes 
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Statistical machine learning, high dimensional data and genomics. Dr Wei Wang's expertise includes biomed
ical computing, high dimensional computing, machine learning and genomics. Dr. Sin-Ho Jung has published 
many methodological papers on survival analysis and clinical trials. Dr. Kourous Owzar's research interests 
include pharmacogenomics and survival analysis. Dr. Jung-Ying Tzeng's research is focused on genetic epi
demiology and statistical genetics. Dr Hao H. Zhang is an expert in nonparametrics and smoothing, variable 
selection, statistical machine learning, and high dimensional data analysis. 

We describe below some of our prior work and ongoing studies that are relevant to the four specific aims. 

4.2 Assessing the Effects of SNP Genotypes and Haplotypes on Drug Response 
We have been at the forefront of developing statistical methods to detect haplotype-disease associations in 
cross-sectional, case-control and cohort studies (e.g., Lin et al., 2005; Lin and Zeng, 2006; Zeng et al., 2006) 
and to analyze untyped SNPs in case-control studies (Lin et al., 2008). Our software interface HAPSTAT and 
SNPMStat have been downloaded by more than 100 researchers and used in several real studies. 

There are two major limitations with our work, and indeed with all existing literature. First, little attention 
has been paid to the complex phenotypes encountered in pharmacogenomic studies. Second, genetic and 
environmental factors are assumed to be independent. The independence assumption fails in many pharma
cogenomic applications. For example, certain genes may influence both clinical variables (e.g., body size and 
disease severity) and drug response. The assumption is also violated when the environmental factors pertain 
to the covariates that are used to adjust for unmeasured confounding due to population substructure. The pro
posed research will remove such limitations and yield valid and efficient methods for detecting the effects of 
haplotypes and untyped SNPs on drug response. 

Tzeng et al. (2003ab) developed a unified case-control test based on haplotype sharing for genome asso
ciation screening. Recently, Tzeng et al. (2009) extended this work to general regression models. In addition, 
they united haplotype sharing methods and haplotype random-effects methods via gene-trait similarity regres
sion. They showed that testing for zero coefficient in similarity regression is equivalent to testing for zero genetic 
variance component in the random-effects model. In addition, the score statistics under the two models share 
similar quadratic forms and incorporate genetic information solely through haplotype similarity This gene-trait 
similarity regression model serves as the foundation for the gene-based analysis proposed in this research. 

We have published extensively on multiple testing and sample size calculations. Lin (2005, 2006) provided 
an efficient Monte Cario approach to assessing genomewide statistical significance for correlated test statistics. 
Jung and Jang (2006) showed how to accurately control the false discovery rate (FDR) for correlated test 
statistics. We have also published multiple testing methods to discover genomic markers that are correlated 
with survival endpoints using a nonparametric approach (Jung et al., 2005b) and a semi-parametric approach 
(Owzar et al., 2007). Jung (2005) and Jung et al. (2005a) discussed sample size calculations for FDR-based 
multiple testing methods. Jung et al. (2008) developed sample size formulas tor the log-rank tests comparing 
one control arm and several experiment arms. Jung et al. (2009) derived a sample size formula to discover 
genes under blocked one-way ANOVA settings. 

4.3 Predicting Drug Response Based on High-Dimensional Genomic Data 
We have considerable experience in variable selection and model building in various contexts. Lu and Zhang 
(2007), Zhang and Lu (2007) and Johnson et al. (2008) studied moderate-scale variable selection under semi
parametric regression models for censored event time data, while Xiao et al. (2008) considered variable se
lection for semiparametric linear mixed models in longitudinal studies. Zhang (2006) developed a general reg
ularization framework to conduct simultaneous classification and variable selection for kernel support vector 
machines. Tang and Zhang (2006) developed the proximal multiclass support vector machines. Zhang et al. 
(2008) proposed a new shrinkage method based on the supnorm penalty for variable selection in multiclass 
SVMs. Zou and Zhang (2008) studied the adaptive elastic-net when the dimension of data diverges with the 
sample size. 

We have conducted some simulation studies on the ISIS procedure with the LASSO penalty for a binary 
phenotype. Our limited results show that this approach is computationally feasible for GWAS and is capable of 
identifying important SNPs. We have also studied the SVM procedure with the SCAD penalty for micro-array 
data and found the approach promising. 
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4.4 Providing Low-Bias Estimation of Effect Sizes With Complex and Highly Multivariate Data 
Our approach to handling significance bias has been recently described in the context of genetic association 
testing (Ghosh et al., 2008), but is quite generally applicable. Suppose that we have a model in which a (scalar) 
parameter /? governs the relationship between any kind of predictor or experimental treatment and response, 
and for which (3 = 0 corresponds to the null hypothesis. Note that it does not matter that p may be only 
one parameter among many that are subject to testing, provided that the tests are performed separately For 
example, in a cancer clinical trial, tests involving primary treatment effects and numerous tests of genotypes 
might be all be performed using the same dataset, perhaps with differing significance thresholds to account for 
the numerous comparisons performed for the -omics hypotheses. With an estimated parameter ^ and standard 
error estimate SEiP), the Wald statistic T - 3 /̂SE(̂ ) may be used for testing the null hypothesis. However, we 
may be interested in performing inference only when the test statistic is significant (i.e. \T\ > c for some fixed c). 
We will refer to this event as "significance selection." and under such selection p may be a very poor estimate 
of p, with high bias and variability We currently ignore the higher-order distinctions between T and alternative 
test statistics such as the likelihood ratio and score statistics, and place relatively "standard" requirements on 
the consistency of p and SEiP). Thus, the approach to follow applies to any finite-parameter model estimation 
typically used in clinical trial analysis. We do not currently consider the potential complications that might arise 
in semiparametric inference, or settings in which estimation departs from y/n consistency 

To perform improved inference, we have introduced an approximate conditional likelihood for the quantity 
p = p/SEiP), noting that the random variable T is approximately normal with mean p, and unit variance prior to 
significance selection. To account for significance selection, we use the approximate conditional likelihood 

P,i\T\ > c) 

to represent the evidence for p. (Ghosh et al., 2008), where t is the observed value of T, and ^ is the standard 
normal density In this setting, a number of point estimates of p are reasonable, with different strengths. It can be 
shown that no uniformly unbiased estimate of p exists, and we have explored both the maximum conditional MLE 
p = argmax^Lc(M) 3nd the estimate p, = JpLcip)dp/JLcip)dp, which has desirable overall mean-squared error 
properties. A true confidence interval procedure for p is available, after considering the significance selection, 
by inverting a test procedure for each p. Once a point estimate and confidence interval are obtained, we 
convert back to the p scale using p = p SEiP). Simulation studies demonstrated that the corresponding point 

estimates (P and P) have vastly superior bias and mean-squared error performance to p, and that the confidence 
procedure performs well in terms of p. In addition, we have shown via simulations that a standard confidence 
interval procedure proposed by Zhong and Prentice (2008) does not have correct confidence coverage, even 
with large sample sizes. 

If the test statistic T is highly significant, then the above procedure produces estimates that are similar to 
p. The largest impact of the proposed procedure occurs when the test statistic is just barely significant. In 
such a situation, the modified estimate of p (whether p or p) tends to be considerably shrunk toward zero, 
effectively counteracting the significance bias. Although the approach here is described for a single parameter, 
we emphasize that it applies equally well when the approach is used repeatedly for different parameters p, as 
in single-SNP testing in genome scans. Indeed, the effects of significance bias are most extreme under such 
situations, because c must be large in order to provide effective error control. 

4.5 Identifying Candidate Individualized Therapies in Pre-Cllnical and Clinical Studies 
We have started development of a new machine learning technique, "latent supervised learning," which directly 
addresses the challenges described in Section 3.4 for finding candidate individualized therapies. The basic idea 
is to first use unsupervised learning and related approaches to reduce the dimension of the feature space X and 
then classify X into two or more groups based on the distribution of an outcome Y under the assumption that 
there are latent classes that completely determine the distribution of Y. The latent classes can be thought of 
as "phenotypes" characterized by groups with different distributions for Y. What makes this approach powerful 
is that the groups do not have to be ordered according to Y. For example, the groups could have different 
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variances of Y but have the same mean. Importantly, the groups could represent different patterns of treatment 
response, or chemosensitivity, as in the colorectal cancer sample study mentioned in Section 3.4. To thoroughly 
capture this, we allow Y to also depend on an additional covariate vector Z which defines the distribution 
of Y. For example, Z could be two dimensional, with the first dimension being treatment indicator and the 
second dimension being age. If there are two different phenotypes defined by X but characterized by different 
relationships between Y and Z, then our proposed model will capture the phenotypes. 

We conducted a small simulation study using a preliminary version of our algorithm with both X and Z 
being two-dimensional and Y being a continuous outcome. We set X to be bivariate standard normal with two 
phenotypes defined by whether or not X'^w > 7. where w = iwi,'W2) - (-0.71,0.71) and 7 = 0. For simplicity, 
we seXZ = X and set Y = PjiXi + PJ2X2 -I- e, where ; = l corresponded to X'^w > 7 and j = 2 corresponded 
to X'^w < 7, and e is standard normal. We also set iPii,Pi2) = (2,1) and iP2i,P22) = (-2,-1). What is 
interesting about this example is that if one ignores the phenotype structure, the overall effect of X will wash out 
and no regression effect will be detected. Hence the structure is latent. We applied our method to 30 simulated 
data sets of size 200 each, and the means of the parameter estimates and standard errors are given in the table 
below. The method appears to work quite well overall, with all of the mean estimates being quite close to the 
true values and the standard errors being small. While there is cleariy much work to be done before this method 
is ready for use in discovery of individualized therapies, the simulation studies show that the basic concept is 
feasible and appears to be internally valid. 

Parameter 
True value 
Mean estimate 
Standard error 

W l 

-0.71 
-0.74 
0.03 

W2 

0.71 
0.67 
0.03 

7 
0.00 
-0.02 
0.05 

Pn 
2.00 
2.01 
0.17 

P12 
1.00 
1.00 
0.11 

P21 
-2,00 
-2.03 
0.15 

P22 
-1.00 
-1.03 
0.19 

5 RESEARCH DESIGN AND METHODS 

In this section, we describe the key ideas and techniques to be used to accomplish the specific aims of the 
proposed research. We keep our description fairly non-technical and adopt the same notation for each aim. 

5.1 Assessing the Effects of SNP Genotypes and Haplotypes on Drug Response 
5.1.1 Notation and Assumptions 

We consider a set of (correlated) SNPs. We may have a direct interest in the haplotypes of these SNPs or wish 
to use the haplotype distribution to infer the unknown value of one SNP from the observed values of the other 
SNPs. Let H and G denote the diplotype (i.e., the pair of haplotypes on the two homologous chromosomes) 
and genotype, respectively. We write H = ih, h') if the diplotype consists of h and h', in which case G = h-\-h'. 
We allow the values in G to be missing at random. Note that H cannot be determined with certainty on the 
basis of G if the two constituent haplotypes differ at more than one position or if any SNP genotype is missing. 

Let Y and X denote, respectively the phenotype or trait of interest and the environmental factors or covari
ates. The phenotype may be quantitative or qualitative; it may also be an event time that is right or interval-
censored. The covariates may consist of treatments, clinical variables and principal components used to adjust 
for population stratification (Price et al., 2006). Principal components and certain clinical variables (e.g., body 
size and disease severity) may be correlated with H. For quantitative and qualitative traits, the effects of X 
and H onY are characterized by the conditional density of y = y given X = x and H - ih,h'), denoted by 
Pa,i3,iiy\x,ih,h')), where a, p and ^ pertain to intercept(s), regression parameters, and nuisance parahieters 
(e.g.. variance and overdispersion parameters), respectively The regression effects are specified through the 
design vector Z(X, H), which is a vector-function of X and H. For example, if we are interested in the additive 
genetic effect of a risk haplotype h* and its interactions with X, then we may specify 

Zix,ih,h')) = 
Iih = h*) + Iih' = h*) 

X 

{Iih = h*) + Iih' = h*)}x 
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where /(•) is the indicator function. The ability to incorporate interactions is critically important in pharmacoge
nomics. For the dominant and recessive models, we replace 7(/i = h*) -h l i h ' = h*) by /(ft = h* or h' = h*) 
and l i h = h' = h*), respectively If we are interested in the additive effect of a particular SNP, then we replace 
/(/i = h*) -\-Iih' = h*) by the value of (ft -i- ft') at that SNP position; dominant and recessive effects are defined 
similarly. When the phenotype of interest Y pertains to an event time, it is natural to formulate the effects of X 
and H o n Y through the Cox (1972) proportional hazards model: \ i t \X,H) = \oit)e^'^^'^^'"\ where \ i \X ,H ) 
is the conditional hazard function of Y given X and H, Ao(-) is an unspecified baseline hazard function, and p 
is the set of log hazard ratio parameters. 

Let K be the total number of haplotypes that exist in the population. Vor k - l , . . . ,K,we denote the fcth 
haplotype by ft^. Define nki = Pr(J/ = (ft/c,ft;)) and TT̂. = Pr(ft = hk), k,l = 1 , . . . ,K. Under Hardy-Weinberg 
equilibrium (HWE), nki = nkni ik,l = 1,...,K). We may allow Hardy-Weinberg disequilibrium (HWD) by 
incorporating an inbreeding coefficient as in Lin and Zeng (2006). Denote the probability function of H by P-yi), 
where 7 consists of 7r = (TTI, .. .,nK)'^ under HWE and of n and the inbreeding coefficient under HWD. 

We formulate the dependence oi X on H through the conditional density function PiX\H), which is decom
posed as PiXi\H,X2) X P (X2) . where Xi is correlated with H, and X2 is independent of H. If Xi and X2 
are independent (which is the case when X2 pertains to treatments), then PiXi\H,X2) reduces to PiXi\H). 
We characterize the dependence between Xi and H (and possibly X2) through the general odds-ratio func
tion (Chen, 2004) while leaving the marginal distributions of X i and X2 completely unspecified. We denote 
PiXi\H,X2) under such parametrization as Prj,FiiXi\H,X2), where ry is the set of odds ratio parameters, and 
Fl is the conditional distribution function of X i given some fixed values of H and X2. 

5.1.2 Data Structures and Likelihood Functions 

Quantitative and Qualitative Phenotypes. For a clinical trial with n patients, the data consist of iYi,Xi,Gi) 
(i = l,...,n). The phenotype Y can be binary or continuous, and possibly multivariate. As mentioned in 
Section 5.1.1, the conditional density of Y given X and H is given by Pa,/j_^(y|X, H), which can be formulated 
by generalized linear models (McCullagh and Nelder, 1989) for univariate phenotypes and by generalized linear 
mixed models (Diggle et al., 2002, Ch. 9) for multivariate phenotypes. Writer = ia,p,^,j,r],Fi). The likelihood 
function for 9 is proportional to 

n 
H^) = I l E Pa,0,dy^\^i:ff)P'riii)Pv,F.i^li\ff,^2i), 

i=lHeS{Gi) 

where 5(G) denotes the set of diplotypes that are compatible with genotype G. 

Event Times. If Y pertains to survival time or disease-free survival time, then Y is subject to right censoring; 
if Y pertains to time to disease progression, then it is subject to interval censoring. For right-censored event 
times, we observe iYi,Ai) instead of Yi, where F, = miniYi,Ci), Aj = /(YJ < Ci), and Cj is the censoring 
time of the ith patient; for interval-censored event times, we observe iLi,Ui), where Lj and Ui are the left and 
right examination times between which disease progression occurs. In either case, we formulate the effects 
of X and H onY through the aforementioned proportional hazards model. Write 6 = iP,-f,rj,Fi,AQ), where 
AQ(t) = J^ Xois)ds. The likelihood functions for 9 based on right-censored and interval-censored data are 

Li9) = f [ YI {Ao(?0e^'"^(^^'^))}'''exp{-Ao(yj)e^^^C^^'^)}p.,(if)P,,Fj(XH|iJ,X2j), 
i=l HeS{Gi) 

and 

m = n E H {-Ao(î i)ê ''̂ (̂ '̂̂ )} - exp {-Ao(t/,)e'5^ (̂̂ "̂ )}] P.yiH)Pr,M îi\H,X2i), 
t=l HeS{Gi) 

respectively 
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Informative Censoring. When the phenotype of primary interest Y is subject to informative censoring by time 
T, we takes the joint modeling approach. In particular, if Y pertains to the repeated measures of the PSA 
level and T pertains to time to informative drop-out (such as death and voluntary withdrawal), we formulate 
the conditional density function of Y through the generalized linear mixed model Pa,/},iiy\x,ih,h');b) and the 
conditional hazard function of T through the frailty model A(i|X, H; b) = Ao(i)e^'^^(^"^)+(^°'')'^^, where 6 is a set 
of random effects with density function P (̂6) that captures the dependence between Y and T, X \sa subset of 
X, and C o & denotes the component-wise product of C and b. Write 6 = ia,p,^,p,C,,(j),7,T),FI, AQ). Then the 
likelihood function for 9 takes the form 

^(^) - i l l Y . {Ao(?i)e^"^(^^'^)+(^°'')^^^}^' exp {-Ao(yj)e^^^(^^'^)+(<°'')^^^} 
i = l •'^ HeS{Gi) 

xPa,0,ziYi\Xi,H; b)P^iH)P^,F, iXii\H, X2i)Pc îb)db, 

where Y = min(Tj,d), and Aj = /(Tj < Cj). 

Untyped SNPs. When one of the SNPs in G is untyped, i.e., missing on all study subjects, the haplotype 
distribution n cannot be estimated from the study data alone. Fortunately, external databases, such as the 
HapMap. can be used to estimate n. Let Lsin) denote the likelihood function for n based on the external 
sample. The forms of Lein) for trios and unrelated individuals are given in Lin et al. (2008). The likelihood 
function for 9 that combines the study data and the external data is Lci9) = Li9)LEin). 

I 

5.1.3 Computation and Inference 

The likelihood functions involve both finite- and infinite-dimensional parameters, posing tremendous computa
tional and theoretical challenges. We adopt the nonparametric maximum likelihood estimation (NPMLE) ap
proach. In this approach, the distribution function Pi(-) and the cumulative baseline function Ao(-) are treated 
as right-continuous functions with jumps at the observed values of X i and the observed event times, respec
tively We will construct appropriate EM algorithms to carry out the maximization. The resulting NPMLEs are 
expected to be consistent, asymptotically normal, and asymptotically efficient, and the limiting covariance ma
trix of the NPMLE of p can be consistently estimated by inverting the information matrix for all parameters 
(including the jump sizes of Pi and Ao) or by using the profile likelihood function (Murphy and van der Vaart, 
2000). Likelihood-based procedures (such as Wald, score and likelihood-ratio statistics) can be used to make 
inference about individual components of p. We will establish the desired asymptotic properties by appealing to 
modern empirical process theory and semiparametric efficiency theory (Bickel et al., 1993; van der Vaart and 
Wellner, 1996; Kosorok, 2008). 

5.1.4 Mode of Inheritance 

Let Tl denotes the standard-normal test statistic under the l\h mode of inheritance, where / = 1,2,3 un
der the additive, dominant and recessive models, respectively We consider the maximum test statistic Q = 
max(|Ti|,|r2|,|r3|). The correlation matrix for (Ti,T2,T3) can be estimated upon expressing the numerator 
of each Ti as a sum of independent terms through the efficient score function (Lin, 2005; 2006). Given the 
(estimated) correlation matrix, the critical value for Q can be obtained by numerical integration. 

5.1.5 Power/Sample Size Calculations 

We can apply the usual formulas for calculating the power and sample size for standard-normal test statistics. 
For the maximum test statistic, the power calculation involves evaluating Pr((3 > c) through numerical integra
tion. The power depends on allele frequencies/haplotype distribution, mode of inheritance, effect sizes and type 
I error To correct for multiple testing, the type I error for each test is set at a very low level, in the order of 10"'^. 
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5.1.6 Gene-Trait Similarity Regression 

For patient i, let Yi be a discrete trait or a normal trait (after appropriate transformation), Xj be a vector of 
covariates, and Hi be the haplotype design vector For patients i and j i i < j ) , let Zij be the trait similarity 
defined as the cross product of the covariate-adjusted means, and Sij be the haplotype similarity. Note that Sij 
can be quantified directly from unphased genotypes if a phase-independent similarity metric is used (Tzeng et 
al., 2003b). The gene-trait similarity regression model for genetic main effect takes the form of E iZi j \X,H) = 
bSij, and the genetic effect can be detected by testing the null hypothesis of 6 = 0. Note that the proposed 
regression has a zero intercept because the effects of covariates have been adjusted through Zij. The similarity 
regression model incorporating the interactions between genes A and Stakes the form E(Zij \ X , H ) - bAS^-\-
bsSPj -I- bAsSfjSPj, where 5-j and 5,̂  pertain to the genetic similarity between patients i and j in genes A and 
B, respectively and 6^B represents the gene-gene interaction. For studying gene-treatment interactions, we 
consider a two-armed trial with treatment indicator Xj for the ith patient. By the arguments of Elston et al. 
(2000), XiXj represents the treatment effects in the similarity regression if the treatment effects are not adjusted 
through Zij. Thus, the regression model that incorporates the interaction takes the form of E iZ i j \X,H) = 
bSjj -\- dXiXjSij, and the gene-treatment interaction can be detected by testing the null hypothesis oid = 0. 

For a given similarity regression model of interest, we can specify an equivalent haplotype random-effects 
model, in which the marginal trait covariance (with the haplotype random effects integrated out) can be par
titioned into the genetic variance components and the interaction variance components. Testing for the zero 
regression coefficient (i.e., bAB = 0 or d = 0) is equivalent to testing for the zero interaction variance component 
under the random-effects model, whose test statistic can be derived along the lines of Tzeng and Zhang (2007). 
For normal traits, we will construct the score function based on the restricted maximum likelihood (REML) func
tion and derive the asymptotic distribution of the score statistic under the null hypothesis. We expect that the 
score statistic does not have an asymptotic normal distribution and the variation in the second term of the score 
is negligible relative to the first term. We propose to use the first term as the test statistic and expect it to follow 
a weighted x^ distribution, which can be approximated by a scaled x^ distribution. 

The extension from normal traits to other traits can be achieved by considering the score function of the 
marginal likelihood function, which is in parallel to the REML function of the normal trait For right-censored 
event times, we plan to construct the score statistic using the marginal partial likelihood (Prentice and Self, 
1985). The results can be extended to multi-armed trials, in which case there are multiple interaction variance 
components and the test statistic will be a weighted sum of the score statistics. 

5.1.7 Numerical Studies 

We will apply the new methods to various real studies, including the CALGB studies mentioned in Section 3. 
GWAS SNP data have already been collected for CALGB 80303. a randomized study in pancreatic cancer. For 
CALGB 40101. a randomized study in breast cancer, over 2000 specimens have been collected, 1000 of which 
have been sent to the genotyping lab. For CALGB 90401, a randomized study in prostate cancer, over 900 
specimens have been collected and will be genotyped in 2009. This study will provide repeated measures such 
as PSA levels in addition to the usijal efficacy and toxicity outcome data. 

We will conduct extensive simulation studies to assess the operating characteristics of the new methods in 
realistic settings. The simulations will be designed to mimic the CALGB studies. We will consider all possible 
phenotypes and various forms of genetic effects (including the effects of single SNPs, haplotypes and genes). 
We will consider clinical factors and principal components that are potentially correlated with SNP markers. 

5.2 Predicting Drug Response Based on High-Dlmenslonal Genomic Data 
5.2.1 Iterative Sure Independence Screening 

The data consist of iYi,Zi) (z = 1, . . . ,n), where Vj is the phenotype of the ith patient and Zi is the corre
sponding p-vector of predictors. The phenotype can be quantitative or qualitative. (Censored event times will be 
discussed later) The predictors may consist of genetic variables (e.g., SNP markers or gene expression levels). 

PHS 398/2590 (Rev. 11/07) Page 3 9 4 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M lchao l R., et a l . 

treatments, clinical variables (e.g., age, body size, and disease severity) and principal components used to ad
just for population stratification, as well as interactions between genetic variables and treatments. All predictors 
are standardized by their sample standard derivations. We relate Y\o Z through a generalized linear model. It 
is expected that only a small number of predictors contribute to the phenotype, such that most of the regression 
coefficients are zero. We wish to identify the subset of important predictors (whose regression coefficients are 
non-zero) so as to improve the accuracy of estimation/prediction and the interpretability of the model. 

We first reduce the dimensionality of predictors from pXo d through univariate correlation learning, where d 
is smaller than n, e.g., d = n / \ognorn- l . Specifically, we perform univariate regression on each predictor and 
select the d predictors that are the most significant among the p predictors. If the predictors are SNP markers, 
then the screening can be done very efficiently with the Pearson chi-squared statistics for binary phenotypes 
and t statistics for continuous phenotypes. 

Given the set of d predictors, we select a small subset through a moderate-scale variable selection procedure 
based on penalized likelihood. The penalized likelihood function takes the form 

d 

TiP)̂ iiP) + Y,<ixM\)^ 

where liP) is the minus log-likelihood function based on the d predictors, p = iPi , . . . Pd)'̂ , and qxj (•) is a penalty 
function indexed by a regularization parameter Aj. We will consider several penalty functions: (a) the LASSO 
penalty 9̂ (1̂ 1) = A|6il (Tibshirani, 1996), (b) the SCAD penalty 

'A|^| if |e|<A, 

^^(| , |^^J M - ^ ^ if X<\9\<aX, 

. ^ 2 d ^ if 1̂1 >aA, 

where a is a constant that is commonly set to 3.7 (Fan and Li, 2001), and (c) the adaptive LASSO penalty 
Q\i\Pj\) = Xu;j\Pj\, where UJJ is a known weight (Zou, 2006). Imposing different magnitudes of penalty on 
predictors allows us to incorporate prior information or restrictions. Typically we set Â  = CjX, where A is 
a common unknown tuning parameter and Cj is a pre-specified constant. For example, we may force the 
intercept and treatments in the model by setting the corresponding Cj to 0 while setting the cj to 1 for all 
other predictors. Given the A .̂ we minimize liP) by using local quadratic approximation (Fan and Li, 2001) 
or local linear approximation (Zou and Li, 2008). To speed up computation, we will explore the use of the 
coordinate decent technique (Friedman et al.. 2007), which is tantamount to minimizing TiP) in a component
wise manner. We will choose the regularization parameters by cross-validation (Tibshirani, 1996; Fan and Li, 
2001) or Bayesian information criterion (BIC) (Wang et al., 2007). 

To reduce the chances of omitting important predictors, we apply the iterative sure independence screening 
(ISIS) procedure, which works as follows. In the first step, we select a subset of di predictors Si out of the p 
potential predictors using the SlS-based variable selection method described in the previous two paragraphs. In 
the next step, we include the estimated linear combination of those rfi predictors (i.e., PiZii-\-.. .-FA/i^di,i) as an 
offset in the model and apply the same variable selection method to the remaining ip -d i ) predictors to obtain a 
subset of d2 predictors S2. (Inclusion of the estimated linear combination in the model can significantly weaken 
the priority of those unimportant predictors that are highly associated with response through their correlations 
with the predictors in Si while increasing the priority of those important predictors that are marginally weakly 
associated with response purely due to the presence of the predictors in Si.) We repeat this process until we 
obtain K subsets S I , . . . , S K , whose union S = u^j^fc has a size less than n. We then apply a moderate-scale 
variable selection method to the predictors in S. 

5.2.2 Hierarchical Iterative Sure Independence Screening 

In pharmacogenomic studies, we are particularly interested in the interactions between genetic variables and 
treatments. It is natural to include the main effects of those variables whose interactions are selected. We will 
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extend the ISIS procedure to achieve this hierarchical structure. For simplicity of description, suppose that we 
have a two-armed trial with d SNP markers. Let Ri be the treatment indicator for the iih patient, and let Gji be 
the genotype score for the jth SNP on the ith patient. To impose the hierarchical structure, we parametrize the 
linear combination of predictors as 

d d 

/̂O + X I ^̂ :̂>̂  + ^ ^ + X PjljPiGji' 
j = l j = l 

and impose the shrinkage penalty on the P/s and 7j's while imposing no penalty on Po and r. 

5.2.3 Group Selection 

Genetic variables tend to be highly correlated. We may improve variable selection by grouping the genetic 
variables first. One possibility is to group the SNPs in the same gene or same biological pathway Another 
possibility is to use a clustering algorithm to group SNPs into several clusters and then apply the principal 
components analysis to the SNPs within each cluster to construct weakly correlated predictors. By selecting 
the groups rather than the individual SNPs, we may avoid the collinearity of predictors and take advantage of 
the joint information of the SNPs in the same gene/pathway To perform variable selection at the group level, 
we penalize | ^jPj\^^'^ rather than the individual P'jS, where the summation is taken over all the predictors in 
the same group. 

5.2.4 Censored Data 

For potentially right-censored event times, we use the proportional hazards model (Cox, 1972) instead of a 
generalized linear model and replace liP) by the partial likelihood function. The univariate correlation screening 
can be done efficiently with the log-rank statistic. For interval-censored event times and informatively censored 
repeated measures, we replace liP) by the nonparametric likelihood functions described in Section 5.1.2. To 
speed up computation, we may parametrize the baseline hazard function and use the corresponding parametric 
likelihood. (Nonparametric likelihood can be used in the final step.) 

5.2.5 Prediction Accuracy 

For quantitative or qualitative phenotypes, we may assess the accuracy of prediction by comparing the observed 
and model-predicted values of the phenotype for each patient. This strategy does not work for censored data 
since the event times are unknown for the censored observations. We will explore a novel idea based on 
prediction interval. A prediction interval is a time interval which is expected to cover the event time T with 
a certain probability A 100(1 - a)% prediction interval associated with a set of predictors z is defined by 
ita/2,ti-a/2), v̂ /horo ta Is tho lOOcv percentile of Sit\z), the estimated conditional survival function of T given z. 
To accommodate censoring, we calculate the prediction interval for the observation time T = min(T, C), where 
C is the censoring time. Let Scit\z) be the conditional survival function of C given z, which is estimated by 
Scit\z) under a proportional hazards model or nonparametrically. Then a 100(1 - a)% prediction interval for T, 
denoted as il,u), is defined by l - Scil\z)Sil\z) = a/2 and Sciu\z)Siu\z) = a/2. We may measure the accuracy 
of prediction by the proportion of the observation times that lie inside their prediction intervals. The evaluation 
is carried out via cross-validation. 

5.2.6 Support Vector Machines 

We consider the data structure described in Section 5.2.1 and code the binary phenotype as 1 vs - 1 . After 
reducing the number of predictors from p to d via univariate correlation learning, we solve the following opti-
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mization problem: 

mm J2U-Yi(po+J2PjZj^)] +i2<ixM\)^ 
i = l "• ^ j = l ^ J + • j = l 

where p = iP i , . . . , Pd)'̂ , and a+ = max(0, a). The first term is called the hinge loss function. 
To impose the hierarchical rule in selecting the main effects and interactions, we adopt the notation of 

Section 5.2.2 and propose to solve 

n f y d d \ ^ d 

min Y\l-Yi[po + Y.l̂ î oi + 'rRi + Y^i'^i^^A\ + E {̂ (̂1/3̂1) + ̂ xd̂ .l)} , 

where A and A control the shrinkages of the main effects and interactions, respectively. We are particularly 
interested in the SCAD penalty because of its oracle property (Fan and Li, 1996). The SCAD penalty is a 
quadratic spline function with two knots A and aX, along with continuous first-order derivatives. Because the 
SCAD penalty is not convex, it is not easy to minimize the above function numerically We propose to use local 
linear approximation (Zou and Li, 2008), which is tantamount to solving a LASSO-type problem. We will choose 
the tuning parameters A and A by cross-validation. 

Suppose now that we use certain biological knowledge or empirical evidence to divide a set of d predictors 
into M groups with d^ predictors in the mth group such that di -f ... -h CJM = d- For m = 1,. •.., M, let Wmi be 
the set of d^ predictors in the mth group and let 9^ be the corresponding d^-vector of coefficients. We propose 
tb solve 

Y,U-Yi[Po+Y.(^V^rai)\ +E5^(II^-
i = l *• ^ m = l -̂  J + m = l 

where ||6'm|| = (^^6^)^^^. By penalizing the L2-norm of 9^, the mth group of variables will be selected or 
removed simultaneously This selection is invariant under group-wise orthogonal transformations. Due to the 
special structure of \\6m\\, we propose to use local quadratic approximation (Fan and Li, 1996) to solve the above 
minimization problem, which can be implemented via quadratic programming. 

5.2.7 Theoretical Properties 

We speculate that the univariate correlation learning has the sure screening property and that the ISIS pro
cedure with the SCAD penalty has the oracle property (i.e., selecting the true model with probability 1 as n 
approaches oo) in our settings. We also anticipate the selection consistency of the SVMs equipped with certain 
penalties to Incorporate the hierarchical or grouping structure of the model. We will establish these theoretical 
properties by using advanced mathematical arguments (e.g., Brouwer fixed-point theorem, Bernstein inequality, 
random matrix theory, and empirical process theory). 

5.2.8 Numerical Studies 

We will apply the new methods to a variety of cancer studies, including the CALGB clinical trials. It should be 
noted that CALGB genomics studies are not restricted to SNP arrays. CALGB is also carrying out genomics 
studies with RNA microarrays, aCGH arrays and DASL protein arrays. As CALGB is conducting a diverse set of 
large genomics studies in many major disease sites and can provide professionally managed phenotypic data, 
it will be an invaluable resource to the proposed research. 

We will conduct extensive simulation studies to evaluate the new methods. The simulations will be designed 
to mimic the CALGB studies. It is critically important to simulate realistic genomewide data. For SNP data, we 
will explore the genome simulators of Liang et al. (2007) and Li and Li (2008). We will simulate 500,000 SNPs 
and assign causal SNPs in a variety of manners. For binary phenotypes. we will compare the performance of 
logistic regression and SVM. 
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5.3 Providing Low-Bias Estimation of Effect Sizes With Complex and Highly Multivariate Data 

There are two scientific goals for this aim. First, we will develop methods of inference for evaluating effect sizes 
for secondary parameters when they are selected for inference based on a test for the first parameter. For 
example, suppose that we are interested in genextreatment interactions, but only for those genes with signif
icant main effects, or perhaps vice versa. Other important examples include the selection of -omics features 
as biomarkers for intermediate phenotypes (such as PSA level in prostate cancer), where the relationship of 
the intermediate phenotype to an important clinical outcome (such as recurrent prostate cancer) has also been 
measured. A second goal of this aim is to use the conditional likelihood framework as a guide toward simultane
ous estimation of numerous parameters. The latter work includes development of a new penalized regression 
procediJre in order to produce improved prediction of clinical outcome from numerous predictors. 

5.3.1 Correlated Parameter Estimates Under Significance Selection 

We adopt the notation of Section 4.3. We assume that the researcher uses a model with primary effect Pi, 
which is subject to significance testing with the standard-normal test statistic Tj = Pi/SEiPi). Here, the term 
"primary" signifies only that it forms the basis for testing in the current framework, and does not imply that 
the parameter is necessarily related to the primary endpoints in the clinical trial. In addition, we expect that 
the procedure may be performed multiple times, with a different parameter serving the primary role in each 
instance. Let (3_i = ip2,--- ,Pp)'̂  denote the vector of true secondary effect parameters. We wish to estimate 
/3_i only when the first test is significant, i.e., |Ti| > c for a value c chosen appropriately to control error in 
manner appropriate to the problem. It is helpful to keep in mind that p will typically be small compared to 
the sample size (e.g., the vector /3 may refer to main effects and interactions produced by a single SNP or 
other -omics feature). However, the entire inference procedure described below may be performed hundreds 
of thousands of times. Thus c will often be large in order to control family-wise error rates. In such extreme 
instances, the correlation structure across multiple tests is less consequential than when performing few tests, 
and in fact is often near the Bonferroni bound, and at any rate can often be reasonably specified using analytic 
considerations or permutation analysis. 

We will refer to 3- i as the naive estimator, as it is obtained from standard statistical procedures without ac
knowledging selection of the first feature based on significance. The problem of estimating p_i can be restated 
as mean-parameter estimation for truncated multivariate normal distribution with known variance-covariance 

matrix. Define (3 = ( ^ ^ ' _ ] , ^ = (^J \ a n 6 T = ( ^ _ ] , where T_i = (T2,... ,Tp)T, and Tj = g J ^ . 

Also, write R = corr(^) = ( ^ ). By the arguments of Ghosh et al. (2008), T is approximately multivari-p R22 

ate normal with mean /i = ( ^^ ) and covariance matrix R, where /i_i = (̂ 2̂, • • • ,MB)^, and ̂ j = 5 ^ ^ -
\ P-l ) SE(/3i) 

We will see below that the bias in the secondary parameter vector depends importantly on the correlation p of 
Pl with the terms in y9_i. We assume here that R is estimated with sufficient accuracy, and treat it as known for 
the purposes of exposition. In practice, the estimation of R will devolve to the specifics of the particular problem, 
but in most cases is straightfonward. For example, if the primary pararneter and the secondary parameters 
appear in a common regression model, then the correlation of parameter estimates is implicit in the information 
matrix from the regression. We will also derive applicable results when a test is performed on a predictor and an 
intermediate phenotype, but not on the clinical outcome directly Here again R may be estimated, provided that 
the correlation between the intermediate phenotype and the clinical outcome is also estimated, perhaps from 
a different study We denote the naive estimate of yii as /x = t, and the expectation can be shown analytically 
to be £;^(T| |Ti| > c) = Ai -̂  ( M ^ff:^;j;tf-X+;li)- w'̂ ®''̂  ^ ^^^ * ^^^ ^^^ density and the cumulative 

distribution function of a standard normal, respectively It is clear from the equation that the bias incurred in 
naive estimation of p_i is p times the bias in / i i . In the special case of the null hypothesis (xi = 0, the naive 
estimates are unbiased. However, the variance of the estimates are extremely large in this situation, and so 
even in this case the shrinkage estimation described below is extremely valuable. The corresponding conditional 

PHS 398/2590 (Rev. 11/07) Page 398 • Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

likelihood is 

Lcip)=p^,it\\Ti\>c) = 
pit;p,K) 

$ ( - c - ^ i ) - f $(-c-t-Mi)' 

where the numerator is the multivariate standard normal density As in the single parameter problem, a number 
of competing estimators of p are reasonable. Due to space constraints, we show here only the conditional m.l.e. 
p = argmax^Lc(A«), which again is converted to p by multiplication with the estimated standard error vector. 
The plot below shows the results of simulations using the bias correction procedure for a primary parameter 
and two secondary parameters. The particular example uses logistic regression, which is often applied in 
followup clinical trial analysis, and sometimes in the main analysis (Steele and Wang, 2006). However, the 
key features will hold regardless of the statistical test. Here we are using a dichotomous genotype (g, with 
relative frequency 0.56 for 5 = 0 and 0.44 for 51 = l) as a primary predictor (testing Pg = 0) of a dichotomous 
response Y (500 patients each for y = 0 and Y = l). In addition, a secondary dichotomous predictor (s, 
frequency 0.5 each for s = 0 and s = l) is considered that is independent of g. The full model is logit{Pr(F -
1)} = Po-\- PgQ -\- PsS + Pg,sig X s). It is important to recognize that in this multiple logistic model the parameter 
estimates are correlated, even though g and s are not. Using a stringent choice of c = 5 to account for the fact 
that the genotype predictor is just one among perhaps several hundred thousand typed markers, we show in 
the figure below the results for a variety of primary log-odds ratios Pg, with 1,000 significant simulated datasets 
to obtain each point in the curves, and choosing Po to maintain a constant prevalence Pr(y = l) = 0.01. 
We specified constant log-odds ratios Ps = 0,2 and Pĝs = 0.3. Note that the proposed estimation procedure 
provides greatly reduced bias in estimation of both i3g and pĝ s (first two panels), along with greatly improved 
mean-squared error for Pĝa for most values of Pg (third panel). Results for the estimation of s effects are similarly 
improved (not shown). Note that this is a simple example of very general phenomena, and similar results would 
hold if we had instead used the interaction null hypothesis Pĝs = 0 for the primary test. 
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Despite the successful use of the approximate conditional likelihood in this setting, several challenges re
main. The performance of various point estimates of P-x remain to be fully investigated. The creation of 
confidence intervals for the individual components of P-\ is also no longer straightforward, and this will be the 
subject of active investigation. We will investigate the possibility of obtaining pivotal quantities, but the crucial 
dependence on /ii suggests that no true confidence procedure is possible. We will investigate profile likelihood 
procedures in order to obtain approximate confidence intervals. Additionally, there are several issues involving 
applications to clinical trials, and specifically tests of interactions of treatment with -omics observations, that 
remain to be worked out. The estimation of R is straightfon/vard in regression models with simultaneous fitting 
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of predictors, but is not entirely straightfonward when Pi and p_i arise from separate estimation procedures, 
as occurs when the primary test Involves a comparison to an intermediate phenotype/biomarker, while /3_i 
describes the relationship of predictors to a different clinical outcome. 

5.3.2 Large-Scale Simultaneous Tests and Clinical Outcome Prediction 

With the increasing complexity of biomarker assays, surrogate endpoints, and the multitude of possible treat
ment regimens in individualized therapy trials, it is inevitable that the analysis of clinical trials move toward the 
systematic handling of datasets in which the number of tests/predictors is much larger than the sample size 
(i.e., the "small n, large p" problem). The previous sub-aim finessed this issue by envisioning a series of tests 
performed separately and the multiplicity of tests is handled by stringency in the threshold c. However, we must 
recognize a possible connection between this work and alternate approaches in which the test statistics them
selves are penalized, A popular example includes the SAM statistics (Tusher et al., 2001), which are typically 
applied to gene expression datasets and which penalize lowly expressed genes more than highly expressed 
genes. The success of SAM (cited over 3000 times) derives in part from its improved false discovery rate (FDR) 
properties, in which genes that are measured more accurately are given greater weight. SAM-like statistics take 
the form T' = p/iSEiP) -i- so) for an so suitably chosen for favorable FDR control. 

A natural question arises - after applying significance testing for multiple hypotheses in which they are pe
nalized (e.g. using the SAM penalty), how should one approach estimating the p parameters for those declared 
significant? The answer is entirely unknown, and yet will be important in order to resolve the conflict between 
methods designed to reduce the FDR and the growing need for proper estimation in the highly multivariate 
setting. We will investigate simple models for the signal-to-noise ratio of the -omics technology, and how that 
may be used in a conditional likelihood approach, but applied to T' instead of T. 

Another issue that we anticipate will become important in the truly multivariate setting is the fact each // as 
defined in the previous section is not truly a parameter. It is a random variable, because the standard error of 
the corresponding p is estimated from the data. A deeper understanding of the estimation procedure will benefit 
from a more rigorous approach, in which the dependence on the standard error accuracy is explored in more 
detail. Similarly when p is large in the previous sub-aim (but still less than the sample size n), we may be reliant 
on a relatively poor estimate of the coefficient correlation matrix R. We will investigate the consequences of this 
reliance for large p, and seek more robust approaches. 

We have observed that the conditional likelihood described above has many properties in common with 
penalized regression techniques. Here we wish to perform accurate prediction of a clinical outcome based on 
p predictors, where p » n, and we are not performing significance testing per se. Starting with a classic 
normal regression model Y = XB + e, Y may be a continuous measure of clinical response, and X may be 
an 71 X (p -f-1) matrix of -omics predictors and clinical variables. Here the danger of overfitting relationships 
to clinical outcome is severe, and the entire inferential and prediction process must be handled carefully We 
consider for a moment the statistical comparison of a single predictor Xj to Y (i.e., an isolated test of only 
the two variables). If the test statistic for the corresponding coefficient Pj is not significant, then we may in 
essence view the estimate as having been thresholded to zero. If, however, the test statistic is significant, we 
may be subject to significance bias as discussed above. Returning to the full regression setting, it is reasonable 
to investigate whether our use of the conditional likelihood has a penalized likelihood interpretation, in which 
coefficients that are not "significant" are thresholded to zero, while other coefficients are shrunk toward zero to 
varying degrees. 

Use of the conditional likelihood for the estimation of a single regression coefficient may be viewed as 
the application of a penalty term applied to ^, in which the log-likelihood for /z is penalized by the log of the 
denominator in the conditional likelihood, or log iPp.i\T\ > c)). If ^ is far from zero, then the penalty is likely to 
have little effect, while if fi is small then the penalty is likely to result in substantial shrinkage of the coefficient. 
The conditional likelihood also has a Bayesian interpretation, in which P^i\T\ > c) represents an improper prior 
for fl. In this manner, the prior may be compared to similar Bayesian interpretations of the one-predictor version 
of other penalized regression methods such as LASSO (double exponential prior) and ridge regression (normal 
prior). 

We propose to extend these ideas into a fully-fledged method called coefficient test regression for penalized 
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regression using constructions similar to the conditional likelihood. The approach presents key challenges 
in handling multiple predictors, and the operating characteristics must be investigated. A rough outline of our 
current thinking follows. We perform stepwise regression or other multiple regression approach for a quantitative 
response to limit the number of non-zero coefficients to fewer than the sample size, requiring that the Wald 
statistics for all coefficients exceed c, where c need not be specified in advance, and indeed we expect that the 
optimal c will depend on the data. Then we obtain shrunken coefficient estimates using the conditional likelihood 
approach, and use these new estimates for prediction. Cross-validation is used to select the threshold c that 
provides the least error in prediction. We expect that this approach will work in a straightfonAfard manner for 
linear regression, in which coefficient estimates are unbiased even if additional important predictors have not 
been included in the model. However, nonlinear regression approaches can give biased estimates of regression 
coefficients if some predictors are not included. This phenomenon can occur even for generalized linear models 
such as logistic regression. This source of bias may need to be considered explicitly as we consider extending 
our approach to generalized linear models, because of the iterative nature of including only a small number of 
eventual predictors in the model. 

5.3.3 Numerical Studies 

Each of the proposed new methods will undergo a period of intense methodological development and testing 
and validation with simulated and existing datasets. Simulated datasets will include the use of actual gene 
expression datasets that have had mean effects removed in order to provide realistic residual correlation. These 
residuals can then be used in a specified alternative model as performed in Hu et al. (2005). For SNP genotype 
datasets, we have developed simulation methods through the HAP-SAMPLE approach, which re-uses HapMap 
data in order to simulate realistic case-control data (www.hapsample.org, Wright et al., 2007). HAP-SAMPLE 
can be used to simulate SNPxtreatment interactions with a simple modification. We will also work with Core 
B to access data from clinical cancer studies at both the UNC-CH LCCC and Duke Comprehensive Cancer 
Center, and associated CALGB trials. While these data are accrued and undergoing data management, we 
also have immediate access to public datasets on cancer clinical trials and gene expression. Several such 
datasets are available on ArrayExpress and GEO. including datasets on multiple myeloma (Mulligan et al., 
2007. ArrayExpress E-GEOD-9782), breast cancer (Bonnefoi et al., 2007, E-GEOD-6861), and glioblastoma 
(E-GEOD-7696). 

5.4 Identifying Candidate Individualized Therapies in Pre-Clinical and Clinical Studies 

We propose to combine data mining and statistical inference into a single unified procedure that ameliorates 
the multiple testing problem while allowing sufficient flexibility to achieve most of the discovery power found in 
data mining approaches. The basic idea is a new form of machine learning, "latent supervised learning." that 
balances the power and flexibility of data mining with the reproducibility of statistical inference. Preliminary 
studies of a very simple scenario, as described in Section 3.4, indicate that this procedure has promise to find 
the hidden but important structure that is of interest in the search for individualized therapies. The goal of the 
proposed research is to fully develop latent supervised learning (LSL) for use in pre-clinical studies, such as the 
chemosensitivity study mentioned in Section 3.4, as well as clinical studies for finding candidate individualized 
therapies for cancer. 

5.4.1 Proposed Model and Algorithm 

We assume that interest focuses on finding subgroups in a feature space X characterized by differences in 
the distribution of a clinical outcome of interest Y possibly modulated through a covariate Z. As a simple 
hypothetical example in the individualized therapy context, Z could be a dichotomous treatment indicator of 
whether the patient is receiving treatment A (Z = 0) or B (Z = l), Y could be survival time, and X could 
be gene expression data for a biopsied tumor from the patient. We wish to know whether and how X can be 
best partitioned into meaningful groups which are heterogeneous in terms of the relationship between Y and 
Z. Specifically, we assume that there exists some linear classifier w with ||LO|| = l , a scalar cut-point 7, and a 
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classification C 6 {0,1} such that C = l i w ^ X - ^ > 0) and the conditional expectation or conditional distribution 
of F given Z has a parametric form 5(2';6'c) or ̂ (y,^;^^), where ^c, C = 0,1, is low dimensional, and 0o ¥" 9i. 
Estimation is based on a sample of size n of the form iXi,Zi,Yi) (i = l,...,n). 

To reduce the dimension of X, some form of unsupervised learning and/or principal components or sparse 
principal components (Zou et al.. 2004) could be used first. The procedure does not have to be restricted to 
linear classifiers if X is replaced by functionals of X before analysis. In this context, our linear classifier w'^x-^ 
is. in fact, non-linear. For example, X could be expanded to include all pair-wise products and squares of terms 
in addition to the original observations and sparse principal components could be used to reduce dimension. 
This would allow both linear and quadratic classifiers. Without loss of generality, however, we will denote the 
final form of the feature space as X, even if there are functionals of the original data and dimension reduction 
involved. 

Our final model then involves a hyperplane w'̂ x - 7 that classifies observations into two groups within which 
the model of the relationship between Y and Z is the same but the parameters are quite different. In the context 
of individualized therapies, this new model combines classification with assessment of treatment effect and 
thus can reduce the number of classification steps involved in identifying candidate individualized therapies. We 
will also develop rigorous statistical inference methods for this which will assure internal validity. The relative 
parsimony of the model will also assure external validity (reproducibility). Although this approach will still require 
a clinical validation process, the number of false leads and spurious results should be greatly reduced. 

The parsimony of this model becomes clear when we compare it to a few other related models. For il
lustration, consider the latent supervised learning model where we assume that given C = c,Y = 9 jZ -\- e, 
where e is independent with mean zero and finite but unknown variance, and has an otherwise unknown dis
tribution, and that do # 9i. In this case, giZ;9c) = 9jZ. Note that this is a semiparametric model since the 
distribution of e is mostly unspecified. The effect of X on (y, Z) is completely captured by the hyperplane 
w'^x - 7 and the difference between 0̂ and 61. We really cannot get more parsimonious without simplifying 
either the form of g or the form of the classifier. We will now demonstrate how competing models can poten
tially be considerably more complex. For example, one step up in complexity is the varying coefficient model 
EiY\Z = z,X ^ x) ^ 9'^iw'^x)z, where 9iu) is constrained to be monotone in u or to have some other smooth
ness requirement. This is a form of projection pursuit (Friedman and Stuetzle, 1981). We can easily make the 
model even more complicated by allowing wXobea matrix instead of only a vector. Greater complexity is also 
possible, but the model quickly becomes very difficult to interpret. Thus, the proposed latent supervised learn
ing approach is essentially the most parsimonious that is achievable while still maintaining sufficient flexibility 
for finding candidate individualized therapies. 

For estimation, we minimize an objective function which is computed by first dividing the data into two groups 
according to whether 6iX; w, 7) = liw'^X - 7 > 0) is 0 or 1. Withing each group, we minimize the sum of some 
objective function MiY, Z; 9). Applying this to all of the data, we estimate the parameters by minimizing 

n 

Ciw,^,9o,9i) = Y,[{^-^iXi:w,^)}MiYi,Zi;9o) + 5iXi;w,^)MiYi,Zi;ei)\ 
i = l 

over w, 7, 9o and 9i, under the restriction ||u;|| = 1 and possibly other restrictions. For example. M could take 
the form (Y - Z'̂ 9)'̂  for least squares. |y - Z'̂ 9\ for least absolute deviation, or the negative log-likelihood 
for maximum likelihood estimation. The flexibility of this approach goes beyond the usual likelihood based 
approach to include methods more robust to data contamination such as least absolute deviation. As with all 
high dimensional procedures, however, care must be taken with both selecting the tuning parameters of the 
model and restricting the dimension of X to avoid over fitting. For the simulation study mentioned in Section 
3.4, we used least squares. In general, we will use the notation {u„, 7„, 0o„ and ̂ i„ to denote the maximizers of 
Liw,^,9o,9i). 

.5.4.2 Computational Methodology 

Because the objective function £(^,7,^0,^1) is in general not convex, maximization is quite difficult. In the 
special case where M has the least absolute deviation form, the optimization problem can be reduced to a 
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line search on 7 combined with mixed-linear programming (e.g., Nemhauser and Wolsey, 1988). Unfortunately, 
even with excellent commercial software, the computational intensity requires days of computation even for 
modest sized samples. It appears that a direct form of optimization is needed. The approach we propose is to 
enumerate all partitions of the data into two subsets that are possible through the hyperplanes w'^x - 7, under 
some sort of reasonableness constraint such as the requirement that at least 1 < mo < n/2 observations must 
be in both subsets. For example, setting mo = 5 or mo = 10 would be reasonable. This is just to ensure that the 
results are reasonable. We also carefully track the subset generation to avoid redundancy For each partition so 
generated, we maximize Ciw,'y,9o,9i) for a pair (̂ 1,7) consistent with the partition, i.e., the partition is defined 
through 6iXi;w,j). 

The challenge is then reduced to efficient enumeration of a collection of hyperplanes that creates all possible 
reasonable partitions. Note that there are several values of (to, 7) that will generate the same partition, but for 
large sample sizes, these values are all quite close together. Thus, the non-uniqueness does not pose a real 
difficulty Returning to the enumeration problem, let X„ - {x i , . . . ,x„} be a fixed data set of size n of d-
dimensional feature vectors. Note that for a given w, the data can be ranked by the values w'^xi,.. .,w'^Xn, and 
then the different values of 7 yield different slices through this ranking. Hence, if we can enumerate all possible 
rankings induced by w and then check only those slices that yield partitions not previously generated, we would 
be able to efficiently enumerate all possible unique partitions caused by hyperplanes. One way to accomplish 
this is by enumerating values of w that lead to unique rankings of the data, considering only those values of 7 
at the midpoint between the sorted values of w'^xi,... ,'UJ'^X„, while omitting partitions already examined. This 
requires a combination of efficient computation and efficient hash table construction. 

Interestingly, this basic problem has been of interest for quite some time, and sharp bounds on both the 
number of possible unique vectors w leading to unique orderings and the number of unique partitions caused 
by dividing hyperplanes have been derived. The first number is the "number of llneariy inducible orderings" 
(Cover, 1967), while the second number is the "number of partitioning hyperplanes" (Cover, 1965; Anthony, 
2004). Cover (1967) showed that the number of linearly inducible orderings is bounded above by Qin,d), 
where Qin,d) is defined recursively as Qin,d) - Qin - l,d) + i n - l)Qin - l,d - 1) with Qin,l) = 2 and 
(5(2, d) = 2. Note that (5(n, 1) ^ 2 , Qin, 2) =̂  n(n - 1), and, in general. (5(n,d) ^Oin'^). Cover (1965) showed 

that the number of partitioning hyperplanes is at most X]f=o I " ~ 1 • Anthony (2004) extended the result to 

give a bound on the number of partitions of the data achieved by k parallel hyperplanes which is applicable to 
the setting where more the two phenotypes are expected. The challenge, of course, is how to use these results 
to yield a computationally efficient algorithm for enumerating partitioning hyperplanes. 

The proof of the result in Cover (1967) shows that the unique w vectors are connected to the structure of all 
painwise difference vectors Xi - Xj i i ^ j ) . After careful analysis, we were able to exploit this difference to come 
up with an algorithm for generating a set of vectors w which generates all possible linearly inducible orderings 
without any duplication of orderings. For any ly e R'' with \\w\\ = 1, let Riw) be the ranking of the observations 
w'^xi,.. .,uFxn. Let W be a finite set of w's. We say W has "no duplication" if Riwi) 7̂  Riw2) for any two 
distinct wi,w2e W. In addition, W is "complete" if for any i/; e R*̂  with ||u;|| = l , there exists some w e W such 
that Riw) - Riw). Our computational goal is then to find a W which is complete with no duplication. 

We now describe our proposed approach to finding such a W for the special case when d = 2. For every 
distinct pair of points Xi,Xj e Xn, calculate the angle 9ij between the line xj - xj and the vector (0,1). This 
can be done by taking the arctan of the slope of the line Xj - Xj. Add both the angle 7r/2 -1- Oij and 37r/2 -1- 9ij 
(subtracting off 2n if the total > 27r) and save in a set T^. Do this for all 1 < j < i < n to obtain T„ with no more 
than nin - 1) distinct elements (there may be fewer) all in the range (0,7r]. Now sort the elements of T„, and 
denote the resulting ordered distinct elements t i , . . . , tk, where k < nin - l). Now compute Uj = itj 4- tj+i)/2, 
tor j - l , . . . , k - 1, and compute uk = itk + t i-\- 2n)/2, where we take uk - u k - 2n if uk > 2n, and call the 
resulting collection U. Now let W be the set of vectors of the form (sin u, cos u) running over u e U. V̂ e will 
prove that the set W so constructed is complete with no duplication. The approach for general d is actually quite 
similar to the case of d = 2 but requires dividing hyperspheres into regions rather than circles into segments. 

To generate all hyperplanes. we iterate through all values of u; e T^, and, for each such w, we only need 
to check those values of 7 that lie between the sorted values of ^iJ'^Xl,... ,iw^x„. To make this fully efficient, 
a hash table needs to be generated that avoids computations for partitioning hyperplanes already constructed. 
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Preliminary assessments of this general algorithm show that it is promising and efficient. 

5.4.3 Statistical Theory and Inference 

We will study the large-sample properties of the proposed estimation procedure, including consistency and dis
tributional convergence for all parameters, using empirical process methods (Kosorok, 2008; van der Vaart and 
Wellner. 1996). Estimation for the (iu, 7) component is quite similar to the problem of finding the change-point in 
change-point regression (Kosorok and Song, 2007; Section 14.5.1 of Kosorok, 2008). The 7„ parameter, in par
ticular, has the non-regular property that n i% - 7) converges to a compound Poisson process when the model 
is correctly specified and that other convergence rates (besides n) and limiting distributions are possible when 
the model is incorrectly specified (e.g., Banerjee and McKeague, 2007). Empirical processes are absolutely 
needed here to obtain valid results. The other parameter estimators have different limiting distributions that can 
also be determined through empirical process techniques. Unfortunately, standard approaches to inference, 
including the bootstrap, are not applicable here and new approaches to inference are needed. It appears that a 
modified bootstrap, of the kind described in Kosorok and Song (2007). will work for latent supervised learning. 

The limiting distributions of the estimators are quite different if 9o = ^1, and having a valid test of the 
null hypothesis HQ : 9Q = 9i is crucial. Unfortunately the model occurring under the null hypothesis is not 
identifiable. Fortunately, our group has recently developed a theoretically valid hypothesis testing procedure 
for this general non-identifiability setting (Song et al., 2008), and the approach appears to be applicable to 
the latent supervised learning setting described above. We have extensive experience in applying empirical 
process techniques and other statistical and computational techniques to problems such as this, and we believe 
that our general approach will be successful. 

5.4.4 Numerical Studies 

We will utilize Gore C to assist us in coding a careful and thorough simulation study of the internal validity and 
reproducibility of our proposed approach. We will simulate data sets with a range of sample sizes from small to 
large to evaluate the theoretical predictions as well as the performance for realistic sample sizes in the range 
of moderate sized Phase III clinical trials, e.g. 100, 200, 500, 1000, 2000 and 5000, as well as smaller sizes 
such as 50 and 20. We also consider a range of models motivated by the colorectal tumor example mentioned 
in Section 3.4 as well as motivated by clinical trial data sets In Core B. We will also compare the performance of 
our approach with existing approaches for identifying candidate therapies such as those approaches mentioned 
in Section 3.4. 

We will also evaluate our approach on existing clinical trial data sets obtained through Core B which have 
high dimensional prognostic data as well as the usual clinical outcomes. The selection of these data sets 
will need to wait until the methodology has been developed far enough for data analysis beyond simulations. 
The 100 colon data set mentioned in Section 3.4 will probably become available in the fifth year of the grant, 
at which point we will use that data to evaluate the new methods. Part of the challenge is that sample size 
requirements will not be known until we have completed the statistical theory work on this problem which will 
occur in approximately year three. However, we will utilize careful and appropriate sample size analysis in our 
selection of data sets to analyze. 

5.5 Software Implementation and Dissemination 

Each of the proposed new methods will first undergo a developmental implementation until the procedure has 
been validated via simulation studies and real data applications. Core C will then assist with making the imple
mentation into a usable and robust software package for dissemination in appropriate formats, including R and 
SAS. Guidebooks and web pages of instructions and examples will also be developed and the new software will 
be communicated through presentations and short courses at appropriate professional meetings. We will also 
identify several beta testers outside of our institutions to help refine the quality of the software implementation. 

We are experienced in producing JAVA code with direct application (FastMap, Gatti et al., 2008a), as 
well as a useful interface (SAFE-GUI, Gatti et al., 2008b) to underlying code in R (Barry, Nobel and Wright, 
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2005). SAFE-GUI offers a good example of code development that relies on existing genomic annotation in 
R/Bioconductor, and thus expressly avoids needing to "reinvent the wheel" in maintaining genomic annotation. 

5.6 Timetable 

For each of the new methods to be developed in each aim. there will be four phases of research and devel
opment: (1) methodological phase in which we construct new statistical and computational methods, establish 
their theoretical properties, and implement them in research code; (2) simulation phase where we assess the 
performance of the proposed methods through extensive simulation studies; (3) data analysis phase where we 
apply the new methods to real cancer studies; and (4) software development and dissemination phase where 
we develop our software, test it in practical settings, and disseminate the software in a manner useful and 
accessible for practitioners. Generally speaking, most of the activities in phase 1 will take place over the first 
three years, phase 2 will expand over years 2-4, phase 3 will begin near the end of year four, and phase 4 will 
commence in year five. 
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6 INCLUSION ENROLLMENT REPORT 

N/A 
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8 PROTECTION OF HUMAN SUBJECTS 

Although the proposed research indirectly involves human subjects through the preparation, in Core B,.of de-
identified data sets from identifiable patient data sources, the investigators on Project 4 will have access only 
to the de-identified data. Thus, the investigators on Project 4 will have no access to any identifiable patient 
information. 
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9 . INCLUSION OF WOMEN AND MINORITIES 

The methods we develop will be applicable to studies with both women and minorities and also to studies 
which examine treatment differences adjusted for gender, ethnicity and race. This is accomplished through the 
general formulation of the statistical designs, models and methods studied that allow for many possible kinds of 
risk factors. Moreover, many of the existing data sets to be studied and provided by Core B include women and 
minorities, although we will not be generating any new data involving human subjects. 

10 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

11 INCLUSION OF CHILDREN 

The methods we develop will be applicable to studies with children and also to studies which examine treatment 
differences adjusted for age. This is accomplished through the general formulation of the statistical designs, 
models and methods studied that allow for many possible kinds of risk factors. Moreover, some of the existing 
data sets to be studied and provided by Core B may include children, although we will not be generating any 
new data involving human subjects. 

12 VERTEBRATE ANIMALS 

N/A 

13 SELECT AGENT RESEARCH 

N/A 

14 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

15 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute subcontracts 
with the consortium institutions (Duke University and North Carolina State University). These inter-institutional 
agreements will be written consistent with the NIH consortium agreement policy. 

16 LETTERS OF SUPPORT - None 

17 RESOURCE SHARING PLAN(S) 

(a) Data sharing plan: The data-related resources generated by the proposed research consists of new statis
tical methodology, software packages for implementation of the methodology and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
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through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy Summaries of the methodology, the software and tutorials will 
be shared through a public web site managed by Core A. while Core C will assist in preparation of the 
software and tutorials for dissemination. This project will use de-identified data prepared by Core B to test 
the methods and to create demonstrations of use of the methods to be included in tutorials. This project 
will not be involved in sharing of these data; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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PROJECT 5 

METHODS FOR DISCOVERY AND ANALYSIS OF DYNAMIC TREATMENT REGIMES 

Project Leader: Anastasios A, Tsiatis, PhD 
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PROJECT SUMMARY (See instructions): 

Treatment of cancer is an ongoing process during which clinicians make a series of therapeutic decisions 
over the course of the disease. However, while there is increasing interest in identifying the overall strategy 
of sequential decisions leading to the most beneficial clinical outcomes, where those decisions may be 
predicated on complex information on the patient up to that point, current cancer clinical trials evaluate only 
the therapeutic options available at a single decision point, mostly in a "one-size-fits-all" manner. Attempts 
to synthesize information from several isolated trials conducted at different milestones in the disease are 
problematic, because the best treatment at any one decision point may not be best when placed in the 
context of the entire decision process owing to possible delayed effects of past treatments on the efficacy of 
future treatments. Considering cancer treatment strategies as dynamic treatment regimes, which are formal 
algorithms for sequential decision-making that use accrued information on the patient at each decision point 
in an evidence-based manner to determine the next step of treatment, along with analytical reinforcement 
learning methods from computer science that provide a principled framework for identifying the optimal such 
regime, offers the potential to revolutionize how cancer treatment is viewed and effect a paradigm shift in the 
design and conduct of cancer clinical trials. The four specific aims of this project seek to catalyze this 
advance by studying these issues for the first time in the cancer treatment context. The first aim will 
evaluate various learning methods to establish the best techniques for use in developing optimal dynamic 
treatment regimes for cancer, and the second will focus on a specific version of this methodology when 
clinicians are interested in finding the best regime among a particular set of regimes. The third aim will 
develop new methods for making formal statistical inference on regimes developed based on data, which 
have been heretofore unavailable owing to the theoretical complexity of the problem. In the fourth aim, 
methods for design of so-called sequentially randomized trials for the specific purpose of developing 
dynamic treatment regimes, including determination of sample sizes that will ensure identification ofthe best 
regimes from among those in the trial, will be developed. Coupling trial design with learning methods for 
analysis, a new model, the clinical reinforcement trial, will be developed and applied to designing studies to 
identify optimal regimes for non-small cell lung cancer and other cancers. Collectively, these aims will result 
in high-impact, new methodology that will allow individualization of the therapy to the patient over time. 

RELEVANCE (See instructions): 

Although treatment of cancer involves a series of therapeutic decisions over time, cancer clinical trials 
evaluate treatments only at specific decision points, and hence the best treatment in such a trial may not be 
best when placed in the context of the overall decision-making process. This research will study cancer 
treatment formally as an overall, individualized strategy so that the entire series of decisions leading to the 
best outcomes can be determined, promoting a paradigm shift in the way cancer therapies are evaluated. 
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RESEARCH PLAN 

1 INTRODUCTION TO RESUBMISSION/REVISION APPLICATION- N/A 

2 SPECIFIC AIMS 
In clinical practice, treatment of cancer is a dynamic process involving a series of therapeutic decisions over 
time. However, most cancer clinical trials focus on effects of treatments given at a single decision point in the 
course of the disease, e.g., the selection of a first-line chemotherapeutic option for patients with Stage IIIB/IV 
non-small cell lung cancer. Conclusions on the best overall strategy over the series of key decision points in 
the disease are consequently cobbled together from the results of many such single-decision studies, and, due 
in part to the possibility that the treatment given at one point in time may have delayed effects on the efficacy 
of future treatment, may be misleading and, indeed, deleterious. In some chronic disease/disorder areas, 
notably behavioral disorders and infectious diseases, there has been a growing recognition that this myopic 
point of view may not result in patients receiving the best sequence of treatments and that the entire sequential 
decision-making process must be studied as a whole in order to identify strategies that are the most beneficial. 

This perspective has led to considerable recent interest in methodology for developing and studying dynamic 
treatment regimes. A dynamic treatment regime is a set of sequential decision rules dictating at each decision 
point the selection of the next treatment for a patient based on information on the patient, including measures of 
disease progression, biomarkers. and previous treatment, up to that point, thereby individualizing each step of 
treatment to the patient. With more than one option at each decision point and numerous possibilities for syn
thesizing the available information at each into decision rules, many regimes may be conceived, and identifying 
the optimal regime, that leading to the most benefit if followed over the course of the disease by the popula
tion of cancer patients, presents many challenges. We propose four specific aims that will lead to advances in 
methodology for discovering and evaluating dynamic treatment regimes: 
Aim 1: To develop and evaluate learning methods for optimal dynamic treatment regimes. Because 
of the complexity of the problem, standard statistical methods are not useful for identification of the optimal 
regime from data, Reinforcement learning methods from computer science, adapted to incorporate statistical 
inference, are a promising and powerful approach to this problem. However, although they have been used 
extensively in areas such as artificial intelligence and robotics, only limited research has been conducted on 
their use for developing optimal treatment strategies for human diseases and disorders, and no work has been 
done to evaluate their feasibility and application in developing optimal regimes for cancer We will carry out the 
first, comprehensive study of competing learning methods in the context of cancer research. 
Aim 2: To develop methods for identifying optimal dynamic treatment regimes from a restricted, feasible 
set. A key challenge in identification of the optimal dynamic treatment regime is that, with many decision points, 
treatment options, and high-dimensional patient information, the number of possible regimes can be enormous. 
An alternative, practical approach would be to restrict the candidate regimes to a smaller, feasible set based on 
considerations including current clinical practice, cost, and complexity. We will develop methods for estimating 
population mean outcome for regimes within a feasible set and for identifying the best regime within the set. 
Aim 3: To develop and evaluate inferential methods for dynamic treatment regimes. Methods for making 
inference on optimal dynamic treatment regimes derived from the learning techniques in Aim 1 pose a signifi
cant challenge in that parameters in the statistical models that characterize these regimes are often constrained 
to lie on the boundary of the parameter space. Standard inferential approaches, including bootstrap methods, 
break down under these contditions, and a fundamentally new statistical framework is needed. We will develop 
methods for constructing hypothesis tests and confidence intervals for optimal dynamic treatment regimes. 
Aim 4: To develop methods for the design of sequentially randomized trials for dynamic treatment 
regimes. Sequentially randomized clinical trials, where subjects are involved in multiple randomizations to 
therapeutic options at each of several decision points, have been advocated for evaluating specific dynamic 
treatment regimes and for developing optimal regimes. Numerous sequentially randomized cancer trials have 
been conducted, demonstrating the feasibility of carrying out such studies in practice, although they have not 
had the goal of investigating the dynamic treatment regimes embedded in them. We will develop a new model 
for cancer clinical trials, clinical reinforcement trials, which involve sequential randomization, allow for a contin-
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uum of treatment options, and have the goal of developing optimal regimes using learning techniques. We will 
apply these first to non-small cell lung cancer and generalize to other cancers. A key challenge in the design 
of sequentially randomized studies for deducing optimal regimes is that, as the number of decision points and 
treatment options at each grows, the greater the sample size requirements can be. We will develop new ap
proaches to evaluating the properties of these designs that will enable determination of numbers of decision 
points and treatment options that can be studied with sufficient precision using realistic sample sizes. 

The overarching goal of this project is to catalyze a paradigm shift in the way cancer therapies are conceived 
and evaluated that has the potential to make evidence-based, individualized treatment strategies a reality. 

3 BACKGROUND AND SIGNIFICANCE 

3.1 Dynamic Treatment Regimes 
Treatment of cancer is an ongoing process. For example, a patient with untreated acute promyelocytic leukemia 
might first receive concurrent tretinoin and chemotherapy If the patient responds to this treatment, s/he might 
be continued on intermittent tretinoin as a maintenance therapy; if s/he does not, the clinician may prescribe 
a second-line chemotherapy. Clinicians routinely modify therapy in the face of toxicity, reducing the dose or 
delaying initiation. Essentially, cancer treatment in practice involves a series of decisions made sequentially 
over time based on accruing Information on the patient. Moreover, in this revolutionary era of advances in 
biology, the possibility that biomarkers and genetic and genomic information may be used with other baseline 
or evolving patient characteristics to guide treatment decisions is seemingly within reach. 

Despite this, evaluation of cancer treatment is ovenwhelmingly carried out through standard clinical trials of 
competing treatment options at a single decision point. Although such studies provide important information 
on how treatments compare at that decision point, they are not designed to address questions regarding how 
patients fare over the course of an entire sequence of decisions, nor of how patient information may inform 
those decisions. Nonetheless, there is great interest in establishing guidance on the optimal treatment strategy 
involving a series of such decisions; that is, deducing that strategy that would lead to the best outcomes if 
followed by the population of patients. For example, Grossi et al. (2008) review results of studies of first-, 
second-, and third-line therapies for advanced non-small cell lung cancer (NSCLC) and attempt to synthesize 
this evidence to recommend an optimal strategy for using these in practice. A key limitation of this approach 
is that the apparent "best" treatment at a particular decision point as determined by a study at that point may 
not be the best when placed in the context of prior and subsequent decision points and patient information. A 
treatment may have prolonged effects that have implications for the efficacy of future treatments, and therapies 
that may be beneficial over the course of the disease for one patient may differ from those for another. The 
authors advocate formal study of "rigorous treatment algorithms" Involving the series of three decisions. 

There is increasing appreciation, particulariy in study of management of chronic behavioral disorders such 
as depression and drug and alcohol dependence (Murphy et al.. 2007ab; Pineau et al., 2007) and of HIV 
infection (El-Sadr et al., 2006). that considering entire strategies involving a number of key decision points is 
required to determine how best to treat patients over the course of a disease. Establishing treatment algorithms 
that dictate at each decision point which treatment among the available options to give based on information 
on the patient up to that point would provide cancer clinicians with principled, evidence-based guidance for 
individualizing their treatment decisions to the particular circumstances of the patient over time. 

This perspective has led to heightened interest in the formal study of dynamic treatment regimes. A dynamic 
treatment regime may be viewed as an algorithm for sequential decision-making. A regime involves a sequence 
of decision points at which decisions on treatment, selecting from several options, would be made. At each point, 
an associated decision rule that takes as input all information on the patient to that point, such as previous 
treatment history and past and current values of biomarkers and other measures that may reflect disease 
progression, and outputs the next step of treatment. Clearly, with several treatment options at each decision 
point and many possible ways of distilling the accruing information to define decision rules, there are numerous 
possible regimes, and an obvious objective is to determine the regime that leads the best outcomes overall; I.e., 
if followed by all patients in the population, would result in the most beneficial mean outcome. 

A very simple, generic example illustrates. Suppose that there are two first-line chemotherapeutic options, 
Cl and C2, say, for patients at a particular stage of a certain cancer. Among patients who respond to this 
induction therapy where "response" may be defined on a cancer-specific basis, it would be standard to begin 
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a maintenance or intensification treatment; suppose there two such options. Mi and M2. For subjects who do 
not respond, routine practice would be to prescribe a salvage therapy; assume two options Si and S2. In this 
scenario, there are eight possible dynamic treatment regimes taking the form "Give first-line chemotherapy Cj 
followed by maintenance therapy M̂  if the patient responds; othenivise. if s/he does not, give salvage therapy 
Sfc." where i , j , fc - l , 2 in all 8 possible different combinations. In this simple setting, for any given regime, the 
first decision point occurs at the time of treatment initiation, and the decision rule does not take into account any 
baseline patient-specific information. The second decision point occurs at the time response is ascertained; 
here, the decision rule takes the single variable, response (yes or no), as input and assigns the subject to 
maintenance or salvage therapy accordingly Among this set of 8 possible regimes, there is a "best" regime 
defined by a particular combination {Ci,Mj,Sk) in the sense that, if all patients followed it, the greatest mean 
outcome would be achieved. The decision rules here are primitive; the first uses no information on the patient, 
while the second uses only information on response to specify treatment. Clearly developing regimes that 
employ more sophisticated decision rules synthesizing all information available on the patient would address 
the goal of individualizing the entire strategy to the patient given the information and options available. 

The implications for revolutionizing the treatment of cancer patients are enormous. Major challenges in 
cancer research are the bottleneck between the laboratory research that suggests new treatments and clinical 
practice and the best ways to use existing treatments. Taking the view that treatment is a sequential decision
making process and thinking in the context of individualized regimes has the potential to effect a paradigm shift 
in the way these treatments are evaluated. Among newly conceived candidate treatments, very few make it to 
human clinical trials, and only 10% of these demonstrate enough efficacy to be approved for rharketing (see 
Food and Drug Administration, 2004; Hogberg, 2005). It may well be that, although such a treatment fails in 
the primary analysis of a traditional, single-decision point clinical trial because its benefit to patients with certain 
characteristics is "averaged out" with outcomes tor patients for whom it is not efficacious, subgroup analysis 
may reflect this benefit. Were such treatments included as options at an appropriate decision point for such 
patients in a subsequent study to evaluate and develop dynamic treatment regimes, there is the possibility that, 
when used with existing treatments as part of an entire strategy they could emerge as important components 
of an overall regime. Moreover, such studies might reveal where in the decision-making process and for whom 
existing treatments are especially advantageous, taking into account their prior and future effects. 

With many decision points, treatment options, and high-dimensional patient information, the number of 
possible regimes is quite large. Given data on treatment decisions over time, intervening information that may 
have been used to make those decisions, and outcomes for a sample of patients, a new statistical methodology 
is required to traverse the myriad possibilities and construct optimal regimes. Furthermore, a framework for 
conception and design of clinical trials to collect such information for this purpose and for evaluating the benefit 
of specific, pre-conceived regimes is needed. Our four specific aims represent key methodological advances 
toward these objectives. Taken together, their fundamental premise is that viewing ongoing treatment of cancer 
patients through the lens of dynamic treatment regimes offers an exciting opportunity for a transformative model 
for cancer research. While standard, single-decision trials attempt to correct for individual differences and prior 
history in assessing treatments, development of dynamic treatment regimes leverages patient differences to 
inform the entire decision-making process, with great implications for improving the treatment of cancer patients. 

3.2 Aim 1: Learning Methods for Optimal Dynamic Treatment Regimes 
Existing statistical methods do not have the needed flexibility to be used to develop optimal dynamic treatment 
regimes based on the type ot data described in the previous section. Reinforcement learning methods from 
computer science (e.g., Sutton and Barto, 1998) offer an appropriate framework for this purpose. Reinforcement 
learning is a powerful artificial intelligence technique that has recently been used to teach an autonomous 
controller to fly a helicopter upside down in a sustained hover; see Figure 1, demonstrating the potential of 
reinforcement learning for solving problems that are complex and counter-intuitive (Ng et al., 2006). As posed 
in computer science, reinforcement learning involves trying a sequence of actions, recording both the long and 
short term consequences of those actions, estimating the relationship between actions and consequences, and 
then selecting the "policy," i.e., the sequence of decision rules dictating actions, that results in the most desirable 
outcomes. The connection to dynamic treatment regimes is evident: "actions" are treatments, "consequences" 
are evolving measures of health status, including outcomes; and "policies" are dynamic treatment regimes. 

Susan Murphy Chair of the External Advisory Committee for the Program Project, has been instrumental 
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in bringing reinforcement learning methods to the attention of the statistical community and establishing the 
connection between these methods and discovery of optimal dynamic treatment regimes (Murphy, 2003; see 
also Robins, 2004 and Moodie, Richardson, and Stephens, 2007). She has also promoted application of these 
methods to developing regimes for treatment of behavioral disorders, as noted above. Here, time frames over 
which response to treatments may be evaluated are quite short, giving patients the opportunity to try many 
different treatments while experiencing the same severity or stage of the disorder. Things are different for 
life-threatening diseases such as cancer, where the disease may progress over a single course of treatment. 
Hence, adaptation of reinforcement learning methods to the particular challenges of cancer treatment is critical. 

The work of Dr Murphy and colleagues represents only initial steps toward 
harnessing the power of reinforcement learning for developing optimal regimes. 
There has been only limited assessment of how learning methods should be 
used in practice or of the relative advantages of different methods, and none in 
the setting of cancer research. In this aim, we will carry out a comprehensive 
study of these promising techniques in this context. 

Different learning methods have been proposed; chief among these are Q-
learning (Watkins, 1989; Watkins and Dayan 1992) and yl-learning (Murphy 
2003; Blatt et al., 2004); formal descriptions are given in Section 5.2. Little 
is known about their relative merits (Almirall et al., 2005). These methods in
volve developing statistical models for patient outcomes and other quantities as 
a function of past history, but how best to develop these models, particulariy in Figure 1: Helicopter in au-
the face of high-dimensional histories, is not known. A number of methods are tonomous sustained hover, 
available for model selection, including traditional statistical methods such as Figure 3 from Ng et al. (2006) 
forward selection; shrinkage methods familiar in the statistical literature, such 
as the Least Absolute Shrinkage and Selection Operator (LASSO; Tibshirani, 1996), the adaptive LASSO (Zou, 
2006; Wang and Leng, 2007; Zhang and Lu, 2007), the Smoothly Clipped Absolute Deviation (SCAD) penalty 
(Fan and Li, 2001), and the False Selection Rate (FSR) methods developed by members of our team (Wu, 
Boos, and Stefanski, 2007; Boos, Stefanski and Wu, 2008, Crews, Boos, and Stefanski. 2008); and methods 
developed in the machine learning literature, such as support vector regression (Vapnik et al., 1997) and ex
tremely randomized trees (Ernst. Geurts, and Wehenkel, 2005; Geurts, Ernst, and Wehenkel, 2006). A study 
of the performance of these methods in the context of Q-\earn\ng and yl-learning would be valuable. During the 
project period, we will carry out a systematic study of all of these issues. 

Finally the nature of the data must be considered. In some settings, e.g.. prospective cohort studies, data 
that are observational in nature may be available that record measures of disease progression, outcomes, and 
treatments. Data from a single-decision clinical trial may include follow-up information on disease course and 
subsequent treatments received. The extent to which learning methods can be used with these data must be 
explored. A much more fruitful mechanism for obtaining the needed data is to conduct clinical trials with the 
specific goal of discovering optimal dynamic treatment regimes. In Aim 4, we study sequentially randomized 
trials for this purpose, and propose a promising new type ot such trial, the clinical reinforcement trial, that is 
specifically designed to yield the information necessary to develop optimal regimes of interest in cancer. Our 
comprehensive study of learning methods will include evaluation of the pertormance of the methods with both 
types of data and will be a critical preliminary step toward the development of these new trials in Aim 4. 

3.3 Aim 2: Identifying Optimal Dynamic Treatment Regimes From a Restricted, Feasible Set 
As we have noted, the number of possible dynamic treatment regimes can be very large. More precisely with 
many decision points, an array of treatment options at each, and. most importantly, the high dimensionality of the 
patient information to be used in constructing rules, there is effectively an infinite numberof regimes depending 
on high-dimensional information. The reinforcement learning methods discussed in Aim 1 focus exclusively on 
finding the optimal regime that distills the full complement of patient information irito decision rules. The resulting 
regime may thus involve rules that are difficult to interpret in practice, as they may incorporate complex, non-
intuitive combinations of patient information, and may require complicated manipulation of that information to 
obtain the next step of treatment. This may make the optimal regime less appealing to some practitioners. Even 
if this is not the case, because the goal of learning methods is only to identify the optimal regime, they do not 
provide a framework for exploring the relationship of mean outcome to the factors involved in the decision rules. 
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For example, if the rule at a particular decision point output the dose of chemotherapy to administer, clinicians 
may be interested in understanding the extent to which mean outcome changes as a function of that dose. If 
mean outcome is not sensitive in a clinically meaningful way to the dose given at that point for a range of feasible 
doses, giving a lower dose on the basis of cost or toxicity may be preferred. 

These observations inspire us to develop an alternative framework for developing dynamic treatment regimes 
that attempts to circumvent the issues associated with high-dimensional information and to accommodate the 
situation where clinicians are interested in developing regimes that depend on a key subset of patient informa
tion on grounds of cost and clinical practice. We will develop methods for estimating population mean outcome 
for regimes that are restricted by such considerations. The ability to estimate mean outcome for a slate of 
competing regimes addresses the second issue above and allows identification of the optimal regime within the 
restricted set. An important part of this effort will be to compare regimes so identified to the optimal regime 
derived via learning methods under realistic conditions to assess the extent to which such a restriction is useful. 

3.4 Aim 3: Inferential Methods for Dynamic Treatment Regimes 
The question of how to conduct statistical inference in the context of reinforcement learning is crucial for ensuring 
that optimal dynamic treatment regimes are identified with acceptable precision from observed data. Existing 
approaches for accomplishing this for (5-learning are of two general types in computer science. The first line of 
attack is to develop rules for establishing broad bounds on "generalization error," which assesses the accuracy 
of an estimator for the difference between the optimal regime (or "policy") and any given regime (see Bartlett 
and Tewari, 2007; Murphy 2005). Note that generalization error in this context is somewhat different from the 
use of the term in the machine learning literature (e.g., Laber and Murphy, 2008). Unfortunately, generalization 
error bounds tend to be much too conservative to be of practical use in clinical trial design. 

The second approach is to consider inference for the parameters in the models that must be developed 
in implementation of learning methods. This approach is easier to use in our setting to obtain interpretable 
clinical quantities, and, moreover, practical generalization error bounds can often be derived from parametric 
inference. Hence, we will restrict our attention to the parametric inference approach. The available work in this 
area is very recent, and is challenged by the non-regularity of the associated estimators (Chakraborty, Strecher, 
and Murphy 2008). The issue is that the optimal regime is usually obtained by maximizing over an estimated 
regression function, and these maxima end up being non-differentiable functions of estimated parameters. 
To circumvent this problem, Chakraborty et al. (2008) use smooth approximations to these functions based 
on a technique called soft-thresholding. While this appears to facilitate construction of confidence intervals, 
the approach also leads to a decrease in the accuracy of estimation because the models are intentionally 
misspecified to avoid discontinuities. Thus, there is still a great need for development of methods for inference 
that avoid soft-thresholding, provided that the technical challenges can be overcome. 

The problem is closely related to the classic statistical problem of estimating parameters that are constrained 
by a boundary The difficulty is that the limiting distribution is different when the parameter is on the boundary 
versus when it is off, and, it is not known in advance whether or not the parameter is on the boundary. One 
approach is to carry out a test of the being on the boundary and then conduct inference based its conclusion. 
This process generates the so-called "post-model-section estimators," which have a long history (e.g., Bancroft, 
1944; Bancroft and Han, 1977; Sen, 1986). Leeb and Potscher (2006) show that this approach can lead to 
guaranteed inconsistency depending on the goals of Inference and the underiying model. The issue is that the 
resulting estimators are non-regular, and non-regular estimators can perform arbitrarily poorly in certain settings 
(Leeb and Potscher, 2006; Kosorok, 2008, section 18.1). On the other hand, non-regular estimators can also 
have good properties in certain settings, such as shrinkage estimation of high-dimensional covariance matrices 
(for a review, see Schafer and Strimmer, 2005; see also Bickel and Levina, 2008). 

To summarize, the problem of finding valid methods of inference for reinforcement learning is important 
but unresolved. There are a number of new ideas (e.g., empirical process methods) and old ideas (such as 
post-model-selection estimators), which, when combined, hold promise for addressing this problem. During the 
project period, we will develop inferential methods based on this strategy 

3.5 Aim 4: Design of Sequentially Randomized Trials for Dynamic Treatment Regimes 
Our first three aims will lead to significant advances in techniques for discovering and making inference on 
dynamic treatment regimes from data. As we have noted, these methods may be applied to observational 
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data from existing sources; however, because these data were not collected with this purpose in mind, they 
are likely to lack key information that would support the development of the most effective regimes possible. A 
more fruitful strategy is to carry out trials that are explicitly designed not only to evaluate a finite, pre-conceived 
set of relatively simple regimes but also to collect information that can form the basis for the development of 
more sophisticated regimes via learning methods and the methods in Aim 2. Such designs, which involve 
sequential randomization of subjects to treatment options at each of a number of pre-determined decision 
points, have been advocated by Lavori and Dawson (2004), Murphy (2005), Thall et al. (2007), and many 
others, by whom they have been referred to as "Sequential Multiple Assignment Randomized Trials" (SMART). 
In behavioral research, prominent such studies have included Sequenced Treatment Alternatives to Relieve 
Depression (STAR*D) (Rush et al., 2004) and Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) 
(Lieberman et al.. 2005). 

For example, in the simple setting of the two-decision point 
regimes in Section 3.1 defined as "Give first-line chemotherapy 
Cj followed by maintenance therapy Mj if the patient responds; 
otherwise, if s/he does not, give salvage therapy St," which we 
write in shorthand as CiMjSfe, where i, j , /c = l , 2 in all 8 possible 
different combinations, such a trial to evaluate these 8 possible, 
simple regimes would naturally involve two randomizations. The 
first would be to one of the two first-line chemotherapy options, 
Cl or C2, at baseline. The second would correspond to the deci
sion point defined by response; at the time a patient responds, if 
s/he does, s/he would be randomized to one of the two mainte
nance options Ml or M2; patients who do not respond by some 
maximum time would be randomized to one of the two salvage 
options Sl or S2. Figure 2 shows the trial design schematically, 
where "•" represents randomization. Under this randomization 
scheme, there will be subjects whose "realized treatment experi
ence" is consistent with at least one of the 8 regimes of interest; 
e.g., a subject who is randomized initially to Ci, responds, and 
is then randomized to Mi has'an experience that could have re
sulted from having followed either ot the regimes CiMiSi or C1M1S2. Thus, subjects in such a trial can provide 
information on more than one regime, which can be exploited in their design; see Section 5.5. Of course, it 
should be clear that, as the number of decision points and/or options at each increase, the numbers of subjects 
whose realized experience is consistent with a given regime could become quite small, making the design of 
these studies challenging. In our first sub-aim, we propose a framework for the design of sequentially ran
domized trials for the purpose of identifying the "best" regime among those represented. In particular, we will 
develop criteria and approaches for sample size calculation that will allow trialists to determine the numbers of 
decision points and treatment options at each that may be incorporated while achieving acceptable precision. 

It is worth noting that there have been numerous sequentially randomized cancer trials, many of the first of 
which were designed by Stephen George, one of the PD/PIs for the Program Project. For example, two key, 
recent Cancer and Leukemia Group B (CALGB) studies that used sequential randomization are CALGB 9710, 
a phase III trial of concurrent tretinoin and chemotherapy with or without arsenic trioxide as initial consolidation 
therapy followed by maintenance therapy with intermittent tretinoin versus intermittent tretinoin plus mercaptop-
urine and methotrexate for patients with untreated acute promyelocytic leukemia; and CALGB 19808, a phase 
III trial of Induction chemotherapy with or without MDR-modulation with PSC-833 followed by cytogenetic risk-
adapted intensification therapy followed by immunotherapy with rlL-2 vs. observation in previously untreated 
patients with AML < 60 years old. Both of these studies had essentially the same design: An initial randomiza
tion to one of the two options for induction therapy followed by a subsequent randomization to one of the two 
maintenance therapy options for those patients responding to the induction therapy. Patients not responding had 
only a single option, care as prescribed by their primary physicians, and hence were not randomized. It should 
be clear that in each of these trials, there are four embedded regimes of the form, using the above generic 
notation, "Give induction therapy Cj followed by maintenance therapy Mj if the patient responds; othenwise, if 
s/he does not, send to primary physician," for the 4 combinations of i, j = 1,2. Although such trials have been 

Figure 2: Schema for a sequentially random
ized trial with 2 decision points. 
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commonplace for quite some time, the analysis of these trials has focused on separate analyses comparing the 
induction treatments without regard to subsequent treatment and the maintenance therapies among all respon
ders on either induction treatment and not on the evaluating the embedded regimes. Methods for doing so are 
available; see Lunceford, Davidian, and Tsiatis (2002), Wahed and Tsiatis (2004,2006), and Murphy (2005). In 
any event, that these trials have been executed successfully demonstrates that sequentially randomized trials 
for the purposes we advocate are logistically feasible in cancer research. 

In simple sequentially randomized studies like these, ideally, in the intervening periods between decision 
points, all patient information that might be important for determining the treatment option to be given at the 
next decision point would be recorded. The resulting data set would be a rich resource for application of 
learning methods for identifying the optimal regime. It is in this spirit that we propose our second sub-aim, in 
which we advocate trials that are conceived with this objective, integrating the goal of using learning methods 
into the design, which we term clinical reinforcement trials. Such trials involve a series of decision points, which 
are either specific time points measured from trial onset or decision points in the treatment process such as 
starting times of each new line of cancer treatment. For each decision time, a set of possible treatments to be 
randomized is identified. The treatment options can be a continuum, e.g., doses or initiation times (see below), 
or a finite set, and can be assigned according to pre-specified decision rules that involve accruing patient 
information.'A utility function is identified that can be assessed at each time point and contains an appropriately 
weighted combination of outcomes available at each interval between decision times and at the end of the final 
treatment interval. Such designs extend SMART designs in allowing a continuum of treatments. We will develop 
these trials first for NSCLC and then for other settings such as breast cancer, lung cancer, and ovarian cancer. 
Our goal is to conceive and, in collaboration with Dr Socinski at the University of North Carolina (UNC-CH), lay 
the groundwork for carrying out such a trial in NSCLC, the background for which we now describe. 

For NSCLC patients who present with a good performance status and stage IIIB/IV disease, platinum-based 
chemotherapy is the primary treatment, which has been shown to offer a modest survival advantage over 
best supportive care alone in single-decision trials. Approximately 40-50 percent of patients in recent first-line 
trials received second-line treatment. Some patients who maintain a good performance status and tolerate 
therapy without significant toxicities will receive third-line therapy (Stinchcombe and Socinski, 2008). First-
line treatment primarily consists of platinum-based doublets that include cisplatin, gemcitabine, pemetrexed, 
paclitaxel, carboplatin, or vinorelbine. Numerous studies have compared these various platinum doublets, and 
the great majority of these trials have concluded that all such regimens appear to be comparable in their clinical 
efficacy In addition to platinum-based doublets, some phase 111 studies have examined the efficacy of various 
targeted therapies, with both mixed (Sandler el al., 2006) and positive (Pirker et al., 2008) results. The strategies 
of first-line treatment are essentially based on these four targeted combination therapies, where the choice 
depends on a number of factors, including histology type, toxicity profile, smoking history. VEGF level, EGFR 
expression, and race (Scagliotti et al., 2008; Sandler et al., 2006; Pirker et al., 2008). Similar to the first-line 
therapy, the three approved second-line agents (docetaxel, pemetrexed, and eriotinib) appear to have similar 
response and efficacy for overall survival outcomes but very different toxicity profiles. Choice of agent also 
depends on many factors, including prior chemotherapy history, risk for neutropenia, EGFR expression, and 
patient preference (Shepherd et al., 2000; Hanna et al., 2004; Fidias et al., 2007; Ciuleanu et al., 2008). 

In addition to the complexity of the problem of selecting compounds for first- and second-line treatments 
based on prognostic factors, another primary challenge is to determine the optimal starting time for the second-
line therapy, either immediately or delayed after induction therapy, yielding the highest overall survival probability. 
Although Fidias et al. (2007) demonstrate that immediate transition to second-line therapy using docetaxel is 
better than waiting for relapse, whether these findings are specific to docetaxel or whether some brief delay for 
patient recovery would be beneficial for overall survival remains unknown, and this has not been studied in the 
context of an overall strategy. A main focus of this sub-aim will be to develop a trial design for NSCLC based on 
these and other considerations to that will facilitate development of dynamic treatment regimes to assign first-
and second-line treatment and timing of second-line treatment based on individual-specific prognostic factors 
to optimize outcomes for NSCLC patients. 
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4 PRELIMINARY STUDIES 

4.1 Investigators 
The research associated with each of the four aims will be conducted by a highly qualified group of investiga
tors from North Carolina State University and UNC-CH. Anastasios A. Tsiatis (NCSU), a Co-Director for the 
overall Program Project, will serve as the Project Leader. Dr. Tsiatis is an internationally recognized expert on 
semiparametric theory (Tsiatis, 2006), causal inference and dynamic treatment regimes (e.g., Lunceford et al., 
2002; Wahed and Tsiatis, 2004,2006; Tsiatis, 2006, chapter 13; Johnson and Tsiatis, 2004,2005; Zhang et al., 
2009), and clinical trials (e.g., Tsiatis et al., 2008; Zhang, Tsiatis, and Davidian, 2008), making him well-suited 
to lead the project. Marie Davidian (NCSU) and Michael R. Kosorok (UNC-CH) will serve as Co-Leaders of 
the project, both of whom are PD/PIs for the overall Program Project. In addition to the joint research with Dr. 
Tsiatis on causal inference and dynamic treatment regimes reviewed above, which cements her expertise in 
these areas. Dr. Davidian has additional work in causal inference (e.g., Lunceford and Davidian, 2004) that pro
vides her with excellent background for collaborating on this project. In addition, Dr. Davidian is an investigator 
on a large project funded by the National Institute of Allergy and Infectious Disease (NIAID) using mechanistic 
mathematical models of HIV infection dynamics combined with statistical models to design dynamic HIV treat
ment regimes using mathematical control theory and clinical trials to evaluate them (e.g., Rosenberg, Davidian, 
and Banks, 2007). This work does not overlap with the approaches taken in this project, but offers a com
plementary perspective on approaches to developing dynamic treatment regimes. Dr Kosorok has expertise 
in areas including clinical trials, high-dimensional data, and, notably, empirical processes and semiparametric 
inference (Kosorok, 2008), and applications of empirical processes to statistical learning in biomedicine (Zhao, 
Kosorok, and Zeng, 2008), Dr. Kosorok will apply his expertise to the reinforcement learning approach to design 
and analysis of clinical trials to develop dynamic treatment regimes. He will also exploit use empirical process 
methods for developing valid methods of inference for dynamic treatment regimes. 

Howard Bondell (NCSU) will lead Aim 1, working with Dennis Boos (NCSU), Dr. Davidian, Len Stefanski 
(NCSU), Dr. Tsiatis, and Helen Zhang (NCSU). Dr. Bondell is an expert in model selection (e.g., Bondell and 
Reich, 2008.2009; Bondell and Li, 2009), including nonparametric model selection (Storiie et al., 2008), which 
will play a prominent role in this part of the project. Drs. Boos and Stefanski are also both experts in model 
selection and are the originators of the FSR approach (Luo, Stefanski. and Boos, 2006; Wu et al., 2007; Boos et 
al.. 2008. Crews et al., 2008) that we will consider Dr Zhang is a recognized authority in model selection and 
especially nonparametric model selection, machine learning, and data mining (e.g., Zhang et al., 2004; Zhang, 
2006; Lin and Zhang, 2007; Zhang and Lu, 2007; Liu et al., 2007; Zou and Zhang, 2009), and will contribute 
her expertise in these areas and in particular support vector machines. 

Dr. Tsiatis will lead the efforts on Aim 2, working with Drs. Davidian, Kosorok, and Zhang, who will con
tribute expertise on causal inference, dynamic treatment regimes, enipirical processes and semiparametrics, 
and model selection. Dr. Kosorok will lead Aim 3, working with Dr Tsiatis and Donglin Zeng (UNC). Drs. 
Kosorok and Tsiatis will draw on their aforementioned expertise in empirical processes and semiparametrics. 
Dr Zeng, who has expertise is in semiparametric inference and high-dimensional data, (e.g., Johnson, Lin, and 
Zeng, 2008; Zhao et al., 2008), will provide additional qualifications for addressing this aim. Aim 4 will be led by 
Dr Kosorok, working with Drs. Davidian, Tsiatis, and Zeng, all of whom will contribute their expertise in causal 
inference, clinical trials, dynamic treatment regimes, and empirical processes and semiparametrics, 

Mark Socinski, MD, Professor of Medicine and a member of the Lineberger Comprehensive Cancer Center 
(LCCC) at UNC, will collaborate closely with the team, providing a critical subject-matter perspective. Dr Socin
ski is a medical oncologist with a wealth of experience in cancer treatment and cancer clinical trials, especially 
in NSCLC (Socinski et al., 2008; Stinchcombe and Socinski, 2008). He has also served as Chair of the Data 
Safety and Monitoring Subcommittee of the Protocol Review Committee for the LCCC. Dr Socinski will advise 
the investigators on the design of simulation studies so that the scenarios evaluated are realistic reflections of 
what would be expected or would be feasible in cancer clinical trials. He will work closely with Drs. Kosorok and 
Zeng on the design of a clinical reinforcement trial in Stage IIIB/IV NSCLC; see Section 5.5. 

4.2 Preliminary Studies 
Because our four aims together constitute an integrated plan for study of dynamic treatment regimes in cancer, 
rather than recount preliminary work of the investigators on a by-aim basis, we provide an overall review. 
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Drs. Tsiatis and Davidian have considerable experience with the study of dynamic treatment regimes. In 
Lunceford et al. (2002), Drs. Tsiatis and Davidian were among the first to recognize that the sequentially ran
domized trials conducted by CALGB could be exploited to evaluate the dynamic treatment regimes embedded 
within them; they proposed methods for analysis, inspired by CALGB protocol 8923, a two-decision-point study 
similar to the CALGB trials in Section 3.5 in older patients with de novo acute myeloid leukemia.'These methods 
were extended to yield more efficient inferences in Wahed and Tsiatis (2004,2006). Dr Tsiatis was instrumen
tal in recognizing that key post hoc clinical trial questions could be cast as dynamic treatment regime problems. 
In Johnson and Tsiatis (2004, 2005), inspired by a cardiovascular disease (CVD) trial, he developed method
ology for determining the optimal duration of therapy from a trial in which duration was left to the discretion of 
clinicians by considering different duration regimes. In Zhang et al. (2008), Drs. Tsiatis and Davidian, motivated 
by another CVD trial, posed the problem of subjects who discontinue or switch assigned therapy in terms of 
dynamic treatment regimes, which permitted development of valid methods for comparing the treatments in the 
trial in the hypothetical case that all subjects had followed their assigned therapies. 

Dr. Tsiatis and Davidian have also been involved in spearheading numerous activities focusing on dynamic 
treatment regimes. They served as investigator and co-PI, respectively, in a successful 2005 R21 grant ap
plication by Dr Murphy to establish the multidisciplinary "Methodological Challenges in Developing Adaptive 
Treatment Strategies Network (MCATS)," comprising researchers from diverse areas, including statistics, com
puter science, engineering, behavioral science, and HIV research. Drs. Tsiatis and Davidian helped organize 
and were active participants in all of the "brainstorming" workshops conducted by the Network, which led to a 
Network white paper (Murphy et al, 2007b) and a special issue of the journal Drug and Alcohol Dependence 
devoted to articles on dynamic treatment regimes (e.g., Murphy et al., 2007a; Rosenberg et al., 2007). Dr. 
Tsiatis was invited in April 2008 by Dr Alan Krensky, Director of the NIH Office of Portfolio Analysis and Strate
gic Initiatives (OPASl) to speak to the NIH Institute and Center Directors and other scientists at NIH in the 
prestigious OPASl Rounds Lecture Series on incorporating study of dynamic treatment regimes into the clinical 
trials paradigm. His lecture, "Novel Study Designs for Treatment Strategies that Reflect Actual Clinical Prac
tice," was attended by several Directors as well as numerous biostatisticians and clinicians from across the NIH. 
Drs. Tsiatis and Davidian have also, separately and together, given numerous invited presentations on dynamic 
treatment regimes at international and national conferences and to audiences of biostatisticians and clinicians 
at other institutions, including a joint presentation at the Duke Clinical Research Institute in August 2007. 

Drs. Davidian and Tsiatis were Co-Program 
Leaders, with Dr. Murphy of the Statistical and 
Applied Mathematical Science Institute (SAMSI) 
June 2007 Summer Program on Challenges 
in Dynamic Treatment Regimes and Multistage 
Decision-Making. The two-week program, which 
they organized, brought together many ot the 
world's preeminent authorities from the statisti
cal, computer science, mathematical, and engi
neering research communities on dynamic treat
ment regimes and reinforcement learning for an 
intensive two weeks of activities, including a 
formal program ot tutorials and research pre
sentations followed by a week in which partici
pants formed Working Groups to initiate cross-
disciplinary collaboration and formulation of a fu
ture research agenda. Drs. Kosorok and Zeng 
were active participants in the program. 

Drs. Kosorok and Zeng also have significant 
experience with dynamic treatment regimes and 
reinforcement learning. In October 2007, they ini
tiated a research working group, the "Reinforce
ment Learning Group," at UNC that meets weekly 

to work on reinforcement learning, dynamic treatment regimes, statistical learning, and related high-dimensional 
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Figure 3: Disease severity (lower is better) as a function of 
time (in months) for the optimal treatment based on rein
forcement learning (solid) versus fixed dose options (dotted). 
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problems in biostatistics. The impetus came in part from the SAMSI program. Participants in the Reinforcement 
Learning Group include Drs. Kosorok, Fine (investigator on Project 2), and Zeng from the UNC Department of 
Biostatistics, Dr. Liu (investigator on Project 4) from the UNC Department of Statistics and Operations Research, 
and Dr W. Wang from the UNC Department of Computer Science, as well as 6-8 students and post-doctoral 
fellows. Some of the research resulting from this collaboration inspires key components of Aims 3 and 4. 

In particular, the Group recently carried out a preliminary assessment of the use of reinforcement learning 
methods in cancer clinical trials through a simulation study to discover optimal dynamic treatment regimes 
involving timing and dose for a generic cancer (Zhao et al., 2008). They developed a mechanistic disease 
model based on a simple difference equation that balances a simulated chemotherapy agent's efficacy and 
toxicity from which "virtual patients" could be generated and used this to simulate a virtual, 1000 patient clinical 
reinforcement trial in which patients were treated with 6 months of chemotherapy. At the beginning of each 
month, patient quality of life and tumor size were both measured, and a random dose of "chemotherapy" in the 
interval [0,1] was assigned subject to constraints, such as requiring the dose to be in [0.5,1] for the first months, 
meant to simulate standard-of-care restrictions. Reinforcement learning methods were then used on the virtual 
data from the trial to find the optimal regime involving timing and dosing based on biomarkers available from the 
patient. Figure 3 presents the mean disease severity of 200 new simulated patients following the optimal regime 
so determined (dark solid line) compared to that if the same 200 patients were to follow each of 10 fixed dose 
regimens (dotted lines) ranging over a grid from highest to lowest. Clearly, the optimal regime is superior by 6 
months after initiation of treatment, even though it is not optimal at 2 months. This demonstrates explicitly how 
considering entire regimes can lead to the proper trade-off between short and long term effects of treatment 
while adapting to the individual patient. These preliminary results are encouraging; however, considerable work 
along the lines of the four aims proposed here is required before these methods can be applied in practice. 

5 RESEARCH DESIGN AND METHODS 

5.1 Notation and Assumptions 
Before we describe the research to be carried out for each aim, we establish notation and make explicit assump
tions that will be adopted throughout and provide a formal, conceptual framework for identifying and evaluating 
dynamic treatment regimes on the basis of data from both observational sburces and sequentially randomized 
trials. Assume that there are T -f 1 time-ordered decision points at which treatment decisions will be made, 
indexed by 0,1, . . . ,T; this indexing convention uses "0" for the first for consistency with popular notation for 
indexing "baseline" in a clinical trial. These may correspond to fixed times or to events in the disease process 
that dictate such decisions. In the reinforcement learning literature, the available data are realizations of the 
time-ordered random variables ro A n c ^ » e \ lR^^ 

(^0,^0,-fio, . . . ,bT,AT,HT,OT-hl)> P -1 ) 

where, in the case relevant to our context, Sj denotes the environmental "state", Aj denotes the "action," and 
Rj denotes the "reward" at the jth decision time, j = 0,..., T. For brevity, write Sj = (5o,..., Sj) and Aj = 
(Ao,..., Aj) to denote the histories of the states and observed actions, respectively, up to the jth decision, and 
let S = ST and A = AT represent the histories up to the final decision. It is assumed that the reward Rj is a 
function of state resulting from the history Aj of treatment up to the jth time and the ensuing state 5^+1, i.e.,-
Rj = rjiSj+i,Aj). Given data on (5.1), the goal of reinforcement learning isto find the sequence of actions as 
a function of past states and actions, i.e., "policies" njisj,aj-i) - aj, that will lead to the maximum expected 
discounted return, where the return is ̂ J=o l^^j> where 7 < 1 is some discount factor that may be interpreted 
as a control to balance immediate and future rewards; 7 = 1 corresponds to maximizing rewards over the long 
run. In Section 5.2, we describe how learning methods address this objective. 

In the context of a cancer patient, state Sj corresponds to a vector of patient information (covariates) 
recorded between the (j - l)th and jth decision times, where So is the initial information available; e.g., a 
vector of baseline covariates in a clinical trial. The action Aj is the treatment given at the jth decision point, 
where Aj takes on possible values in a set Aj containing the treatment options available at that point. The 
policies 7r(-) define what we refer to as g, the dynamic treatment regimes, as we will demonstrate explicitly in 
Section 5.3. The reward Rj is some intermediate patient outcome measure ascertained between decisions j 
and j + 1 that contributes to the overall outcome of interest. Because the rewards are determined entirely by 
the past treatment-covariate history, without loss of generality, we may take the rewards Ro,.• • , R T - I to be 
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identically equal to zero; take the last reward to be equal to the outcome of interest (for example, the primary 
endpoint in a clinical trial) and write Y = RT, and take 7 = 1, in which case, the policy that gives the maximum 
expected discounted return is exactly the same as the dynamic treatment regime that maximizes the expected 
outcome. In this case, the data may be viewed as realizations of iSo,Ao,...,ST,AT,Y). In the sequel, we 
consider both this setting and (5.1); for the following discussion, we adopt the situation of a single outcome Y. 

In a sequentially randomized clinical trial, the observed treatments Aj e Aj , j - 0,...,T received are 
randomly assigned according to an experimental design with probabilities that may be functions of a patient's 
past covariate-treatment history iSj,Aj- i) . For definiteness, consider the example in Section 3.5, where T = 
1. Here, at the first decision point j = 0, ^0 consists of the two first-line chemotherapeutic options; i.e., 
Ao = {Ci,C2}- The next decision point, j = 1, corresponds to observation of whether or not the patient has 
responded; thus, included in the intervening information Si is a variable i? = 1 if a response occurs and R = 0 
if not Let M - {Mi, M2} be the set of the two maintenance options, and S = {Si, S2} that of the two salvage 
options. Then the set of possible treatment options at j - 1 is A i - i M ^ S); however, patients who respond 
iR = 1) may only be randomized to one of the options in M , and those who do not (R - 0) only to one of the 
options in S. Thus, the randomization probabilities are determined by a patient's past history; here, the variable 
iZ in Sl. In contrast, the treatments (AQ, .. . , A T ) that are recorded for a patient in an observational study are not 
given according to a designed experiment and randomization, but rather are assigned according to a decision 
process carried out by clinicians (and patients) over time. In either case, the data that are available for analysis 
are independent and identically distributed (iid) 

iST,i,AT,i,Y), i = l , . , . ,n , (5.2) 

representing observations from n randomly selected patients from the population of interest. 
Recall that a dynamic treatment regime is an algorithm consisting of a collection of decision rules dictating 

how to treat a patient over time as a function of his/her past history Formally, a dynamic treatment regime 
is a function g = (go,.--,pT), where, for every Sj, a realization of Sj, gjisj) = % e $j(sj,Oj_i) c Aj, and 
$j(sj, oj-i) is the set of treatments that may be given to a patient at j , which may be a function of his/her past 
covariate-treatment history. Denoting by G the set of all such dynamic treatment regimes to be considered, 
the goals in which we are interested are (i) to estimate the mean of Y if the entire population were to follow a 
particular regime g e G, and (ii) to identify the optimal regime 5°P' 6 G such that the corresponding mean of Y 
is greatest among a\\ g eG (assuming larger values of Y are preferred). We develop methods to achieve these 
goals in Section 5.2-5.4. 

In order to proceed, we must define precisely the parameter of interest, i.e., "mean outcome if the entire 
population were to follow regime g" We accomplish this by appealing to the notion of potential outcomes 
(Neyman, 1923; Rubin. 1974; Robins, 1986) in the causal inference literature. Define the set of potential 
outcomes by _ 

W = [{5o,5r(ao),.. . ,S*iaj . i ) , . . , ,5^(aT-i),y*(a)} for all a 6 A], (5.3) 
where 5J(oj_i) denotes the value of the covariates Sj that would be observed tor an arbitrary patient in the 
population between the (j - l)th and jth decision point in the hypothetical situation that the patient were to 
receive the prior series of treatments o^-i. Similarly, F*(a) denotes the potential value of the clinical outcome in 
the hypothetical situation that the patient were to receive the sequence of treatments a. The 5j(aj_i) and F*(a) 
are referred to as potential outcomes for obvious reasons. We do not define a potential covariate corresponding 
to So because covariates prior to the first decision point are assumed not affected by subsequent treatments. 
We may then define the potential covariates and outcome for patients in the population were they to follow 
regimegby {So,SUg),...,S^ig),Y*ig)} forp € G recursively as 

Slig) = SUaoiSo)}, S*2i9) = S*2{goiSo),gi{S*iig)}], • • • ,- Y*ig) - Y*[goiSo),... ,gT{STi9)}]. • 

The parameter of interest is thus E{Y*ig)}, which, for goal (i) above, we wish to estimate for every g eG using 
the observed data (5.2). _ 

To do this, certain assujriptions are necessary to identify the distribution of {S*ig),Y*ig)} from the distribu
tion ofthe observed data (5, A, Y). The first assumption is the so-called stable unit treatment value assumption 
(SUTVA, Rubin, 1978), 5,-= 5 ; ( I , - i ) , j = 1 , . . . ,T, a n d y = y * ( l ) ; (5.4) 
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(5.4) states that the observed covariates and outcome are those that would be seen under the treatments 
actually received. The second assumption is 

PA^|S„A,_,(%|SJ.a^-i) > 0 for all aj e ^jisj ,aj-i) , (5.5) 

whenever Pg .•^_^isj,aj-i) > 0, where pxi^) denotes the density or conditional density of variables X at the 
realization x. That is, for any treatment-covariate history that has positive probability of being realized, there 
must be a positive probability that a patient will receive a treatment from the set <^jisj,aj-i). Finally, the most 
critical assumption is that of no unmeasured confounders; namely, 

Ajll.W\Sj,Aj-i, (5.6) 

where " I I " denotes independence or conditional independence. (5.6) states that, conditional on the past 
covariate-treatment history through the jth decision point, the probability of treatment assignment at that de
cision point is independent of all the potential outcomes. For a sequentially randomized trial, (5.6) is guaran-
teed^as patients are randomized according to probabilities at the jth decision point that are functions only of 
iSj,Aj- i) and hence are independent of W. However, in an observational study, (5.6) may or may not hold. It 
would necessarily hold if clinicians make treatment decisions at the jth decision point based only on the infor
mation iSj,Aj^i) available up to that point; this premise is certainly reasonable, as treatment decisions cannot 
be based on potential outcomes that are ujiavailable. The critical issue is whether or not decisions are based 
on additional information not captured in (5j, Aj_i) and where this information is correlated with the potential 
outcomes W; if such data are not captured in the database, then (5.6) may be violated. 

Henceforth, we assume that (5.4)-(5.6) hold, recognizing that they and (5.6) in particular, must be critically 
assessed with observational data. Under (5.4)-(5.6), Robins (1994) and others have shown that the distribution 
of the potential outcomes Y*ig) for a dynamic treatment regime g eG may be identified from the distribution of 
the observed data. There are several approaches for estimating E{Y*ig)}, including direct regression model
ing such as Robins' (/-computation algorithm and ̂ -estimation (Robins, 1994) and inverse probability weighted 
methods (van der Laan, Murphy, and Robins, 2001). The need for these key assumptions is not stated ex
plicitly in the reinforcement learning literature; however, they are required for learning methods to yield valid 
conclusions. These assumptions underiie our proposed methods for obtaining the optimal, or at least a "good," 
dynamic treatment regime from either a sequentially randomized trial or observational data. 

5.2 Aim 1: Learning methods for Optimal Dynamic Treatment Regimes 
We do not give a comprehensive description of reinforcement learning methods but instead restrict to the spe
cial case of their formulation relevant to our setting. A detailed account of the history of reinforcement learning is 
given in Sutton and Barto (1998); see also Kaelbling et al. (1996). We focus on two particular learning methods, 
which we now describe; other methods are described, for example, by Rummery (1994). 
(^-Learning. In the general case of Q-learning, the data are summarized as realizations of (5.1). (^-learning 
is a recursive algorithm that can be used under assumptions (5.4)-(5.6) and the setting in Section 5.1 to find 
the optimal dynamic treatment regime; i.e., 5°P\ where E{Y*ig°p^)} > E{Y*ig)} for all g e G. The Q-learning 
algorithm in the general case defines sequences of so-called Q-functions, value functions, and policy functions, 
for j : ^ T , T - 1 , . . . , 0 , given by _ _ _ _ _ 

QjiS^Aj) = E{Rj-^Vj+iiSj,Aj.i)\Sj,Aj}, (5.7) 

VjiSj,Aj-i) = m.axQjiSj,Aj-i,aj) 
a j 

njisj,aj-i) = a.TgmaxQjisj,aj-i,aj), (5.8) 
Oj 

respectively where we take VT-UCST+I.^T) = 0. Desirable properties of (^-learning algorithms have been 
demonstrated by Jaakkola et al. (1994) and Tsitsiklis (1994). To describe the algorithm here, we consider the 
case in Section 5.1 where the rewards RQ, . . . , R T - I are zero and the outcome Y — RT- Write Vj - Vji'Sj,Aj-i) 
tor brevity, and. for notational convenience, let Vr-t-i = Y. The following approach will lead to the optimal 
dynamic treatment regime; namely 

9o^^iso) = noiso), 9?^*(si) = 7ri{si,7ro(so)}, ff2''*(^2) = 7i-2[s2,7ro(so),7ri{si,7ro(so)}], • • • , 
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and the expected outcome for the optimal dynamic treatment regime will be EiVo) = E{Y*ig°p^)}. 
The key to Q-learning is to develop regression models for'the (QJunctions given in (5.7). One might specify 

the Q-functions in terms of a finite number of parameters; write QjiSj,Aj; tpj), j = T, T - 1 , . . . , 0. These could 
be linear or non-linear models including the variables Sj and Aj as main effects as well as interactions of these; 
we discuss this shortly In a "backward" iterative fashion, the estimators tpj can be obtained for j = T, T - 1 , . . . , 0 
by solving the estimating equations (optimal generalized estimating equations) 

s:^dQjiSji,Aji,i>j)^_i 
E g : , / ' '^S-^(-gji.^Ji){V^(j+i)i-Q.(^J^.^i».V'j)}-Q, Vj^m8^QjiSj,Aj,i,aj;i;j), 

where Sj(5j ,^ j) = var(i^^-i|S'j, A^) would be represented using posited models. Then define nj isj,aj- i) -
argmaxaj Qj is j ,a j - i ,a j ; tp j ) . 

Although the Q-learning procedure seems straightfonward, implementation in practice poses challenges. 
Validity of the method requires correct specification of the models for the (J-functi'ons. This may be especially 
difficult in high-dimensional situations. Accordingly, the use of model selection methods to determine the Q-
function is required; we defer discussion until later in this section. 
A-Learning. Advantage learning, or j4-learning, is a semiparametric version of Q-learning where fewer assump
tions on the Q-functions are necessary in order to derive optimal dynamic treatment regimes. Consequently, 
the appeal of these methods is that they may yield results that are more robust to model misspecification than 
the Q-learning methods described above, To illustrate how A-learning works, we consider the case where all 
treatment decisions are binary; i.e., Aj = (0, l) , j = 0,..., T, although the development is easily generalized. 

To derive the optimal action at the jth decision point, nj isj,aj- i), defined by (5.8), note that it suffices to 
know only the treatment contrast Cj{sj,aj^i) - Qj{sj,aj-i, 1) - Qjisj,aj-.i,0). Clearly 

njisj,aj-i) = I{Cjisj,aj-i) > 0}, 

where /(•) is the indicator function. Note that any function of isj,aj), Qjisj,aj), say, can be written hjisj,aj.^i)+ 
ajCjisj,aj-i), for arbitrary functions hjisj,aj-i) and Cjisj,aj-i), where hjisj,aj-i) = Qjisj,aj-i,0). This 
suggests that a more robust procedure may be to develop parametric models for the Q-contrast function Cj and 
estimate the parameters from the observed data. This is the premise of A-learning. 

To illustrate how A-learning works, consider the first step in Q-learning, which iriyo[ves a model for EiY\S, A) 
in terms of parameters tpT- Instead, consider the semiparametric model for EiY\S,A) given by 

/IT(>S'T, Ar-i)-h ArCr(5T, Ar_i; ^T)I 

where /^^(ST, Ay-i) is an arbitrary function of ST and A T - I , and only the Q-contrast function is modeled using 
a finite number of parameters ^T- lf> in addition, we know or can estimate the propensity score 

EiAT\ST,AT-i) = PiAT = 1 \ST, 'AT-I) , (5.9) 

then semiparametric theory shows that all consistent, asymptotically normal estimators for ^T must be solutions 
to estimating equations of the form 

n 

Y , i>TiSTi,'A(T-l)i){ATi - EiAT\STi,'A^T-l)i)}{Yi - ATiCTiSTi,\T-l)^\iT) ~ 9T{STu'A^T-l)i)} = 0 (5.10) 
i = l 

for arbitrary (f>TiST,AT-i) and 6'r(5r, A^-i) . These sets of equations are what Robins (1994) refers to as g-
estimation^used in estimating "blip-func^ons" in structuraljnested mean models. The_optimal estimating^equation 
use£(^r(5T,Ar_i) = d/d^T{CTiST,-AT~i;^T)}{variY\ST,AT^i)}~'^ and 6'T(5T,Ar- i) ^ /iT(5r,AT-i). As 
hTiST,AT-i) and var(y|5T,Ar-i) are unknown, one could model these in an attempt to achieve optimal 
efficiency; even if the chosen models are incorrect, the resulting estimator for ^T would still be consistent and 
asymptotically normal for ^T, assuming that the model for Cr(5rt, A(r_i)t) is correctly specified. Implementation 
requires that propensity score (5.9) is known, as in a sequentially randomized trial, or it must be modeled and 
estimated if the analysis is based observational data. 
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Given the estimated Q-contrast function CTi^T,^T-i;iT), say, then an obvious estimator for the value 
function VT = maxaTQTiST,^T-i,cLT) \s Y -\- CTiST,AT-i;^T){I{^TiST,AT-i;^T) > 0} - AT] . The term 
CT(5r, Ar- i ;^) [ / {CT(Sr, AT_i;fr) > 0} - AT] is called the advantage function, as it represents the advan
tage incurred if the patient receives the best treatment at the Tth decision point as compared to the current 
treatment received. _ _ 

The A-learning algorithm thus is as follows: Specify a series of Q-contrast function models CjiSj,Aj-i ,^j), 
j = T,T - l , . . . , 0 , and, in an iterative fashion, estimate the ^ j , j = T, T - 1 , . . . , 0, by solving 

E ̂ ^'^^'" '^^'- '^ ' '^i : j \Sj. ,A,j_i^i){Aji - EiAj\Sji,A,j_i,,)} 

^(^(j+l)j ~ ^jiC'j('5jJ,^(j-l)n?j) - 'ij('5;i, A(j_i)t)} = 0, 

where we adopt the form of the optimal equation; T,jiSj,Aj-i) is a posited model for v8JciVj^i\Sj,Aj) that in 
practice would be fitted and substituted, as would be a model for hjiSj^i,Aj^i^i); the value function Vj is ob-
tain_ed as Vj = Vj+i + CjiSj,Aj-i;'^j)\I{CjiSj,Aj-i;£^j) > 0} - Aj]; njisj,aj_i) - I{Cjisj,aj- i ; ' i j ) > 0}; and 
EiVo) = E{Y*ig°P')}. 
Comparison of Q- and A-Learning. To our knowledge, except for some of our preliminary studies (see Sec
tion 4), little is known about the performance of either (j- or A-learning in scenarios likely to be encountered 
in cancer research. Moreover, the relative merits of the techniques in general settings are largely unknown. 
Clearly, A-learning is more robust than Q-learning, as it makes fewer assumptions on the Q-function; i.e.. in Q-
learning. the (^-functions must all be correctly specified, while in A-learning only the Q-contrast functions need 
be. However, this robustness comes at a price of greater variability Thus, there is a bias-variance trade-off in 
assessing the performance of these two methods, but insights are difficult to achieve theoretically. Thus, our 
first objective during the project period will be to carry out studies of these issues through some analytical work 
and extensive simulation experiments to critically examine the pertormance of Q- and A-learning in scenarios 
designed to resemble cancer studies. This will indude evaluating relative performance under different sam
ple sizes in order to provide guidelines on the sample size requirements necessary in order to expect reliable 
inferences on optimal dynamic treatment regimes with these methods. 

We will begin by considering the simplest situation of a single-decision study, i.e., T - 0 . Here, it is possible 
to compute the relative efficiency of the two methods when the (^-function is correctly specified. For example, 

assuming EiY\So,Ao) = QiSo, Ao, ̂ ) = /i(So, x) + AoC(5o, 0 

is correctly specified, where tp - (x,0. Ihe parameter i may be consistently estimated using both Q- and 
A-learning. Thus, we will be able to assess the relative efficiency of these two methods analytically In the 
situation that /i() is misspecified, (^-learning will no longer result in consistent inferences, while A-learning will; 
accordingly we will evaluate the bias that is incurred in estimating ̂  using Q-learning underthese conditions. We 
will also derive the asymptotic properties of the Q- and A-learning estimators for E{Y*ig°^^)} and use these to 
assess relative efficiency, using the delta method assuming the parameters are not on the boundary; we will also 
results of Aim 3 when they are. This exercise, although in a simple case, will give us some basic insight on the 
relative performance of these two methods and help guide our design of more complex and realistic simulation 
experiments Involving multiple decision points, under which useful analytical evaluations of performance are 
intractable. We will design these studies based on, for example, studies such as the sequentially randomized 
trials CALGB 9710 and 19808 discussed in Section 3.5, data sets compiled by Core B, data from trials in 
NSCLC mentioned in Section 5.5. and in consultation with Dr Socinski. We will also consider how to extend Q-
and A-learning to the case of censored survival outcomes. 

As noted previously, a major challenge in this context is developing the regression models for the Q- and 
Q-contrast functions, and, because of the potential that these modeling exercises will involve high-dimensional 
information, some sort of model selection techniques must be employed to reduce the dimension and identify 
the relevant information to be included in the models. There are several challenges involved. First, most model 
selection techniques, such as the LASSO, adaptive LASSO, SCAD, and FSR methods noted in Section 3.2 that 
focus on minimizing prediction error may not necessarily be the most advantageous approaches for choosing 
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models that lead to the best treatments given previous information at each decision point. Here, it is critical to 
identify covariate information that exhibits qualitative interactions with treatment. Moreover, when considering 
bias-variance trade-offs, it is important to recognize that these propagate as models are recursively built and 
fitted. Our second objective during the project period will be to carry out a comprehensive study, which will 
of necessity be empirical, of the performance of a variety of model selection strategies for (^-learning and 
A-learning in settings reflecting those in cancer research, to provide recommendations on how these critical 
components of learning methods be carried out in the analysis of data from cancer clinical trials. Again, we 
will use data such as those described above to inform the design of extensive simulation studies comparing the 
performance of Q- and A-learning when coupled with various forms of model selection over a broad range of 
conditions. 

We will consider a number of methods in these studies. Traditional selection techniques available in software 
such as the SAS regression procedures will be studied as "off-the-shelf" methods familiar to practitioners, al
though we expect these to be grossly inadequate. We will also study the LASSO, adaptive LASSO, and SCAD, 
which are based on penalizing the model fitting criterion, where the penalty is tuned adaptively These methods 
are familiar to biostatisticians and available in R packages and hence, for brevity, we do not review them here. 
(A brief description of these methods is given in Section 5.1 of Project 2.) We will also study some new or less 
familiar approaches, which we now describe. 
Fast False Selection Rate Method. The recently developed FSR method of Wu et al. (2007) and Boos et al. 
(2008) is an approach to tuning any existing model selection method so that the proportion of "unimportant" 
covariates that enter the selected model is on average equal to a pre-specified small value such as 0,05. When 
used with traditional forward selection to tune the "a to enter," FSR is a type of adaptive False Discovery Rate 
method (Benjamini and Hochberg, 2000) with intuitive appeal, as it leads to parsimonious models with good pre
diction error performance. The original version of FSR proposed by Wu et al. (2007) involves adding simulated 
noise variables to the real predictors in the model, monitoring when they enter a fon/vard selection sequence, 
and using this information to tune the procedure, and hence can be time consuming to compute. Boos et al. 
(2008) develop a "fast" approximation to FSR that does not require simulation and is easy to implement using 
existing software. As we noted above, ability to identify qualitative interactions between treatment and covari
ates is critical in the context ot learning methods; see Section 5.4 for more on this topic. In recent work. Crews 
et al. (2008) have extended the fast FSR methods to allow separate tuning considerations for main effects and 
interactions. In learning, it may be beneficial to increase the probability that important qualitative interactions 
are included in the model; thus, fast FSR, appropriately adapted to the setting of learning methods, has poten
tial to offer a fruitful approach. We will be able to adapt the software implementation of the fast FSR approach 
developed in Project 2 for this purpose. 
Support Vector Regression. This method and the next have their origins in the machine learning literature. 
Support Vector Regression (SVR) is an extension of Support Vector Machines (SVM) developed by Vapnik 
(1995). The SVM paradigm was originally designed for the classification problem and provides a compromise 
between parametric and nonparametric approaches. SVMs are often involved in the solution of learning the 
relationship between the attributes x and label indices y in a training data set {ixi,yi) e X x 3^}-Li- In Q-
learning, Xjriay be replaced by {S,A} representing covariate-treatment information, and we define attributes 
xij e Sj X Aj, 1=1,...,n; in the general case, y may be replaced by numerical rewards. In many cases the 
reward function maps isj,aj,Sj+i) to a set that consists of some discrete integer numbers, and, if the size of 
the set is larger than 2, is a multicategory classification problem (e.g.. Crammer and Singer, 2001, 2003; Lee, 
2004). However, when the number of the classes is large (more than 4) or in the extreme case where the reward 
is continuous, and the numerical value is not only a label index but also a continuous outcome, multicategory 
learning methods may be inadequate. Therefore, support vector regression (SVR). one of the most popular 
extensions of SVM (Vapnik et al., 1997). is more suitable. 

The ideas underlying SVR are similar but slightly different from SVM. The data are mapped into a feature 
space by a nonlinear transformation * , which guarantees that any data set becomes arbitrarily separable as 
the data dimension grows (Cover, 1965). A hyperplane is then fitted to the mapped data. The SVR function is 
also derived within the reproducing kernel Hilbert space context, but one of the popular loss functions involved 
in SVR is known as the e-insensitive loss function, defined as Lif ixi),yi) = {\fixi) - yi\ - t}.^, e > 0 (Vapnik, 
1995). Other possible loss functions include quadratic loss, Laplace loss, and Huber loss. Given training data 
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{i3:i,yi) e X X y}JLi. SVR solves the optimization problem minu,,;,,,̂ ,,̂ ' ̂ \\w\\'̂  + C'I]"=i(^i + ?i) subject to 

iw'^^ixi)-\-b)-yi<€-h^i, y i - iw '^Xi ) + b)<€-\-(l, ^i,^'i>0, i = l , . . . ,n ; (5.11) 

the tuning parameter C is determined by cross-validation. By minimizing the regularization term IWwŴ  as well 
as the training error C Y17=iî i + O ' SVR can avoid both overfitting and undertitting. The slack variables ^i and 
-̂ allow for some data points in the feature space to stay outside the confidence band determined by e. In other 

. words, the goal is to find a function that has at most e deviation from the actually obtained targets yi for all the 
training data. Errors with deviation larger than e are not accepted. In practice, this is changed to a standard 
(convex and quadratic) optimization problem using Lagrange multipliers. 

Similar to SVM, which calculates a hyperplane, the solution of an SVR function only depends on the support 
vectors (Cortes and Vapnik, 1995). Usually, support vectors just represent a small fraction of the sample, there
fore, the evaluation of the decision function is computationally efficient. This attractive property is especially 
useful when dealing with data sets with a low ratio of sample size to dimension. To achieve good performance 
by using SVR, some procedures such as data scaling, kernel and related parameter selection need to be im
plemented carefully Compared to least-squares regression where e is always zero, SVR is a more general and 
flexible approach for regression problems. In very high-dimensional cases, it may be necessary to carry out a 
dimension reduction, e.g., via sparse principal components techniques, prior to invoking SVR. 
Extremely Randomized Trees. Ernst el al. (2005) and Geurts et al. (2006) propose the Extremely Randomized 
Trees (ERT) method, called the Extra-Trees algorithm, for batch mode reinforcement learning. Unlike classical 
classification and regression trees such as Kd-tree or pruned CART trees, this nonparametric method builds a 
model in the form of the average prediction of an ensemble of regression trees, or random forest. Each tree 
consists of strongly randomizing both attribute and cut-point choice while splitting a tree node. In addition to 
the number of trees G, this method depends on one parameter, K, the maximum number of cut-direction tests 
at each node, and fcmin, the minimum number of elements at each leaf depends on the resulting compromise 
between computational requirements and prediction accuracy. K determines the strength of the randomization. 
For ff = 1, the splits are chosen independently of the output variable. A larger kmin yields smaller trees but 
higher bias. The ERT algorithm builds G trees using the training data set. To determine a test at a node for 
each tree, this algorithm randomly selects K attributes with K randomized cut-points. A score is calculated for 
each test and then the one which has the highest value is kept. The algorithm stops splitting a node when the 
number of elements in the node is less than femm- The complete ERT algorithm is given in Geurts et al. (2006). 

Compared to standard tree-based regression methods, ERT successfully leads to significant improvements 
in precision, can dramatically decrease variance while at the same time decreasing bias, and is very robust 
to outliers. ERT has been recently been implemented in a simulation of HIV infection (Ernst et al., 2006) and 
adaptive treatment of epilepsy (Guez et al., 2008). While this algorithm appears very effective for extracting a 
well-fitted Q-function from the data set, its drawback is low computational efficiency especially with increasing 
sample size of the training data set. We used both ERT and SVR in the work leading to Figure 3 and found 
the results to be very similar, with ERT was notably more time consuming than SVR. However, the tremendous 
flexibility the ERT offers may offset the computational cost. 

During the projeel period, we will carry out several steps in our investigation of model selection in the 
context of reinforcement learning in cancer research. We will begin with the simple case of a single decision 
point, for which there is only one model selection exercise to conduct. In this situation, this single model 
selection determines the optimal regime, so this will allow us to evaluate the relative merits of the model selection 
strategies to address this goal directly We will then consider situations with more than one decision point; here 
the model selection methods must both provide good predictions for use in the learning algorithms and ultimately 
identify the best regime. In both single- and multiple-decision point settings, we will devise simple generative 
scenarios involving solely discrete S and A, where the optimal regime may be determined (e.g.. Chakraborty et 
al., 2008), and carry out extensive simulation studies using the various selection methods as above. We will also 
consider more complex, realistic generative scenarios with high-dimensional S where the data are generated 
according to a sequence of probability distributions as in Robins' (1994) ^-computation algorithm. We will then 
carry out the learning methods incorporating each model selection technique. For the optimal regime estimated 
by each, g, say. we will use the g-computation algorithm based on the true generative model with the decision 
rules specified bygto determine the mean outcome E{Y*ig)} evaluated at the particular 5̂ . In simulations, we 
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will then be able to generate the distribution of such mean outcomes associated with the use of each model 
selection method, which may be directly compared. We will consider a range of such scenarios based on, e.g., 
the CALGB studies mentioned previously and synthesize the results into recommendations for practice. 

We close this section by noting that our proposed research, which represents a critical step toward adoption 
of the study of dynamic treatment regimes in cancer clinical trials and which will involve examining numerous 
scenarios and intensive, large-scale computations, would be ainiost impossible to carry out without access to 
the resources and varied and powerful expertise of the overall Program Project. Not only will the computational 
resources of Core C be critical to facilitating our efforts, we will be able to exploit progress achieved in Project 4 
on using model selection and classification methods to develop single-decision individualized therapies through 
the joint involvement of Drs. Bondell, Kosorok, Zeng, and Zhang in those efforts and the insights gained on 
model selection methods in other contexts from Project 2 through the joint involvement of Drs. Bondell, Boos, 
Davidian, Stefanski, Tsiatis, and Zhang. 

5.3 Aim 2: Identifying Optimal Dynamic Treatment Regimes' From a Restricted, Feasible Set 
To fix ideas, consider a simple example. Suppose interest focuses on a particular induction therapy, a particular 
maintenance therapy that would be given if a patient responds to induction therapy, and a particular salvage 
therapy that would be given if s/he does not, all of which may be given in different doses x/, XM, and xs, 
say respectively It should be clear that triplets ixi,XM,^s), where xj , XM, and xs take on different values, 
correspond to different possible dynamic treatment regimes we can summarize by g = ixi,XM,xs)', i.e., regimes 
of the form "Give induction therapy at dose x i ; if the patient responds, give maintenance therapy at dose XM\ 
if s/he does not, give salvage therapy at dose xs" A natural goal is to estimate the mean outcomes that would 
be achieved if all patients in the population followed each regime g, i.e., estimate E{Y*ig)} = iiixi,XM,xs) for 
each regime g and find the optimal regime of this form that would yield the maximum mean outcome if all patients 
followed it Supposing that the range of possible doses is a continuum, we cannot estimate iJ.ixi,XM,xs) for 
any specific value of ixj,XM,xs) without further assumptions; a natural approach is to consider a model for 
fxixj,XM,xs) depending on a finite-dimensional parameter r. For example, we may consider a quadratic model 

f l ix i ,XM,Xs;T) = To + TiXl -\- T2XM + T3XS + Uxf -\-T^X^f -^ TQXS -\-TrXjXM -\-TsXrXS -\-TgXMXS. (5.12) 

If this model were an accurate representation of the true mean outcome-dose relationship, then the optimal 
doses could be found by taking the gradient of (5.12) with respect to XJ,XM,XS and setting it equal to zero, 
yielding / opt x / „ \ - i / 

^ I \ I 2r4 T7 T8 \ I Tl 
opt Tj 2 T 5 Tg 72 X 

xT } V rg TQ 2 T 6 j V T3 
^S 

Suppose data from a sequentially randomized trial randomizing subjects to several fixed doses (or to a 
continuum of doses from a continuous distribution) of each agent or an observational database, where the 
doses given to patients were at clinician discretion, are available of the form (So,i, Ao,i.5i,i, Ai,i, Yi), i = l , . . . ,n. 
Here, SQ denotes baseline covariates. Ao = X/, the dose of induction therapy given; Si are additional covariates 
collected in the intervening period between induction and the time that response is declared to have occurred 
or not (5i includes a response indicator R defined as before); Ai = R X M + (1 - R)Xs', i.e.. the dose of 
maintenance (salvage) therapy given if response (non-response) was observed; and Y is the outcome. The 
question of interest is then, given the model (5.12), how to estimate T from these observed data. 

A general approach to estimation of parameters in models with such a restricted set of feasible treatment 
regimes is required. The method that we propose is based on solving inverse propensity score weighted 
estimating equations. As motivation, we first review how inverse propensity score weighted estimators are used 
to obtain an estimator for E{Y*ig)} for a single dynamic treatment regime g. Define the propensity score for a 
treatment regime 5 to be P{AO = 50(^0), Ai =^o(5i),..., AT = 5 r ( 5 r ) r } , (5.13) 

where W denotes the set of potential outcomes defined in (5.3). By th^ law of conditional probabilities, this can 
be expressed equivalently as P{Ao - 50(50)11 }̂ x ... x P { A T - 5T(S'r)|AT-i - gT-iiST-i), W}. Because of 
the assumptions of SUTVA (5.4) and no unmeasured confounders (5.6), the jth term in this expression may be 

w""'"^" 3S p^^. ^ g.(Sj)\Aj-i = gj^iiSj-i),Sj}. (5.14) 
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If we denote PiAj = Oj|Aj_i = Oj-i.^j = Sj) by /j(aj|aj_i,Sj), and assume fjiaj\aj-i,Sj) > 0, then the 
propensity score defined by (5.13) is equal to 

T 

llM9jiSj)\gj-iiSj-i),Sj}. 
j = 0 

It may be shown by using an iterated conditional expectation argument that 

E 
u U ^ i ^ i = 9jiSj)}y_ 

UUfj{9jiSj)\gj-iiSj-i),Sj} = E{y*i9)} 

by first conditioning on'PV' and using the SUTVA assumption and (5.14) above. 
To describe the proposed methods, we introduce some shorthand notation. Let D = (5, A) denote the 

observed covariate-treatment history and let rigid) be the indicator of whether or not the covariate-treatment 
combination d = is,a) is consistent with the treatment regime g (see Section 3.5); that is, rjgid) = 1 if (s,a) = 
{s,gis)}, and 0 othenwise. Letting j . 

<i(i) = Ylfjiaj\sj,aj-i), 
j = 0 

we can obtain an unbiased estimator for E{Y*ig)} = nig) as n~^ IZILi{^s(A)^i}/C(A). which may be written 
equivalently as the solution to the estimating equation 

^ r}giDi){Yi - nig)} _ 

h <(A) "°- ^̂ -'̂ ^ 
As noted in Section 3.5, for complicated dynamic treatment regimes, the number of individuals whose ex

perience is consistent with the treatment regime g, { i : Aji — gjiSji) for all j — 0,... ,T}, may be so small 
as to give unstable and unreliable estimates. Of course, for sequentially randomized trials, the probabilities 
fj iaj\sj,aj-i), j = 0,... ,T, are known by design, whereas they would need to be modeled and estimated in 
an analysis based on observational data. 

We now return to the our problem. Suppose that we limit the scope of our problem to a feasible subset of 
dynamic treatment regimes J" c ^. In the above example, .F consists of the combinations of doses ix i , XM, XS) 
that would be given for the induction drug, the maintenance drug, and the salvage drug, respectively, where 
whether or not a maintenance or salvage dose is given depends on the value of R. Thus, in this example, T 
restricts attention to regimes where decisions are made only on the basis of R. As with the quadratic model 
(5.12) in the example, we posit a model for 

E{Y*ig)}=ni9,r),\ora\\geT, 

as a function of a finite number of parameters T. The goal is then to estimate r from the observed data (5.2). 
Exploiting the idea of the inverse propensity score weighted estimator solving (5.15), we propose estimating 

T by solving the estimating equation 

n . 
,,(D.)9/8x{,(.,.^)Hy,-rt<,.r)},^(^) = 0, (5.16) 

where dvig) is some mass function that weights across the different regimes in J^. The important thing to note 
is that a single value of the treatment-covariate history D may be consistent with more than one of the treatment 
regimes g e T. That the resulting estimator will be consistent and asymptotically normal will follow because 
(5.16) is an unbiased estimating equation, a result that can easily be shown because of (5.15). The choice of 
the weight function dvig) will affect the efficiency of the estimator, and careful study of how to choose dvig) 
will be required. Once the estimator for T is obtained, the estimated optimal regime in the restricted set and its 
mean are determined, and its asymptotic properties may then be deduced via standard methods. 
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To illustrate, consider the model (5.12). Suppose we have conducted a sequentially randomized trial where 
patients are randomized with equal probability to doses xrj, j = i , . . . ,ki , for induction therapy to doses 
XMj, j = 1,•.•,^2, for maintenance therapy for patients who respond, and to doses xsj, j = l,...,k3, for 
salvage therapy for patients who do not respond. Considering the treatment regime g - ixjj^,XMj2,xsj3), then 
TigiDi) = 1 if Xji = xij^,XMi = XMJ2,Ri = 1 or Xi i = xij^,Xsi = xsj3,Ri — 0 and is equal to 0 othenwise. If 
we put point mass at the fci x 2̂ x k̂  treatment combinations, then 

C(A) = l/(A;ifc2)wheni?i = l 
= l/(A:ifc3) wheni?i = 0 . 

Consequently, equation (5.16) becomes 

E r, , JJ \r^dlJ'i^iuXMi,xs3\T) 
kik2Ri2^—^ -Q;̂ : —-{Yi- iJ,iXii,XMi,xsj]T)} 

t = i '• j = i 

+ fc,fc3(i-H,)gM^^li^ii^^{y,-^(X.„XM,-,X5.;T)} 
j = \ 

During the project period, we will carry out a comprehensive study of this approach. We will first derive 
the asymptotic properties of such estimators. With observational data, there is the additional complication of 
the need to model and estimate the propensity score. Although the feasible dynamic treatment regimes in T 
may be deliberately restricted to involve only some of the covariate data S in the decision rules, such data may 
play an important role in modeling the propensity score with observational data in order that the assumption of 
no unmeasured confounders be tenable. Therefore, we will derive the asymptotic properties of the proposed 
estimator when the propensity score is estimated. We will also study the implications of the choice of the weight 
function .di/(5) in (5.16) and misspecification of nig,T). We will carry out extensive simulation experiments 
across a range of scenarios designed based on the cancer clinical trials noted previously and data compiled by 
Core B to evaluate practical performance. An important goal will be to establish guidelines on the sample sizes 
required to ensure that valid inferences on the dynamic treatment regimes derived from the methods. 
_ As with many inverse probability weighted methods, efficiency gains can be made by using the covariates 
S in augmented inverse propensity score weighted estimators with methods similar to those described in Aims 
1 and 2 of Project 2. We will explore this approach during this project period. Because time to event endpoints 
are often the primary outcome in cancer trials, and because such endpoints are often right censored we will 
study how the above methods can be adapted for use with censored survival outcomes. 

5.4 Aim 3: Inferential Methods for Dynamic Treatment Regimes 
Because of its relative simplicity, we focus on Q-learning. We will use empirical process techniques combined 
with post-model-selection (also called "two-stage") estimation to develop valid methods of inference for parame
ters in Q-functions used in reinforcement learning methods. We will use a simple, two decision-point Q-learning 
example to illustrate the proposed approach. The setting is taken from Chakraborty et al. (2008) who use it to 
describe the soft-thresholding approach to inference mentioned in Section 3.4. 

Suppose we have observed iid data that are realizations of (5.1) for T = l , iSoi, Aoi, Roi, Sn, An, Ru, S2i), 
i ^ l , . . . ,n , where Ro,Ri are the rewards resulting at each decision point. Suppose our goal is to maximize 
the expected, undiscounted return, where here the return is the total reward YIJ^QRJ- We let the Q-functions 
for j = 0,1 be represented as 

QjiHj,A,;Pj,jj) = p'jHjo-\- iijHji)Aj, (5.17) 

where here ijj -\- j in Section 5.2 is partitioned as i/'j - iPpl'j)'< we write the history at the jth decision point 
as Hj ^ iSj,Aj- i) for brevity; Hjo and Hji are subsets of Hj selected for the model at decision point j ; 
Aj e {-1,1} is a dichotomous treatment choice (we use the set {-1,1} instead of {0,1} for mathematical 
convenience); and the parameters of the Q-function at the jth decision point are /3j and 7 .̂ j - 0,1. The 
parameters f3j reflect the associate of patient history to outcome, while 7j reflects the interaction between 
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patient history and treatment choice. Accordingly following the discussion at the end of Section 5.2, the 7̂ - are 
of particular interest. 

Here, the Q-learning procedure in Section 5.2 involves the following steps (also given in Chakraborty et 
al. 2008): (i) (A,71) = argimn^j,^, n"! E"=i{/?ii^- QiiHii,Aii;/3i,'yi)}'^; (li) For i = 1,... ,n, estimate Voi = 
Roi + maXae[-i,i}QiiHii,a,;Pi,ji); and (iii) (A),V'o) = argmin^o,^on~iX;iLi{%-Qo(i^Oi,Aoj;/0o,7o)}^. The 
form of Qj in (5.17) yields trivially that (^J, 7i)' - -̂ f̂  E"=i ^it^ii. where Zji = (F^g, AjH'ji)', i =- 1,..., n. and 
2i = ^~'Er=i ^H^K! that 

Voi = Roi + P'lHioi + \i'iHiii\; (5.18) 

and that iP'o,%y = Z^^n-'^ YA=I ^oiVoi, where ZQ = n-^ E L i ^oi^or The difficulty of course, is the fact that 
the absolute value function in (5.18) is non-differentiable. 

We now sketch a new two-stage approach to finding the limiting distribution and conducting inference without 
requiring soft-thresholding. We assume that Yoi = Qo(-f̂ oi, Aoi;/3oo,7oo) + eo,; that Yn = QiiHn, An;liio,-iio) + 
eij; and that the error terms have conditionally mean zero and finite joint covariance given Zoi and Zn. We also 
assume that all covariates are bounded and that 

•'̂ oo -̂ 01 A{'^l){t)] 
is positive definite. We also assume that the covariance matrix 

CTOO croi \ _ ^ j I ^Oi ^Oi^li 
O'C! 0-11 / IV eoiCii €?, Zoi , Z i i > 

is likewise positive definite. These are essentially the same assumptions made in Chakraborty et al. (2008). 
We further assume that (D) PH-y'i^Hin] = 0) > 0 holds. Without (D). the discontinuity in (5.18) has no effect 
asymptotically and the standard delta-method can yield asymptotic normality of all parameters of interest. 
Assumption (D) is realistic in practice for both continuous and dichotomous covariates. 

Define the function FQ : E'' >-» W, where d is the dimension of 71 and p is the dimension of Zoi, as 

Foiu) - E [Zoi iWiHin\I{\u'Hiii\ - 0} -t- i7'iHin)I{\u'Hin\ > 0})] . 

Let (Go, Gl)' be a mean-zero, Gaussian random vector with covariance matrix 

CTOO-^OO CTQi/oi 

O'Ol-'̂ Cl] O ' l lAl 

Using careful empirical process techniques (e.g., Kosorok, 2008), we can show under our assumptions that 

f h-Poo \ 
( h o [Go + E{ZnH'iQi]IiiQGi-\-FoiIiiiGi)] \ -_ ._, ni /2 70 - 700 

V 71 - 710 / 

where ~̂  denotes convergence in distribution; / f j ^ is the lower submatrix of /fj^ consisting of the bottom d 
rows; and /fĵ o '^ the upper submatrix consisting ofthe remaining rows of /jY- This is clearly a complex limiting 
distribution involving non-differentiable functions. If (D) does not hold, then Foiu) = E{ZoiH[• .̂̂ }u is a simple 
linear function, and the limiting distribution on the right side of (5.19) becomes a mean-zero Gaussian process 
with easily estimated covariance matrix. In general, Fo does not simplify this nicely, and Inference is challenging. 

The two-stage approach we propose for inference involves creating an empirical rule for testing whether or 
not i ioHii i - 0 for each observation i and applying a specialized parametric bootstrap. Let r „ be a decreasing 
sequence of constants such that T„ —» 0 and n /̂̂ r-n -^ cxj, and generate a realization ot (Go,Gi)'. For i = 

1,... ,n, let 5in = (\G'iiHin\ > r n J H[^p Hm j , where U is an empirical estimator of <yiilii.ihiiln.i)' • Now 
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replace Foiu) in the right side of (5.19) with n-^ E L i ^oi {SinH'mU + (1 - Sin)\H[i^u\}, and replace ho, In.o' 
I { i \ , I I I and EiZoiH[fy^) with their empirical estimators. It can be shown after careful empirical process analysis 
that the distribution of this quantity, conditional on the sample data, is asymptotically equivalent to the limiting 
distribution given on the right side of (5.19) and thus can be used for valid inference without requiring soft-
thresholding. This approach is valid even when (D) does not hold. The reason this works in spite of the inherent 
challenges with two-stage estimation, which in this case happens through the 5in values, is that the region in 
the space where 5in transitions from 0 to l can be made to have a very small probability, because 

li^pfo<i|^<r,Uo, 
nlo \ \\Hiii\\ - 7 

and that the "size" of the test reflected in the rate r„ goes to zero while remaining asymptotically consistent. 
While this is cleariy a complicated inference procedure and algorithm, it should be quite fast computationally 

and practical for implementation. During the project period, we will verify this procedure theoretically and eval
uate its performance and operating characteristics in extensive simulation studies under a variety of scenarios 
designed to reflect the conditions likely to be encountered in cancer research. Two key issues that we will 
address are how best to select Vn in a possibly data-adaptive way and how to extend this general approach to 
other, more complicated reinforcement learning settings, for example, to A-learning and with more complicated 
set-ups (numbers of decision points and treatment options at each). To obtain these results, we will use em
pirical process methods. Our initial restriction to the two decision-point case is not a serious limitation; as we 
discuss in Section 5.5, two decision points may be a feasible setting in the design of sequentially randomized 
cancer trials, such as the clinical reinforcement trial for NSCLC we propose in Aim 4. While inference on the 
parameters is of interest, the ultimate focus is on precision of estimation of the expected total reward (mean 
outcome) achieved by the estimated optimal regime. Because this is a differentiable functional of the parame
ters and probability distribution of the data, it is possible using empirical process methods to exploit the above 
results to obtain the limiting distribution of this quantity and a valid bootstrap procedure. 

For the development of sample size guidelines for these methods, the distribution given in (5.19) is too com
plex to yield closed-form sample size formulae, and it will be necessary to make some simplifying assumptions 
and approximations. In particular, we can consider replacing Foiu) with a simple linear function that yields a 
conservative estimator for the variance of the entire distribution on the right side of (5.19). This would result in 
a Gaussian random variable for which the derivation of sample size formulae is relatively straighfforward. While 
inferential methods need to be precise, sample size formulae, on the other hand, maybe somewhat conservative 
without losing their practical usefulness. 

5.5 Aim 4: Design of Sequentially Randomized Trials for Dynamic Treatment Regimes 
We discuss the two sub-aims for this aim in turn. 
Design and Sample Size considerations for Sequentially Randomized Trials. As we noted in Section 3.5, 
sample size determination is a key challenge in the design of sequentially randomized trials, owing in part to the 
fact that, as the numbers of decision points and treatment options at each increase, the numbers of subjects 
with experience consistent with each regime decreases. Thus, there is a need for methods to allow evaluation 
of the precision that can be expected as a function of the numbers of decision points where randomization will 
occur and the options at each. We propose a framework for systematic determination of the total sample size 
for these trials on the basis of criteria relevant to the comparison of the regimes embedded in such a trial. 

To fix ideas, we consider the setting in Section 5.1 where there is a primary outcome Y of interest to be 
ascertained on each subject. The goal is to design a sequentially randomized trial to identify which among a 
set of K dynamic treatment regimes, where ic" is a function of the number of decision points and treatment 
options at each, would yield the greatest mean outcome (assuming larger values of Y are preferred). Let ^k, 
k = l , . . . ,K, denote the expectation of the potential outcome corresponding to the fcth regime; that is, the mean 
outcome that would be seen if all patients in the population followed regime k. Appealing to ideas advocated 
in the classical literature on ranking and selection (Bechhofer, 1954; Bechhofer. Kiefer, and Sobel, 1968) and 
also discussed by Getting, Levy and Murphy (2007), a sensible criterion for evaluation of dynamic treatment 
regimes is that the trial allow determination of the best dynamic treatment regime; i.e., axgmax(fxi,.., ,fiK), 
such that, if indeed that treatment regime is better than the remaining K - I b y some tolerable limit 5, say, this 
will be detected with sufficiently high probability. Without loss of generality, assuming that treatment regime 1 is 
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the best and is better than all the rest by at least 6; i.e.. {m - maxj=2,...,.R'(Mj)} > ^, then we want a design that 
would guarantee that 

P{MI > . max (M,)} > 1 - /3 (5.20) 

whenever {^i - maxj=2,..../<-(/";)} > <5, where /ij is an estimator for the mean response of dynamic treatment 
regime j and /9 is a small probability chosen by the investigator. 

A variety of estimators for yĵ  the may be used with data from sequentially 
randomized trials have been proposed (e.g., Lunceford et al., 2002; Murphy, 
2005; Wahed and Tsiatis, 2004, 2006), which generally have the property that 
(/2i,.. .,'\i.K)' is asymptotically normal with mean (;ii,.. .,nK)' and iK x K) co-
variance matrix A that can be estimated from the data. If we can deduce the 
form of A for different designs and sample sizes, then we can evaluate proba
bilities in (5.20) and use them to assess the relative feasibility of the design. 

For illustration, consider the sequentially randomized design depicted in Fig
ure 2, which embeds the /5' = 8 simple dynamic treatment regimes we denoted 
as (Cj,Mj,Sfc) for i,j,k == 1,2, discussed in Sections 3.1, 3.5, and 5.1. We 
may summarize all of the possible realized treatment experiences that could 
be had by patients following any of these regimes as in Table 1, where "R" and 
"NR" denote "response observed" or "no response observed," so that, for exam
ple, experience 1 corresponds to being assigned induction chemotherapy Ci, 
responding to it, and then being assigned to maintenance therapy Mi. It is crit
ical to recognize that the experiences in the table are /7onhemselves dynamic 

treatment regimes but rather are results of fo//ow/nfif dynamic treatment regimes. 
In the actual trial, there will be na subjects whose realized experience uncjer sequential randomization corre

sponds to experience i in the table, which we denote by the event E = i. Let Ya be the sample average outcome 
for these subjects. If we define Qi = E{Y\E - i) and ps - P(response|Cs), s = 1,2, then it is easy to show that 
the mean outcomes for the i i ' = 8 dynamic treatment regimes embedded in the trial may be expressed as 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 

Cl 
C l 
C l 

c, 
C2 
C2 
C2 
C2 

R 
R 

NR 
NR 
R 
R 

NR 
NR 

Ml 
Ms 
Sl 
S2 
Ml 
M2 
Sl 
S2 

Table 1: Realized experiences 
from the sequentially random
ized trial. 

/Xl ==6'ipi -I-6*3(1-^1), 
115 = ^5P2 + ^7(1 - P 2 ) , 

1̂2 ^ 9 l P l + 0i i l - p i ) , . 
/̂ 6 ^^5^2 +6*8(1-P2)> 

M3 = 92Vl +6'3(1 - P i ) , 
M7 = 9QP2-\-6'!il - P 2 ) , 

n i = 92Pi + 6*4(1 - .P l ) , 
/̂ 8 = 6*6^2+ 6*8(1 - P 2 ) , 

and these means may be estimated by substituting F^ for 6e, (ni -1- n2)/(ni + n2 + 713 + 714) for pi, and (ns + 
n6)/in5 + 715 + n7 -h "g) for p2 in these formulae. Denote the resulting estimators by /t j , j = 1 , . . . , 8. 

Under some simplifying assumptions; namely, assuming constant variance across e, i.e.. 

a'̂  = vaiiY\E = e), i = l , . . . , 8 , and cr̂  » |6i£ - 6î '| for all ̂  7̂  ^', (5.21) 

which may be reasonable approximations for design purposes, it is straightfonward to show that i p i , . . . ,lis) will 
be asymptotically normal with mean im , . . . , na)' and covariance matrix 

\ 

1^ 
n 

1 
Pl 

1 - p l 
0 
0 
0 
0 
0 

Pl 
1 
0 

1 - p l 
0 
0 
0 
0 

1 - p l 
0 
1 

P l • 

0 
0 
0 
0 

0 
1 - p l 

Pl 
1 
0 
0 
0 
0 

0 
0 
0 
0 
1 

P2 
1 - P 2 

0 

0 
0 
0 
0 

P2 
1 

0 
1 - P 2 

0 
0 
0 
0 

1 - P 2 
0 
1 

P2 

0 ' 
0 
0 
0 
0 

1 - P 2 
P2 
1 

For simplicity, assume that pi = P2-
Because of the symmetry of A, to compute the lower bound for 

-P{MI > .max (/tj)} 
j=2,...,8 

(5.22) 

PHS 398/2590 (Rev. 11/07) Page 452 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

whenever {fii - max.j=2,...,siiij)} > S, for a given sample size n and probability of response pi, it suffices to 
compute (5.22) assuming that (^i, • • • .Ms) is multivariate normal with mean (5,0,... ,0)' and covariance matrix 
A above. This probability can be computed easily by simulation. Note that this configuration is least favorable 
among all such configurations with {^i - maxj=2,...,8(Aij)} > d\n the sense of yielding the largest sample size 
and hence is conservative. 

To illustrate, we present results from such simulations. Specifically in Table 2, we show the sample size (up 
to a multiplicative constant a'̂ /5'̂ ) for different values for the probability in equation (5.22) and for different p i . 

Hence, if we design a sequentially randomized trial as in Figure 2 and expect 
a response rate of pi = 0.7, then to ensure that we identify the best dynamic 
treatment regime among those represented in the trial with probability 0.90 if Probability 
that treatment regime has a mean outcome at least 5 units greater than the rest, pi 0.80 0.90 0.95 
then, according to Table 2, we need a sample size of at least 27.7 x (CT^/5^). 

Note that the sample size is relatively insensitive to the choice of the prob- ^'^ ^^-^ ^^-^ '̂ '̂ •̂  
ability of response Pl, suggesting that the simplifying assumption that Pl = p2 ^'^ ^^'^ ^^'^ ^^'^ 
is a reasonable approximation. More intriguing is the comparison to standard '̂ •^ ^^-^ ^^-^ '̂ ^•^ 
sample size calculations. If instead we consider a simple, two-arm random- ^'^ ^^-^ 27.9 38.1 
ized trial and use the standard sample size calculation, choosing sample size ^-^ ^^-^ ^^-^ ^^-^ 
to ensure that a level-a test (two-sided) would detect a treatment difference 
in mean outcome of 6 units with power at least 1 - P, then we would take ^ .. o o i . » 
n = 4(za/2+2/3)̂ ('̂ V<5 )̂, where zp is the (1 -^)th quantile of a standard normal 2°'2 ^- ^^ ^ ® ® ® "^ ^° 
distribution. For the routine choices a = 0.05 and power equal to 1 - /? = 0.90, ^ ' ' 
the sample size would equal 4(1.96 + l.28)^ia^/S^) = 42.0 x ia^/6^). Thus, we 
see that, with the same sample size used for a standard, two-sample comparison, we could have designed a 
sequentially randomized trial that evaluates K = 8 dynamic treatment regimes and has a greater than 95% 
chance of identifying the best regime if that regime has a mean outcome at least 5 units greater than the rest. 

Note that this suggests that one could design a sequentially randomized trial having a specified probabil
ity of detecting the best regime that would also have high power for carrying out a standard primary analysis 
comparing the two induction treatments to which subjects are randomized at the first decision point. Ordinarily, 
In standard trials with a single decision-point randomization, what happens to subjects after they receive their 
assigned treatments is left to the discretion of clinicians and subjects, and the analysis proceeds according to 
the intention-to-treat principle. From the perspective of such a primary analysis, one may view sequentially 
randomized trials as single decision-point trials where aspects of what happens to the subjects after random
ization are "systematized." This feature does no^ compromise the validity of an intention-to-treat analysis of the 
induction treatments; indeed, this analysis is routine in sequentially randomized cancer trials. The advantage 
is that designing the trial to have sufficient power for this analysis and sufficient precision to identify the best 
regime among those represented with high probability places us in a position to learn much more with a similar 
commitment of resources. If extensive patient information is also collected throughout the trial, the resulting 
data will furthermore be a rich resource for identifying the optimal regime using learning methods. 

The calculations above are for a very specific design and involve some simplifying assumptions. During the 
project period, we will study the impact of the assumptions in (5.21). especially the second, on the sample size 
calculations, and we will generalize the sample size methods to apply to sequentially randomized studies with 
multiple decision points, multiple treatment options, and more complex decision rules. The expressions and 
computations involved will of necessity be much more complicated than those presented here. By so doing, 
we will be able to provide comprehensive guidance on the level of complexity of the regimes that may be incor
porated in a trial while preserving feasible statistical accuracy Our ultimate objective is to develop software to 
assist cancer trialists in the design of sequentially randomized trials; see Section 5.6, 
Clinical Reinforcement Trials for Cancer Treatment. The foregoing sub-aim focuses on design where the 
objective is to evaluate the specific regimes embedded in the trial. As we have emphasized, a key objective of 
this project is to advance the premise of carrying out sequentially randomized trials with the primary objective ot 
obtaining a rich data resource for developing optimal dynamic treatment regimes using reinforcement learning 
methods. As proof of principle of this exciting idea of clinical reinforcement trials, in this sub-aim, we will carry 
out a detailed study of this approach in the context of Stage IIIB/IV NSCLC. Notably, the implications of the first 

PHS 398/2590 (Rev, 11/07) Page 4 5 3 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M lchao l R., et a l . 

sub-aim suggest that these trials can also facilitate standard analyses. 
Most of our/research will be through simulation of virtual patients and virtual clinical reinforcement trials in 

order to assess sample size and pertormance where the goal is development of optimal regimes. Our first step 
will be to develop a realistic mechanistic difference-equation framework for modeling the progression of NSCLC 
and how it is affected by treatment from which virtual patients may be simulated. We have already had success 
with using a simple difference-equation approach in the preliminary work leading to Figure 3. ,ln the proposed 
efforts, we will develop a more comprehensive, realistic such framework by using existing clinical trial data on 
NSCLC, such as LCCC protocols 9719, "A phase III, randomized trial comparing a defined duration versus 
continuous administration of combination chemotherapy in advance non-small cell carcinoma of the lung," and 
2003, "A phase 11, randomized trial comparing weekly administration of taxol with carboplatin to an every-three-
week regimen for the treatment of advanced stage IIIB/IV non-small cell lung cancer," in order to better tune the 
models to match observed patient behavior 

The three aspects of clinical reinforcement trials, numbers of decision points, numbers of treatment options, 
and outcome measure (utility function), will be specialized to NSCLC. We will have at most two decision times, 
one possibly at the beginning of the first line of treatment, and the second at the end of first-line treatment. A 
third line is currently only available for certain patients, and there is only one FDA approved third-line treatment 
(so only one viable treatment option at a third decision point); accordingly we will not incorporate a third decision 
point. We will strongly emphasize the second line of treatment given at the second decision point; as noted in 
Section 3.5, timing of initiation of second-line therapy appears to be the most pressing issue clinically. We will 
include a finite set of possible treatments (agents) for the first decision time (beginning of first line therapy), 
which is restricted somewhat by established clinical practice. For the second decision time, we will have a finite 
set of agents and a possible continuum of start times for second line of therapy where, again, we will incorporate 
constraints on treatment choices as dictated by clinical practice. For example, we will use a limited choice of 
targeted start times that fall within the usual 6 week median window before relapse and initiation of second-line 
therapy at the earlier of the targeted start time and relapse. We will use overall survival as our primary outcome 
(utility function), as this outcome is arguably the most crucial. We will also compare and contrast overall survival 
with a utility function that assesses quality adjusted survival. 

For the analysis component, we will use Q-learning methodology combined with the model selection meth
ods shown to work best in Aim 1 to estimate the optimal regime as a function of patient variables and biomarkers 
at each decision time. We have already demonstrated in our preliminary work In a simple setting, as shown 
in Figure 3, that Q-learning can lead to optimal regimes that lead to improved patient outcomes over fixed 
treatment, and we expect to demonstrate similar gains in this more realistic setting. 

Exploiting our simulation framework, we will study systematically the sample sizes required to achieve pre
cise inferences on the optimal dynamic treatment regime from such trials and evaluate the performance of the 
inferential methods in Aim 3 in this particular context. Our preliminary such simulation studies seem to sug
gest that sample sizes required to make reliable inferences on dynamic treatment regimes are similar to those 
required for typical phase III trials, similar to the findings for evaluating a fixed set of regimes in the previous 
sub-aim. However, considerable, systematic study is needed to develop reliable sample size guidelines. 

Based on the results of these simulation-based studies and in close collaboration with Dr. Socinski. we 
will design a Stage IIIB/IV NSCLC clinical reinforcement trial. This will require identifying and refining all of 
the needed aspects described above while ensuring that the resulting regimes to which subjects would be 
randomized are consistent with clinical practice. We expect that arriving at a final design that can be realistically 
implemented will take several iterations before a suitable and efficient design is achieved. 

This general approach is possible with other cancers, such as breast and colon cancers. We will undertake 
a study of other cancer treatment questions and develop simulation-based frameworks that can be used to 
develop clinical reinforcement trials. This study will enable us to use the differences among settings tor various 
cancers to formulate general guidelines for developing clinical reinforcement trials in cancer research. 

5.6 Software Implementation and Dissemination 
All public-use software developed in this project will be made available on dedicated pages on the Program 
Project website, including downloadable code and instructions, documentation, and examples. 
Aim 1: As a first step toward our comprehensive study of learning methods, we will develop efficient, robust 
programs for implementation of Q- and A-learning, where the models for the Q-functions and (^-contrast func-
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tions, respectively, at each decision point are prespecified. We will make heavy use of Core C resources for 
developing and testing these programs. These programs will facilitate the simulations and data analyses re
quired to carry out our first objective of understanding the relative merits of the two learning approaches. For 
model selection methods for which reliable, suitable implementations are not readily available, such as the Fast 
FSR, SVR. and ERT methods, we will develop efficient implementations, exploiting the resources of Core C. 
These programs will be integrated with the Q- and A-learning routines to facilitate our large-scale study of model 
selection methods in this context. Ultimately based on the results, we will work with Core C to embed versions 
of these programs implementing the best methods into software, documentation, and examples for public dis
semination. Because of the complexity involved, we envision that this software will require some intervention by 
the user to tailor it for a specific use; thus, the source code will be transparent and heavily documented. 
Aim 2: We will work with Core C to develop software implementations of the methods for public dissemination. 
Aim 3: We will work with Core C to incorporate the inferential methods for optimal dynamic treatment regimes 
in the public-use Q-learning software developed in Aim 1. 
Aim 4: A critical objective of this aim is to develop guidelines and software for practical design of sequentially 
randomized trials. We plan to work closely with Core C programmers to develop a general public-use, soft
ware package suitable for use by analysts involved in protocol development based on the research in sub-aim 
1; this will included numerous illustrative examples. For that in sub-aim 2, working with Core C, we will de
velop simulation-based software for public dissemination that will enable practitioners to carry out virtual clinical 
reinforcement trials and sample size determinations for such trials. The software will be written so as to be 
transparent to researchers who wish to modify it for their own needs. 

5.7 Timetable 
For all Aims, manuscripts will be prepared and submitted as results worthy of publication become available. 
Aim 1: The first 2 years will be devoted to development of the Q- and A-learning programs and their use in our 
initial investigation comparing the two methods. In year 3, we will expand these studies to assessing the role of 
model selection and develop programs implementing these methods if none are available, which will be used in 
the continuing effort in Year 4 to carry out a comprehensive study of their performance. Year 5 will be devoted 
to developing the programs into software for public use along with accompanying documentation. 
Aim 2: The first year will be spent fully developing the methods and deriving their theoretical properties. Year 2 
will be devoted to developing efficient programs in collaboration with Core C and on research, including review 
of studies compiled by Core B, to devise realistic scenarios where a restricted set of feasible regimes would be 
of interest to inform our extensive simulation studies. Work will begin on translating the programs into public 
use software, continuing in Year 3. Year 3 will also be devoted to extending the methods to incorporate "aug
mentation terms" to gain efficiency, as discussed in Aim 1 of Project 2, and to censored survival outcomes and 
efficient implementation of these methods. In Year 4, theoretical study and extensive simulations will be carried 
out. Year 5 will be devoted to completion of public-use software implementations of all methods. 
Aim 3: The first two years will be devoted to theoretical work and, in collaboration with Core C, development 
of efficient implementations of the inferential methods that may be integrated with the Q-learning programs in 
Aim 1. Year 3 will be devoted to extensive simulations of the methods' performance. Years 4 and 5 will involve 
development of sample size guidelines and incorporation of the methods in the public-use software in Aim 1. 
Aim 4: For sub-aim 1, in Year 1. we wijl carry out the necessary analytical work and develop efficient programs 
that allow for varying assumptions, numbers of decision points, and numbers of treatment options for computa
tion of sample size. Years 2 and 3 will be devoted to analytical and empirical study of sample size of general 
trial designs using these programs. In Year 4, we will use the results to develop guidelines for practitioners and 
worked examples be included in the documentation for the public-use software to be developed in Year 5. For 
sub-aim 2, we will spend Years 1 and 2 developing the NSCLC simulation framework, working closely with Core 
C programmers, and using it to generate virtual trial data that we will use with Q-learning to develop clinical 
reinforcement trial designs. We will use the evolving results to develop the draft NSCLC trial protocol by the end 
of Year 3. In Years 3 and 4, we will begin to study other cancers and develop simulation frameworks that can 
be used to develop clinical reinforcement trials in these settings. Year 5 will be devoted to development of the 
public-use simulation-based software. 
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6 INCLUSION ENROLLMENT REPORT 

N/A 
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8 PROTECTION OF HUMAN SUBJECTS 

Although the proposed research indirectly involves human subjects through the preparation, in Core B, of de-
identified data sets from identifiable patient data sources, the investigators on Project 5 will have access only 
to the de-identified data. Thus, the investigators on Project 5 will have no access to any identifiable patient 
information. 

9 INCLUSION OF WOMEN AND MINORITIES 

The methods we develop will be applicable to studies with both women and minorities and also to studies 
which examine treatment differences adjusted for gender, ethnicity and race. This is accomplished through the 
general formulation of the statistical designs, models and methods studied that allow for many possible kinds of 
risk factors. Moreover, many of the existing data sets to be studied and provided by Core B include women and 
minorities, although we will not be generating any new data involving human subjects. 

PHS 398/2590 (Rev. 11/07) Page 461 Continuation Format Page 



Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R., et a l . 

10 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

11 INCLUSION OF CHILDREN 

The methods we develop will be applicable to studies with children and also to studies which examine treatment 
differences adjusted for age. This is accomplished through the general formulation of the statistical designs, 
models and methods studied that allow for many possible kinds of risk factors. Moreover, some of the existing 
data sets to be studied and provided by Core B may include children, although we will not be generating any 
new data involving human subjects. 

12 VERTEBRATE ANIMALS 

N/A 

13 SELECT AGENT RESEARCH 

N/A 

14 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

15 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute a subcontract 
with the consortium institution (North Carolina State University). The inter-institutional agreement will be written 
consistent with the NIH consortium agreement policy 

16 LETTERS OF SUPPORT-None 

17 RESOURCE SHARING PLAN(S) 

(a) Data sharing plan: The data-related resources generated by the proposed research consists of new statis
tical methodology, software packages for implementation of the methodology and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy Summaries of the methodology the software and tutorials will 
be shared through a public web site managed by Core A. while Core C will assist in preparation of the 
software and tutorials for dissemination. This project will use de-identified data prepared by Core B to test 
the methods and to create demonstrations of use of the methods to be included in tutorials. This project 
will not be involved in sharing of these data; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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PROJECT SUMMARY (See instructions): 

The Administrative Core (Core A) is responsible for organizing the program investigators and staff into an 
effective and well-coordinated team to develop and implement the statistical methods for cancer clinical trials 
proposed in the research projects to improve the health of cancer patients. This program is integrated across 
three institutions whith a lead PD/Pl at one institution (UNC-CH) and two additional PD/PIs at the other two 
institutions (NCSU and Duke). These three PD/PIs form an executive Committee with overall responsibility 
for the management and administration of the program. Each institution has an additional co-PD/PI to assist 
the PD/PIs with both the overall and intra-institutional administration of the program project. The Executive 
Committee, three co-PD/PIs. and individual project leaders form a Steering Committee which provides 
overall scientific guidance for the program. An External Advisory Committee of experts provides feedback to 
the Steering Committee on the goals and progress of the program during an annual retreat. Communication 
and collaboration between project investigators is facilitated with a program project wiki. Communication and 
dissemination of new results and software are aided with a program project web page. The matrix leadership 
structure of Core A maximizes the scientific integration of this multi-disciplinary and trans-institutional 
collaboration. 

RELEVANCE (See instructions): 

The Administrative Core (Core A) is essential to the success of the proposed project since it coordinates all 
administration and provides leadership for the five projects, three cores and three institutions involved in this 
program project. The administrative component is necessary to facilitate the science of this program project 
and to achieve the overall program aims, to develop new statistical methods that will improve the health of 
cancer patients. 
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Cai, Jianwen 
Davidian. Marie 
George, Stephen L. 
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Jung, Sin-Ho 
Lin, Danyu 
Tsiatis, Anastasios 
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Jianwen_Cai 
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DANYU_LIN 
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Organization 

UNC-CH 
UNC-CH 
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UNC-CH 
Duke University 
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NC State University 
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Core Director 
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Core Co-Director 
Core Co-Director 
Core Co-Director 
Core Co-Director 
Core Contributor 
Core Co-Director 
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Begg, Colin B. 
Murphy, Susan A. 
Owzar, Kouros 
Parmigiani. Giovanni 

Organization Role on Project 

Memorial Sloan-Kettering Cancer Center Consultant 
University of Michigan Consultant 
Duke University Consultant 
Johns Hopkins University Consultant 
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If a specific line cannot be referenced at this time, include a statement that one from the Registry will be used. 
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METHODS AND SERVICES TO BE PROVIDED 
1 SPECIFIC AIMS, BACKGROUND, AND RATIONALE 

The Administrative Core (Core A) will be responsible for organizing the program investigators and staff into an 
effective and well-coordinated team to develop and implement statistical methods for cancer clinical trials that 
will relieve the bottleneck between biomedical science and clinical practice and improve the health of cancer 
patients. 

1.1 Integration of Research Projects 

The main goal of Core A is integration of the five research projects: 

Project 1 (Cai): Innovative clinical trial design and analysis 

Project 2 (Davidian): Methods for missing and auxiliary data in clinical trials 

Project 3 (Ibrahim): Methods for post marketing surveillance and comparative effectiveness research 

Project 4 (Lin): Methods for pharmacogenomics and individualized therapy trials 

Project 5 (Tsiatis): Methods for discovery and analysis of dynamic treatment regimes 

The projects are supported by two additional cores: 

Core B (George): Data compilation 

Core C (Davidian): Computational resource and dissemination core 

Each project has its own research focus and aims. However, in concert, the projects are synergistic in ways 
that expand the scientific impact of the work. Core A will promote these synergies by facilitating and tracking 
interaction and integration among projects through the following mechanisms: 

• continuing assessment of project and core objectives 

• articulating program wide objectives that involve interaction and integration 

• organization of monthly program review meetings and annual retreats 

• facilitation of weekly and ad-hoc scientific group meetings 

• facilitating tracking and communication across projects and cores 

• coordination of inter-institutional computing resources. 

Overall, this program project will have a non-traditional matrix organization, with projects and aims cutting 
across institutions as well as statistical areas of expertise cutting across projects. This organization will create a 
uniquely effective framework for making scientific advances that require multiple areas of expertise and multiple 
modes of attack. On the other hand, the traditional weekly meeting structure for each project and core is not in 
general going to be flexible enough to maximize these synergistic opportunities. Our basic approach will be to 
have regular monthly meetings of a Steering Committee for direction and coordination ofthe program as a whole 
in combination with weekly and ad-hoc scientific group meetings dictated by cross-cutting research themes and 
project-specific objectives. These weekly and ad-hoc scientific group meetings will be organized and directed 
as needed by project leaders and project investigators. Meetings will be tracked and minutes recorded on the 
program project wiki, to which all program project investigators and staff will have access. 

Before describing integration plan components, we briefly review points of interaction between the projects 
that inform our integration process, and then we outline existing collaborations already in place as well as new 
collaborations enabled by the proposed program project. We then describe the key facets of the integration 
plan: the Executive Committee, the Steering Committee, the weekly and ad-hoc scientific group meetings, the 
program project web site and wiki, and the Inter-Institutional Computing Committee. 
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1.1.1 Project Interactions 
Project 1, on clinical trial design and analysis, will benefit greatly from developments in Projects 2 and 4, be
cause of both the ubiquitous presence of missing data and the emerging importance of pharmacogenomic 
information in clinical trials. Project 2, on missing data, will contribute greatly to Pt-oject 1, as already mentioned 
above, as well as to Projects 3,4, and 5, because missing data always occur in clinical studies. The techniques 
for finding candidate treatment regimens from existing data developed in Project 3 will inform and contribute to 
the range of treatments and treatment regimens studied in Projects 4 and 5. The surveillance methodology also 
developed in Project 3 will feed into the clinical trial design issues examined In Project 1. The candidate indi
vidualized therapies and model selection tools developed in Project 4 will be directly applicable to the dynamic 
treatment regime research of Project 5. The personalized dynamic treatment regimes developed in Project 5 will 
suggest treatment protocols that can be evaluated in the randomized trials developed in Project 1. In addition 
to this synergy among the scientific goals, there are a number of cross-cutting themes that transcend multiple 
projects. Two such themes are statistical learning, which is involved in Projects 3,4, and 5, and model selection, 
which plays a role in all of the projects but especially in Projects 2-5. Two other such themes are empirical pro
cesses and semiparametric inference which cuts through all 5 projects. There are many additional cross-cutting 
themes and synergies among the projects, which we do not exhaustively enumerate here but which have played 
and will continue to play key roles in the proposed research program. 

1.1.2 Existing and New Collaborations 
The proposed program project includes a number of existing collaborations on topics related to the program 
that have resulted in either publications or funded grants. Examples of collaborations among University of North 
Carolina at Chapel Hill (UNC-CH) personnel in biostatistical methodology areas related to the proposed program 
project include: Drs, Cai and Kosorok on semiparametric methods and time-to-event data (Song et al,, 2008a); 
Drs. Cai and Zeng on joint modeling of longitudinal and time-to-even data (Zeng and Cai, 2005); Drs. Ibrahim 
and Zeng on missing data (Chen et al,, 2006); Drs. Chu, Ibrahim, and Sandler on statistical methodology 
in cancer (Qu et al., 2008); Drs. Fine and Kosorok.on semiparametric methods (Lee et al., 2005) and on 
microarray methods (Ma et al., 2006); and Drs. Lin and Zeng on statistical genetics (Lin and Zeng, 2006), 
along with many other joint publications. Examples of collaborations among North Carolina State University 
(NCSU) personnel in biostatistical methodology areas related to the proposed program project include: Drs. 
Davidian and Stefanski on longitudinal data (Huang et al., 2009); Drs. Davidian and Tsiatis bn joint modeling of 
longitudinal and time-to-event data (Tsiatis and Davidian, 2004); along with numerous other joint publications. 
Examples of collaborations among Duke University personnel in biostatistical methodology areas related to the 
proposed program project include: Drs. George and Jung on clinical trial methods (Jung and George, 2009); 
Drs. Wang and Pang on cancer biomarkers (Wang et al., 2009); along with many other joint publications. 

Examples of collaborations related to the proposed program among personnel spanning two or more of the 
three institutions include: Drs. Fine at UNC-CH and Tsiatis at NCSU, who collaborated in the areas of semi
parametric methods and time-to-event data (Fine and Tsiatis, 2000); Drs. Liu at UNC-CH and Zhang at NCSU, 
who collaborated on statistical model selection (Zhang et al., 2008); and Drs. Zhou at UNC-CH and Wang 
at Duke, who collaborated in the area of semiparametric methods (Wang and Zhou, 2006). In addition, Drs. 
Davidian and Tsiatis at NCSU are adjunct faculty in the Duke Department of Biostatistics and Bioinformatics 
and have collaborated with faculty there. Moreover, Drs. Kosorok, Cai, Fine. Ibrahim. Wright, and other investi
gators at UNC-CH teamed up with Drs. Davidian and Tsiatis at NCSU to formulate the Biostatistics Core of the 
recently funded NIH Clinical and Translational Science Award (1 ULI RR025747-01) to UNC-CH and partners 
(including NCSU). Drs. Davidian and Tsiatis at NCSU and Drs, Kosorok, Lin. and Zeng at UNC-CH participated 
in the Statistical and Applied Mathematical Sciences Institute (SAMSI) summer 2007 research program on "Dy
namic Treatment Regimes and Multistage Decision-Making" and initiated collaborations on dynamic treatment 
regimes and reinforcement learning in clinical trials that formed the basis for Project 5 in the proposed program 
project. Overall, there exist many strong research collaborations among the program investigators across the 
three institutions. 

Nevertheless, many of the specific collaborations delineated in the proposed projects and cores are new, 
especially in terms of the breadth and depth of the inter-institutional collaborations. For example, the collabora
tions between UNC-CH and Duke on Projects 1 and 4 are new. The three-way collaboration between UNC-CH, 
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NCSU, and Duke on Project 4 is also new. There are very few geographic locations where three strong institu
tions with significant biostatistical research groups are so close together as occurs with UNC-CH, NCSU, and 
Duke. The proposed program project will facilitate and leverage this unique and powerful consortium that can 
clearly exceed the sum of its parts. The proposed integrated projects and multi-institutional synergy will enable 
dramatic progress in cancer clinical trial methodology that will lead to improved public health. 

1.1.3 Executive Committee 
The Executive Committee will consist of the three PD/PI's of the program project: Dr. Kosorok at UNC-CH, 
lead PD/PI and Core A Director; Dr. Davidian at NCSU. PD/PI, Project 2 Leader and Core C Director; and 
Dr George at Duke, PD/PI and Core B Director. Dr. Kosorok will chair this committee, which provides overall 
administrative leadership for the program project. Additional details on the role of the Executive Committee are 
provided under the Administration section below. 

1.1.4 Steering Committee 
The Steering Committee will consist of the Executive Committee and also Drs. Ibrahim, Tsiatis, Jung, Cai, and 
Lin. Dr Ibrahim at UNC-CH is a co-PD/PI and the Project 3 Leader. Dr. Tsiatis at NCSU is a co-PD/PI and 
the Project 5 Leader Dr Jung at Duke is a co-PD/PI. Drs. Cai and Lin at UNC-CH are the Project Leaders for 
Projects 1 and 4, respectively Dr. Kosorok will chair the committee. The role of the Steering Committee will 
be to provide overall scientific leadership for the program project, continuing assessment of project and core 
objectives, and articulation of program-wide objectives that involve interaction and integration across projects 
and cores. The Steering Committee has been meeting in the process ot preparing for this grant for at least 
six months and will continue to meet monthly throughout the program project funding period. Most of these 
monthly meetings will be via teleconference, but once a quarter the meetings will be face-to-face at the National 
Institutes of Statistical Sciences (NISS) facilities in the Research Triangle Park, which is centrally located to all 
three institutions involved on the program project and where we have already met several times. Once a year, 
one of these face-to-tace meetings at NISS will be part of the the program project annual retreat that will be 
described in greater detail below. Minutes from these meetings will be placed on the program project wiki for 
tracking and communication to all program project personnel. 

1.1.5 Weekly and Ad-hoc Scientific Group Meetings 
We will have weekly and ad-hoc scientific group meetings as dictated by cross-cutting research themes and 
project-specific objectives. These weekly and ad-hoc scientific group meetings will be organized and directed 
as needed by project leaders and project investigators. Each project and core will meet at least monthly usually 
in conjunction with the Steering Committee meetings. Whether or not these project/core meetings are face-to-
face or are teleconference or web conference meetings will depend on the needs of the project or core and the 
issues to be addressed. 

There will also be regular meetings based on cross-cutting research themes. For example, there will be 
weekly face-to-face meetings on the theme of statistical learning (e.g., machine learning and reinforcement 
learning), which cuts across Projects 3, 4, and 5. These statistical learning meetings have been underway for 
about a year in the Department of Biostatistics at the University of North Carolina at Chapel Hill (UNC-CH). 
under the label "Reinforcement Learning Group," and some of the research discussed in those meetings played 
a role in the development of some of the specific aims in Projects 3, 4, and 5. We will also initiate a meeting 
series in the Center for Quantitative Sciences in Biomedicine (CQSB) at NCSU on the theme of model selection, 
which cuts across Projects 2-5. Additional research-thematic and project-focused meetings will be instigated 
after the program project is undenway The themes and frequency of these meetings will depend on the needs 
of the overall program, projects, and cores. Our goal is to be flexible and efficient rather than highly formalized 
with these meetings. We believe that this mix between a formal and ad-hoc structure will maximize our flexibility 
and adaptability in tackling the complex problems we are addressing in this program project as well as maximize 
our impact on public health. 

1.1.6 Program Project Web Site and Wiki 
A dedicated web site for our program project will be developed and housed on a server at UNC-CH. The purpose 
of this web site is to be a single point of contact for all interested parties. The main page will be accessible to the 
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general public and will include links to both an external set of pages also available to the general public as well 
as internal pages available only to program investigators. The external pages will include general information 
about the program projects, links to published papers and software developed by the program project, along 
with instructions and tutorials and other items for outreach. The internal pages will include a program project 
wiki for tracking and communicating among investigators, sharing data, developmental software and other digital 
information for investigators. 

For the preparation of this proposal, we have been using a wiki that is a prototype of the proposed program 
project wiki. The prototype wiki is currently located on a server in the Department of Statistics at NCSU and is 
powered by Media-Wiki (http://www.mediwiki.org) shareware. This wiki includes descriptions of all projects and 
cores as well as minutes from Steering Committee meetings. In the first few weeks of the proposed project, 
we will move the current wiki to a new server located at UNC-CH dedicated to Core A functions. The transfer 
of the contents of the wiki is extremely easy at this stage, as no large files are involved, and the number of 
pages is below 20. The new wiki will include pages for each project and core as well as other resources for 
the investigators. Each page has the capacity for editing and adding, deleting, and changing additional pages 
as well as minutes, papers, figures, and short comments used to track progress and communicate between 
investigators. This is an extremely powerful tool for research coordination that increases research productivity 
and collaboration between scientists and across the three institutions. We anticipate that the utilization of this 
wiki will dramatically increase over the first year of the project and continue to grow throughout the five years 
as progress continues to be made on the proposed research. The wiki will greatly facilitate the matrix and 
cross-cutting aspects of the program project. 

1.1.7 Inter-Institutional Computing Committee 
An Inter-Institutional Computing Committee (IICC) will direct computing issues that involve interactions between 
institutions. This includes addressing processes for transmitting data sets, data resources, software, and other 
digital resources among the three Cores and among all of the investigators. This committee will be chaired by 
Dr. Davidian from NCSU and will include as members Dr. Owzar from Duke, who is the co-leader of Core B over 
computing, and Dr. Kosorok. This committee will meet on an ad-hoc basis as needed but at least four times 
per year. The IICC has already met several times and has been very effective at addressing the coordination of 
computing resources between the three institutions. The IICC will orchestrate coordination between the three 
core servers, with the Core A server located at UNC-CH, the Core B server located at Duke, and the Core C 
server located at NCSU. The Committee will ensure that the severs can communicate and transfer data among 
themselves so that all investigators have appropriate access to all core services and that there is duplication 
of data and software so that, if one institution loses service, there is a backup at at least one other institution. 
Core A will have no access to identifiable humans subjects data. 

1.2 Annual Retreat and Meeting with External Advisory Committee 
Core A will organize an annual retreat that includes the Steering Committee and all project investigators and 
staff as well as a review by the External Advisory Committee (EAC) described below. The meeting will take 
place at the NISS building located in Research Triangle Park, which is central to the three institutions and near 
the Radisson Hotel Research Triangle Park. This will be convenient for both the program project investigators 
and the EAC members, who will be traveling from out of state. A summary of progress to date on the program 
project will be sent to the EAC members three weeks prior to the meeting. On the day of the meeting, the 
agenda will consist of an open meeting/retreat for all participants, which will include presentations on scientific 
progress and accomplishments for all projects and cores as well as a report on overall progress. This will 
be followed by an executive session for the EAC and a wrap-up meeting with both the EAC and the Steering 
Committee. Shortly after the meeting, the EAC will provide a written report of the current status of the program 
project, including commendation of strengths as well as suggested recommendations for improvement. The 
date of this meeting will be chosen to allow incorporation of results from the meeting and the EAC report into 
the annual NIH progress report 

1.3 Cost Accounting 
The core will maintain cost-accounting of program budgetary resources as well as coordinate submission of 
annual progress reports across the three institutions. A program administrative manager at UNC-CH, reporting 
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to Dr. Kosorok, will generate quarterly budget reports for the entire project, detailing expenditures of each 
project and core by institution. This manager will be assisted by adininistrative managers at NCSU and Duke, 
reporting to Drs. Davidian and George, respectively. These managers will also assist Drs. Kosorok, Davidian 
and George in preparing documentation for the annual progress reports. Submission of annual reports and 
other official program communications will be coordinated through UNC-CH. 
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2 ADMINISTRATION 

The administrative structure for 
this program project consists 
of three interwoven components: 
overall program administration, 
intra-institutional administration, anc 
project and core leadership. This 
is represented in Figure 1. In 
this figure, boxes delineate ad
ministrative units, dotted lines de
note a supportive or advisory re
lationship, solid lines denote a su
pervisory relationship, and dou
ble arrows denote two-way sup
port or joint supervisory roles. 
Dr Kosorok at UNC-CH will 
be the lead PD/PI and provide 
overall leadership for the program 
project. Dr. Kosorok's overall 
leadership responsibilities will be 
shared by two additional PD/PIs, 
Dr Davidian at NCSU and Dr. 
George at Duke, who, together 
with Dr. Kosorok will form the Ex
ecutive Committee. Each mem
ber of the Executive Committee will be assisted by an additional co-PD/PI at his/her institution to help with 
both overall leadership and intra-institutional leadership: Dr. Ibrahim at UNC-CH, Dr Tsiatis at NCSU, and Dr 
Jung at Duke. The PD/Pl and co-PD/PI at each institution, along with one or more additional administrative 
personnel, will constitute an intra-institutional Administrative Office to provide intra-institutional administrative 
support and leadership. The Executive Committee and the three Administrative Offices will provide adminis
trative support to the Steering Committee-composed of the Executive Committee, co-PD/PIs, and individual 
project and core leaders (Drs. Kosorok, Davidian, George, Ibrahim, Tsiatis, Jung, Cai and Lin)—which provides 
overall scientific leadership to the program. The project and core leadership will be as delineated in the project 
and core descriptions and cuts through and across both the overall program and intra-institutional administra
tion. 

Dr Kosorok's duties include managing the integration of the five projects and three core facilities; leading 
Core A operations; scheduling and conducting regular meetings of the Executive Committee, the UNC-CH 
Administrative Office, the Steering Committee, and the Annual Retreat and Meeting with the External Advisory 
Committee. The lead PD/Pl will also coordinate yearly summaries of progress and non-competitive renewal 
materials. Other activities include preparation of annual reports, oversight of budgetary disbursements and 
financial records, and communication with NIH and other entities that impact the program. 

Dr Kosorok will be assisted in his overall leadership responsibilities and duties by Drs. Davidian and 
George, who comprise the Executive Committee. Dr. George is also the Core B leader, and, as such, will 
coordinate trans-institutional data sharing, data compilation and human subjects issues. Dr. George vyill also 
have overall responsibility for the Duke budgetary components of the program. Dr. Davidian is also the Core 

Figure 1: Program project leadership structure. 
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C leader. Project 2 leader, and chair of the inter-institutional computing committee, which will coordinate trans-
institutional computing issues. Drs. Davidian and George will also assist Dr. Kosorok in general with external 
communications regarding the program, although Dr. Kosorok will be the primary contact person. 

The Executive Committee will meet monthly and additionally as needed, mostly via phone conference but 
also in person at least quarterly. Dr. Kosorok and the Executive Committee will be responsible for the day-
to-day management of the overall program. Overall program management activities include organizing and 
conducting regular meetings of the Executive and Steering Committees, both via phone conference and in 
person; organizing the annual retreat and meeting with the External Advisory Committee; addressing inter
institutional computing issues; and preparation of annual reports, financial records and non-competitive renewal 
documents. 

Each institutional Administrative Office will also meet monthly and additionally as needed, for day-to-day 
management of the intra-institutional components of the program at each institution. Intra-institutional manage
ment activities include coordination of intra-institutional meetings, computing issues, and budget, and gathering 
institutional-specific information for the program annual reports. 

Dr Kosorok will be assisted administratively by Ms. Betsy Seagroves, Ms. Evie McKee, and Ms. Tania 
Osborne. Ms. Seagroves, who serves in the Department of Biostatistics as Administrative Assistant to the 
Chair (Dr. Kosorok), will assist Dr. Kosorok and the UNC-CH Administrative Office with scheduling related 
issues. Ms. McKee is the Business and Grants Manager for the Department of Biostatistics and will provide 
guidance to Dr. Kosorok and Ms. Osborne on budgetary matters. Ms. McKee and Osborne will assist Dr. 
Kosorok in the day-to-day activities for scheduling, budgetary items and reporting, as well as in handling mail 
and telephones, maintaining project files, and managing travel of the External Advisory Committee members. 
Drs. Davidian and George will also be assisted in day-to-day administrative matters by administrative assistants 
at NCSU and Duke, respectively. 

Dr Kosorok will be responsible for preparation of annual progress reports and dispersion of funds to the 
subcontracts at NCSU and Duke as well as to the project and core components at UNC-CH. Drs. Davidian and 
George will be responsible tor assisting with the progress reports as well as dispersing funds to the project and 
core components at NCSU and Duke, respectively. No budgetary changes in subcontracts will be undertaken 
without approval from the Administrative Office at the affected institution. No budgetary changes affecting 
projects or cores will be undertaken without consulting with the affected project or core leaders nor without 
approval of the Executive Committee. 

The proposed administrative structure is not a strict hierarchy but is more of a matrix with both intra-
institutional leadership under the Administrative Offices and trans-institutional scientific leadership of the overall 
program as well as of individual projects and cores. While Dr Kosorok will be the lead PD/PI, the overall 
leadership and responsibility for the core is shared among all members of the Executive Committee, and no 
major decisions affecting the project will be made without the consensus of the entire Executive Committee. 
Moreover, no major changes in scientific focus or budget allocations to projects and cores will be made with
out input and guidance from the Steering Committee (which includes all project and core leaders). We have 
been successfully functioning in this manner for about six months now as we have been preparing this appli
cation. We do not anticipate there being any conflicts or difficulties that cannot be successfully resolved within 
this administrative structure. More importantly, the novel matrix administrative structure will facilitate research 
more effectively than the usual hierarchical approach because of the ability of the matrix approach to foster and 
coordinate trans-institutional collaboration. 

3 EDUCATION 

Core A will also organize and facilitate educational opportunities in biostatistical methods research for the stu
dent research assistants assigned to the program project. This will include providing opportunities for students 
to work on site at at least two different institutions on at least two different projects or cores. All three insti
tutions and all projects and cores will participate. We expect that many of the student research activities on 
the program project will lead to dissertation topics for these students. Core A will also coordinate tracking and 
reporting of educational accomplishments of students involved on the program project. In addition, students 
will have opportunities to participate and present at the annual retreat and meeting with the External Advisory 
Committee, as well as to present project research at conferences. 
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4 OUTREACH AND DISSEMINATION 

All major research results will be published and disseminated through the usual refereed journals and con
ference proceedings. We also plan to organize a special session at the annual Spring Meeting of Eastern 
North American Region (ENAR) Meeting of the International Biometric Society (IBS) and/or the Joint Statistical 
Meetings sponsored by the American Statistical Association, ENAR, and three other major statistical societies. 
These two meeting venues are the two most well-known professional meetings for biostatistics. We will provide 
a public web site to provide generally-accessible up-to-date information on our research progress. We will also 
present research results at conferences of organizations such as the Society for Clinical Trials and the American 
Society of Clinical Oncology. 

Core A will also maintain a liaison with publicity offices in the Department of Biostatistics, the Gillings School 
of Global Public Health, and the College of Arts and Sciences at UNC-CH; the CQSB, Department of Statistics, 
and the College of Physical and Mathematical Science at NCSU; and the Department of Biostatistics and 
Bioinformatics and the School of Medicine at Duke. Important results will be appropriately publicized at the time 
of publication through news releases to the local media. 

4.1 Data and Software Sharing 
We also recognize the importance of data and software sharing. Because we will not be generating new clinical 
data but will only be using existing data with all identifiers removed, there will not be much opportunity to share 
clinical data outside of the program project investigators. On the other hand, we will be sharing our newly 
developed software, training and instructional material associated with the new software, and a small number 
of accompanying demonstration data sets with no identifiers. 

Core B will be responsible for gathering clinical data sets without identifiers and formatting them for sharing 
between the three institutions for research purposes within the program project. Core B will also assist with 
preparing demonstration data sets for use in demonstrating and training for newly developed software. Core C 
will be responsible for preparing, streamlining, and testing the newly developed software for dissemination to all 
interested researchers. Core C will also put together training and demonstration materials for the new software, 
including in some cases demonstration data sets provided by Core B. The new software and educational ma
terials developed in Core C will be available through the Program Project Web Site. Core A will coordinate the 
communication and dissemination between and across Cores B and C as well as outreach functions in general. 

4.1.1 Program Project Web Site 
Current news about the program project and links to articles will also be maintained on the Program Project Web 
Site which will be maintained as part of the Core A functions. The main page of this web site will be accessible 
to all who are interested. The public part will consist of information about the program project, news releases, 
links to research articles, and links to the newly developed software and associated educational materials. All 
interested researchers will have full access to the software and training materials. There will also be a link to 
a private, internal part of the web, accessible only to project investigators. The private part of the web will also 
include the Program Project Wiki described above. The proposed, one-stop Program Project Web Site .will allow 
easy communication both internally among program investigators as well as externally to the public. The web 
site will be managed by Dr Kosorok with assistance from the Executive Committee, the UNC-CH Administrative 
Office, and the Inter-Institutional Computing Committee. 

5 FACILITIES 

Core A (Kosorok) will be primarily housed in the Department of Biostatistics located in McGavran-Greenberg 
Hall in the Gillings School of Global Public Health at UNC-CH, with Administrative Offices also located at NCSU 
and Duke. The UNC-CH Department of Biostatistics, located in the UNC Gillings School of Global Public 
Health, is one of the largest and highest ranked Biostatistics Departments in the U.S. The Department has 
over 35 full time faculty members; 130 graduate students pursuing MPH, MS, DrPH and PhD degrees; and 
15 undergraduate students. The Department occupies a total of 26,333 square feet; outstanding computer 
support for all students, faculty and staff; and a state-of-the-art 400 square-foot conference room which seats 
20 people and has a drop-down projector, wireless capabilities and conference calling facilities. The Department 
of Biostatistics at UNC-CH is very supportive of this program project and will do all in its power to ensure its 
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ongoing success. The Department will contribute $30,000 per year to the program project for all five years of 
the grant. Dr. Kosorok, as lead PD/PI of the program project, is the Chair of the Department and will ensure that 
the needed support is provided. UNC-CH is one of the nations foremost research universities, with top rankings 
in many disciplines. The Gillings School of Global Public Health is the top ranked public school of public health 
and has seven academic departments, including the Department of Biostatistics, In addition to several centers, 
programs and institutes. The School also has several high-tech conference rooms, including the Blue Cross 
and Blue Shield of North Carolina Foundation Auditorium. Both the Gillings School and UNC-CH have pledged 
their support, including contributing $8,000 and $20,000, respectively, annually to the program project. 

The administrative home for the NCSU component of the Project will be the CQSB (Center for Quantitative 
Sciences in Biomedicine), for which Dr. Davidian, the NCSU PD/PI for the Project, serves as Director and 
in which several investigators on the Project are members. The Center is jointly supported by the NCSU 
Colleges of Physical and Mathematical Sciences as well as Agriculture and Life Sciences and shares a state-
of-the-art conference facility and two smaller conference rooms each seating 10-15 people with the Center for 
Research in Scientific Computing (CSRC) on the third floor of Cox Hall. The main conference facility seats 
24-30 people in different configurations for conferences, seminars, and instructional events, and has the latest 
technology, including LCD projection equipment to display presentations on screens at the front and back of 
the room. Smart Board and Symposium technology, and video-conferencing capabilities. Almost all NCSU 
Project Investigators have offices in the NCSU Department of Statistics which is one of the largest and oldest 
departments of statistics or biostatistics in the world, with approximately 70 undergraduate and 170 graduate 
students, and enjoys excellent office and meeting room facilities and excellent computer support for all of its 
faculty, students and staff. The Department is very supportive of this program project. With UNC-CH, NCSU is 
one of the two flagship research institutions of the University of North Carolina system, with major colleges and 
schools of Agriculture and Life Sciences, Design, Education, Engineering, Humanities and Social Sciences, 
Management, Natural Resources, Physical and Mathematical Sciences, Textiles, and Veterinary Medicine. The 
College of Physical and Mathematical Sciences, which houses CQSB and the Department of Statistics, and 
the College of Agriculture and Life Sciences, which also supports CQSB, are very supportive of the proposed 
program project, and each will contribute $17,500 to the project in each of the five years of the grant. The 
University's Vice Chancellor for Research and Graduate Studies will contribute an additional $25,000 in each of 
the five years. 

All of the biostatistical investigators at Duke are faculty members in the Department of Biostatistics and 
Bioinformatics and the clinical co-investigators at Duke are all members of the DCCC with appointments in the 
Department of Medicine or the Department of Surgery at Duke. The Biostatistics and Bioinformatics Department 
currently consists of two divisions: Biostatistics (38 faculty members) and Computational Biology (7 faculty 
members) and has excellent office and meeting facilities and computational support for all of its faculty, students 
and staff. The Department of Biostatistics and Bioinformatics at Duke is very supportive of this program project 
and will contribute $ 15,000.00 per year to the program project for all five years of the grant. Duke University, 
founded in 1924, is a top ranked private school with many schools and colleges that are highly ranked nationally. 
The College of Arts and Sciences houses the nationally recognized Department of Statistical Science and 
the Duke University School of Medicine houses the Biostatistics and Bioinformatics Department. The Duke 
University School of Medicine is ranked in the top ten with schools twice its age, and is committed to socially 
relevant education, translational research, compassionate patient care and global healthcare solutions. There 
is ample meeting space for all program project investigators. The School of Medicine is very support of this 
program project and will contribute $15,000 per year in addition to the contribution from the Department of 
Biostatistics and Bioinformatics. 

The NISS (National Institute of Statistics Sciences) building is located centrally to the three participating 
institutions in Research Triangle Park. The building is shared with its sister institute, SAMSI, and has 28,000 
square feet of state-of-the-art office and meeting space. The meeting space includes traditional conference 
rooms, a fully-equipped video conference room, and a lecture and conference room that supports web stream
ing. Dr. Alan F. Karr, NISS Director, has provided space to us during the past several months and has agreed 
to continue providing meeting space to our program project without charge. 
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6 EXPERTISE 

Michael R. Kosorok, PhD, Core A Director and Lead PD/PI. Dr Kosorok is Professor and Chair of Biostatis
tics and Professor of Statistics and Operations Research at UNC-CH. He is also director of the Biostatistics.Core 
of the UNC-CH CTSA grant. His expertise is in biostatistical methodology for clinical trials, survival analysis, 
and high dimensional biomedical data, including microarrays, machine learning, and reinforcement learning. He 
is also an expert in the theoretical foundations underlying biostatistical methodology, especially in the areas of 
empirical processes and semiparametric inference, and has written a text on the subject (Kosorok, 2008). His 
contributions have been widely recognized. He is also an associate editor of the Annals of Statistics and elected 
Fellow of both the American Statistical Association and the Institute of Mathematical Statistics. He will direct 
the entire program project, direct Core A, co-lead Projects 3,4 and 5, and be a co-investigator on Project 1. He 
will chair the Executive and Steering Committees, lead the UNC-CH Administrative Office, and be a member of 
the Inter-Institutional Computing Committee. 

Jianwen Cai, PhD, Core A Contributor. Dr. Cai is Professor and Associate Chair of Biostatistics at UNC-CH. 
She is an internationally recognized expert on clinical trials, survival analysis, and semiparametric methods. 
She is an elected Fellow of the American Statistical Association. She will lead Project 1, co-lead Core B, and 
be a co-investigator on Project 2 and a contributor on Core A. She will be a member of the Steering Committee. 
Marie Davidian, PhD, Core A Co-Director and PD/PI. Dr Davidian is William Neal Reynolds Professor in the 
Department of Statistics and Director of the Center for Quantitative Sciences in. Biomedicine at NCSU and Ad
junct Professor of Biostatistics and Bioinformatics at Duke. She also serves as Executive Editor of Biometrics, 
regarded by many to be the top journal in the field of biostatistics. She is internationally recognized for her work 
in longitudinal data, missing data, biomedical modeling, clinical trials, and semiparametric methods. She is an 
elected Fellow of both the American Statistical Association and the Institute of Mathematical Statistics. She will 
co-direct the entire program project, lead Project 2, direct Core C, co-lead Project 5, and co-direct Cores A and 
B. She will be a member of the Executive and Steering Committees, lead the NCSU Administrative Office, and 
chair the Inter-Institutional Computing Committee. 
Stephen L. George, PhD, Core A Co-Director and PD/PI. Dr. George is Professor of Biostatistics and Bioin
formatics at Duke and Director of Biostatistics for the Duke Comprehensive Cancer Center and for the Cancer 
and Leukemia Group B (CALGB). His expertise is in clinical trials, translational science, and prognostic and 
predictive models. His work is widely recognized. He will co-direct the entire program project, direct Core B, 
co-lead Project 1, and co-direct Core A. He will be a member of the Executive and Steering Committees and 
lead the Duke Administrative Office. Dr George is an elected Fellow of the American Statistical Association. 
Joseph G. Ibrahim, PhD, Core A Co-Director and co-PD/PI. Dr. Ibrahim is Alumni Distinguished Professor 
of Biostatistics at UNC-CH, the Lineberger Comprehensive Cancer Center Director of Biostatistics, and the Di
rector of the UNC Center for Innovative Clinical Trials. His widely recognized expertise is in Bayesian methods, 
missing data, clinical trials, and cancer genomics. He is an elected Fellow of the American Statistical Associ
ation and the Institute of Mathematical Statistics. He will co-direct the entire program project, lead Project 3, 
co-lead Projects 1 and 2, and co-direct Cores A and B. He will be a member of the Steering Committee and the 
UNC-CH Administrative Office. 
Sin-Ho Jung, PhD, Core A Co-Director and co-PD/PI. Dr Jung is Professor of Biostatistics and Bioinformat
ics at Duke. Dr. Jung serves as the Director of the CALGB Biostatistics unit, and as the faculty statistician for 
the CALGB Lymphoma and Imaging Committees and the Cancer Prevention Subcommittee. He has published 
design and analysis methods for a wide range of cancer studies and clinical trials. These methods include 
survival analysis, various types of clustered and longitudinal data analysis, and design and analysis methods 
for phase II cancer clinical trials. His recent research interests are focused on design and analysis methods 
for high-throughput projects, including DNA microarrays, SNP and proteomic studies. His work is widely recog
nized. He will co-direct the entire program project, co-lead Projects 1,2 and 4, and co-direct Cores A and B. He 
will be a member of the Steering Committee and the Duke Administrative Office. 
Danyu Lin, PhD, Core A Contributor. Dr Lin is Dennis Gillings Distinguished Professor of Biostatistics at 
UNC-CH. He is a widely recognized expert in clinical trials, survival analysis, genomics, and semiparametric 
methods. He is an elected Fellow of the American Statistical Association and the Institute of Mathematical 
Statistics. He will lead Project 4, co-lead Core C, and be a contributor on Core A. He will be a member of the 
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Steering Committee. 
Kouros Owzar, PhD, Core A Consultant. Dr. Owzar is Associate Professor of Biostatistics and Bioinformatics 
at Duke. His expertise is In pharmacogenomics, bioinformatics, nonparametrics, and statistical computing. His 
work is widely recognized. He will co-lead Project 4, co-direct Cores B and C, and be a contributor on Core A. 
He will be a member of the Inter-Institutional Computing Committee. 
Anastasios A. Tsiatis, PhD, Core A Co-Director and co-PD/PI. Dr Tsiatis is Drexel Professor of Statistics at 
NCSU and Adjunct Professor of Biostatistics and Bioinformatics at Duke. His expertise is in survival analysis, 
causal inference, clinical trials, and semiparametric methods. He has written a text on the foundations of semi
parametric methods (Tsiatis, 2006). His work is widely recognized. He is an elected Fellow of the American 
Statistical Association and the Institute of Mathematical Statistics. He will co-direct the entire program project, 
lead Project 5, co-lead Project 2, co-direct Cores A and B, and be a co-investigator on Project 1. He will be a 
member ot the Steering Committee and the NCSU Administrative Office. 

7 DECISION-MAKING 

Dr. Kosorok will have authority for all administrative decisions but shares that authority and operates in concert 
with the other members of the Executive Committee, Drs. Davidian and George. Dr Kosorok and the Executive 
Committee will have final authority for all program project decisions. The PD/PIs and co-PD/PIs constituting the 
Administrative Offices at each institution will have final administrative authority on program project matters at 
their respective institutions. The Executive Committee (Drs. Kosorok, Davidian and George), co-PD/PIs (Drs. 
Ibrahim, Tsiatis and Jung), and the other individual project leaders (Drs. Cai and Lin) will serve as the Steering 
Committee. The Steering Committee will meet monthly as described previously and will have the power to 
reallocate funds within the program to respond to unanticipated results, challenges and opportunities. Such 
decisions will be made by consensus and must have the unanimous support of the Executive Committee. Drs. 
Davidian and George will act for Dr. Kosorok when inter-institutional administrative action is needed in his 
absence. Drs. Ibrahim, Tsiatis, and Jung will act, respectively, for Drs. Kosorok, Davidian, and George when 
intra-institutional administrative action is needed within their respective institutions. 

8 EXTERNAL ADVISORY COMMITTEE 

Deliberations of the Steering Committee will be assisted by an External Advisory Committee consisting of 
three experts in clinical trial methodology with an international reputation who are external to the three involved 
institutions. Dr Susan A. Murphy, H. E. Robbins Professorof Statistics, Professor of Psychiatry, and Research 
Professor in the Institute for Social Research at the University of Michigan, will serve as Chair of the committee. 
Dr Murphy is widely regarded as the world's foremost authority on statistical methodology for clinical trials 
with dynamic treatment regimes. Drs. Colin B. Begg and Giovanni Parmigiani will serve as members of the 
committee. Dr. Begg is Attending Biostatistician and Chair of the Department of Epidemiology and Biostatistics 
at the Memorial Sloan-Kettering Cancer Center in New York and is one of the nation's leading biostatistical 
methodologists and practitioners in cancer clinical trials. Dr Parmigiani is Professor of Biostatistics at Johns 
Hopkins University and is one of the nation's leading biostatistical methodologists and practitioners in cancer 
genomics. This distinguished group will provide feedback to the steering committee on the progress and goals 
of the program project on at teast an annual basis during the annual retreats. 

9 INCLUSION ENROLLMENT REPORT 

N/A 

10 BIBLIOGRAPHY AND REFERENCES CITED 

Chen, M.-H., Ibrahim, J. G., and Shao, Q.-M. (2006). Posterior propriety and computation for the Cox regres
sion model with applications to missing covariates. Biometrika 93, 791-807. 
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Fine, J. P., and Tsiatis, A. A. (2000). Testing for differences in survival with delayed ascertainment. Biometrics 
56,145-153. 

Huang, X., Stefanski, L. A., and Davidian, M. (2009). Latent-model robustness in joint models for a primary 
endpoint and a longitudinal process. Biometrics, in press. NIHMSID:NIHMS89685. 

Jung, S. H. and George, S. L. (2009). Between-arm comparisons in randomized phase II trials. Journal of 
Biopharmaceutical Statistics, in press. 

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. NewYork: Springer 

Lee, B. L., Kosorok, M. R., and Fine, J. P. (2005). The profile sampler Journal of the American Statistical 
Association 100, 960-969. 

Lin, D. Y, and Zeng, D. (2006). Likelihood-based inference on haplotype effects in genetic association studies 
(with discussion). Journalof the American Statistical Association 101, 89-118. 

Ma, S., Kosorok, M. R., Fine J. R (2006). Additive risk models for survival data with high dimensional covari
ates. Biometrics 62, 202-210. 

Qu, R, Chu, H., Ibrahim, J. G., Peacock, J., Shen, X. J., Tepper, J., Sandler, R. S., and Keku, T O. (2008). 
Statistical strategies to improve the efficiency of molecular studies of colorectal cancer prognosis. British 
Journal of Cancer 99, 2001-2005. 

Song, R., Kosorok, M. R., and Cai, J. (2008). Robust covariate-adjusted log-rank statistics and corresponding 
sample size formula for recurrent events data. Biometrics 64, 741-750. 

Tsiatis, A. A. (2006). Semiparametric Theory and Missing Data. New York: Springer. 

Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal and time-to-event data: an overview. 
Statistica Sinica 14, 809-834. 

Wang, X., Pang, H., and Schwartz, T. A. (2009). Building and Validating High Throughput Lung Cancer 
Biomarkers. Chance: under revision. 

Wang, X., and Zhou, H. (2006). A semiparametric empirical likelihood method for biased sampling schemes 
in epidemiologic studies with auxiliary covariates. Biometrics 62,1149-1160. 

Zeng, D. and Cai, J. (2005). Asymptotic results for maximum likelihood estimates in joint analysis of repeated 
measurements and survival time. The Annals of Statistics 33,2132-2163. 

Zhang, H. H., Liu, Y, Wu, Y, and Zhu, J. (2008). Variable selection for multicategory SVM via sup-norm 
regularization. Electronic Journal of Statistics 2,149-167. 

11 PROTECTION OF HUMAN SUBJECTS 

Core A generally will not be involved in the analysis or review of data. All data for the program project comes 
through Core B (Data Compilations Core). In the event an issue arises where it is necessary for Core A to 
discuss or review data from Core B, the investigators will have access only to the de-identified data. Thus, the 
investigators on Core A will have no access to any identifiable patient information. 

12 INCLUSION OF WOMEN AND MINORITIES 

N/A 
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13 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

14 INCLUSION OF CHILDREN 

N/A 

15 VERTEBRATE ANIMALS 

N/A 

16 SELECT AGENT RESEARCH 

N/A 

17 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

18 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

It the present application is funded, the University of North Carolina at Chapel Hill will execute subcontracts 
with the consortium institutions (Duke University and North Carolina State University). These inter-institutional 
agreements will be written consistent with the NIH consortium agreement policy. 

19 LETTERS OF SUPPORT 

• H. Shelton Earp, MD, Director of the UNC-CH Lineberger Comprehensive Cancer Center, Providing insti
tutional support. 

• Barbara K. Rimer, DrPH, Dean of the UNC-CH Gillings School of Global Public Health, Providing monetary 
and institutional support. 

• Tony G. Waldrop, PhD, UNC-CH Vice Chancellor for Research and Economic Development, Providing 
monetary and institutional support. 

• Raymond E. Fornes, PhD, Associate Dean for Research of the NCSU College of Physical and Mathemat
ical Sciences, Providing monetary and institutional support. 

• Terri L. Lomax, PhD, NCSU Vide Chancellor for Research and Graduate Studies, Providing monetary and 
institutional support. 

• Steven A. Lommel, PhD, Associate Dean for Research of the NCSU College of Agriculture and Life Sci
ences, Providing monetary and institutional support. 

• Sastry G. Pantula, PhD, Chair of the NCSU Department of Statistics, Providing institutional support. 
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Nancy C. Andrews, MD, PhD, Dean of the Duke University School of Medicine, Providing monetary and 
institutional support. 

Elizabeth R. DeLong, PhD, Chair of the Duke Department of Biostatistics and Bioinformatics, Providing 
monetary and institutional support. 

H. Kim Lyeriy, MD, Director ofthe Duke Comprehensive Cancer Center, Providing institutional support. 

Richard L. Schilsky, MD, Chair of Cancer and Leukemia Group B, Providing institutional support. 

Alan R Karr, PhD, Director of the National Institute of Statistical Sciences, Providing meeting space and 
facilities. 

Colin B. Begg, PhD, Memorial Sloan-Kettering Cancer Center, Member of Program Project External Advi
sory Committee. 

Susan A. Murphy, PhD, University of Michigan, Chair of Program Project External Advisory Committee. 

Giovanni Parmigiani, PhD, Johns Hopkins University, Member of Program Project External Advisory Com
mittee. 
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UNC 
LINEBERGER COMPHEHENSIVE 
CANCBR CENTER 
N.C. CANCHR HOSPITAL 

December 19, 2008 

Michael R. Kosorok, PhD 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
University of North Carolina at Chapel Hill 
Chapel Hill, NC 27599-7420 

Re: PAR-09-025 - National Cancer Institute Program Project (PO 1) Applications 

Dear Michael: 

The strong partnership between UNC Lineberger Cancer Center and the Department of Biostatistics is 
decades old but the events ofthe last five years have taken it to another level. Recruitment has assembled 
an extraordinary group of statistical methodologic researchers, including Joe Ibrahim, Danyu Lin, Fred 
Wright, and Jason Fine, who contribute substantially to our cancer research. Under your leadership, an 
impressive era of scientific productivity is underway that will measurably improve clinical trials 
methodology. 

As Director of the UNC Lineberger Comprehensive Cancer Center, I am writing to express my great 
enthusiasm and support for your application for an NCI Program Project (POl) entitled "Statistical 
Methods for Cancer Clinical Trials" at the University of North Carolina at Chapel Hill. This is certainly 
an important initiative for the UNC Lineberger, the Gillings School of Global Public Health, and for the 
University of North Carolina at Chapel Hill. With all ofthe recent advances in biomedicine, there 
remains a serious bottleneck between laboratory discoveries and their utilization in clinical practice. New 
clinical trials methodology is needed to keep abreast of and take advantage of molecular genetic 
discovery. I believe that the innovative program you have outlined will make important breakthroughs in 
solving this fundamental problem and have broad applicability for breast, colon and lung cancer as well as 
for other cancers and other diseases. I am very supportive of you and your research group utilizing 
existing clinical trial data sets housed in the Lineberger Comprehensive Cancer Center. 

An important aspect of this program project is the collaboration with North Carolina State University and 
Duke University. This brings together a diverse group of investigators not only in biostatistics but also in 
medical oncology, health policy, pharmacogenomics, and computer science. 

In summary, your program project application has my highest level of support and commitment. I will do 
all that I can to help you and your colleagues achieve the goals of this forward-looking POl and, in the 
process, to help UNC become a leader in the field of cancer clinical trials. 

Sincerely yours. 

fM'̂ .̂ . 
H. Shelton Earp III, MD 
Director and Lineberger Professor 
Professor of Medicine and Pharmacology 
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December 20, 2008 

F 919.966.7A78 

britiier(S)utic.L'du 

Michael R. Kosorok, PhD 
Chair and Professor, Biostatistics 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
UNC Gillings School of Global Public Health 
The University of North Carolina at Chapel Hill 
Chapel Hill, North Carolina 27599-7420 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Michael: 

I write to express enthusiastic support for your National Cancer Institute Program Project 
(POl) application entitled "Statistical Methods for Cancer Clinical Trials" at the University of 
North Carolina at Chapel Hill. This is an important initiative for our School, the Lineberger 
Comprehensive Cancer Center and the University of North Carolina at Chapel Hill. 

This is an interdisciplinary effort that brings together researchers from biostatistics, health 
policy, pharmacogenomics, medicine and computer science. The innovative program you 
have outlined in this proposal will significantly increase translation from laboratory 
discoveries to clinical practice which could lead to important improvements in public health -
particularly in cancer research. I am especially enthusiastic about the cross-campus 
collaborations between Duke University, UNC and NC State University. The results of all of 
us working together could lead to great advances that ultimately can benefit patients. 

We will contribute $8,000.00 per year toward this grant for each of the five years of the 
award. I wish we could do more, but we face additional rounds of budget cuts. 

The program project "Statistical Methods in Cancer Clinical Trials" has my highest level of 
support and commitment. I pledge to do what I can to help achieve the goals you have set. 

Warm regards, 

0(U^kA./wi Ai#MAy' 

Barbara K. Rimer 

BKJl/smb 
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F 919-962-1476 

December 19,2008 

Michael R. Kosorok, PhD 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
University of North Carolina at Chapel Hill 
Chapel Hill, NC 27599-7420 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Michael: 

As Vice Chancellor for Research and Economic Development, I am writing to express very 
enthusiastic institutional support for your application for a National Cancer Institute Program Project 
(POl) entitled "Statistical Methods for Cancer Clinical Trials" at the University of North Carolina at 
Chapel Hill. This is certainly an important initiative for the Gillings School of Global Public Health, 
the Lineberger Comprehensive Cancer Center, and for the University of North Carolina at Chapel Hill. 
As you know, my own research background is in physiology, so I am attuned to the exciting 
developments in basic biomedical research knowledge and the enormous potential that exists to 
translate this knowledge into improvements in public health. Even with all of the recent advances in 
biomedicine, there remains a serious bottleneck between laboratory discoveries and their utilization in 
clinical practice. I believe that the innovative program you have outlined in this proposal will 
significantly relieve this bottleneck and lead to important improvements in pubUc health, especially in 
cancer. I am also pleased that your collaborators include a diverse range of disciplines and departments 
across the university, not only in the Gillings School of Global Public Health but also researchers from 
the School of Medicine, the School of Pharmacy, and the College of Arts and Sciences. 

Another important facet of this project is the collaboration with North Carolina State University and 
Duke University that will be both leveraged and facilitated by your program. We are very supportive 
of inter-university cooperation of this kind and recognize that this combination of institutions offers a 
uniquely powerful resource for making advances in clinical trial methods research that will have a high 
public health impact. 

Because of the importance and value of this project for the university, we will contribute $20,000.00 
per year towards this grant for each ofthe five years ofthe award. 

In summary, the program project "Statistical Methods in Cancer Clinical Trials" has my highest level 
of support and commitment. I pledge to do whatever I can to see that we achieve the goals you have 
laid out and, in the process, become a leader in the field of cancer clinical ttials. 

Sincerely 

fony G/Waldrop, PhD 
Vice Chancellor for Resefe and Economic Development 
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NC STATE UNIVERSITY 
i„„ o onnn Offlca of the Associate 
January 9, 2009 Dean for Research 

Campus Box 8209/301) Cox Hall 
Ralaigh, NC 27595-8209 
919.S15.7865{phonel 
919.515.7668 IfaxI 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Caricer Clinical Trials" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics 
North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applications 

Dear Marie: 

I am writing to offer my enthusiastic endorsement and commitment to your application for a 
National Cancer Institute Program Project (POl) Award, entitled "Statistical Methods for 
Cancer Clinical Trials," which will be a joint venture between North Carolina State 
University, Duke University, and the University of North Carolina at Chapel Hill. This 
important project is consistent with the College's emphasis on health-related research and in 
particular with the mission ofthe Center for Quantitative Sciences in Biomedicine (CQSB), 
which our College strongly supports and which will be the administrative home for the 
project. 

I am well aware ofthe critical role the quantitative sciences and statistical science in 
particular play in the development of new methodology for the conception, design, and 
analysis of clinical trials, and I am excited at the prospect that the innovative program of 
research proposed in this project will lead to new advances that can speed discoveries in the 
laboratory to clinical practice in the treatment of cancer. I am also pleased that the project 
involves a significant collaboration leveraging the complementary expertise at our institution, 
Duke University, and the University of North Carolina at Chapel Hill, which together 
comprise an unparalleled resource for this sort of effort. 

The College is pleased to contribute $17,500 per year for each ofthe five years ofthe award 
to the CQSB in support ofthe activities of this project. The project has my highest level of 
support. I look forward to hearing of the progress you make on your ambitious research 
program, and I and the College are happy to assist you I any way we can to ensure that in the 
goals ofthe project are achieved. 

Sincerely, 

P n ^ 
Raymond E. Fornes, PhD 
Associate Dean for Research, College of Physical and Mathematical Sciences 
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NC STATE UNIVERSIIY 

Offlca of Research 
and Graduate Stadias 

Office of the Vice Chajicellof 
Campus Box 7003 
103 Holladay Hall 
Raleigh. NC 27695-7003 

919.515.2117 
919515.7521 llaxl 

January 12, 2009 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics 
North Carolina State University 

Raleigh, NC 27695 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Marie: 
As Vice Chancellor for Research and Graduate SUidies at North Carolina State University, 
I am pleased to offer my enthusiastic support for your inter-university grant application for 
a National Cancer Institute Program Project (POl), entitled "Statistical Methods for Cancer 
Clinical Trials." This exciting initiative, which will translate advances in basic biomedical 
science to clinical practice and develop new ways to conceive and evaluate treatment 
strategies for cancer, is consistent with the University's emphasis on health-related 
research. It is also an ideal endeavor in which to exploit the strengths ofthe Center for 
Quantitative Sciences in Biomedicine (CQSB), which the University strongly supports and 
which will serve as the administrative home for the project. 

I am especially pleased that this project offers yet another opportunity for trans-
institutional collaboration with Duke and the University of North Carolina at Chapel Hill. 
The resources at our three institutions for carrying out such a transformative project are 
unique and abundant, and integrating them ih the way that you propose is certain to result 
in advances in clinical trial methods research that will have high visibility and impact. 

To recognize the value of this project to the University's research mission and to assist you 
in achieving your ambitious research objectives, we will contribute $23,000 per year in 
each ofthe five years ofthe award to the CQSB in support ofthe activities of this project. 
I look forward to assisting you in any way I can to ensure the success ofthe project. 

Sincerely, 

It At, i-- '-o<M~>-yi_ 

Terri L. Lomax, PhD 
Vice Chancellor for Research and Graduate Studies 

TLL/mh 
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NC STATE UNIVERSITV 

Collape of Agriculture and l i fe Sciences 
North Carolina Agrlculturel 
Research Service 

Campus Sox 7643 
Raleigh, NC 27695-7543 

919.515.2717 
919.515.7745 (fax) 
ag_re5earch@ncsj.edu 

January 9,2009 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics 
North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applications 

Dear Marie: 

I am pleased to offer my unqualified support of your grant application for a 
National Cancer Institute Program Project (POl) entitled "Statistical Methods for 
Cancer Clinical Trials." This exciting project fits well with our College's focus on 
the life sciences and health as well as with that ofthe Center for Quantitative 
Sciences in Biomedicine (CQSB), to which our College is strongly committed. I 
am especially enthusiastic about the opportunity this project represents for b"ans-
institutional collaboration, which will draw on the complementary strengths of our 
institution, Duke, and the University of North Carolina at Chapel Hill, and I am 
pleased that the CQSB is a partner in this important effort. 

In support of this transformative project, the College is pleased to commit $17,500 
per year for each of the five years of the project to the CQSB in support of the 
activities of this project. The College and I pledge to assist you in any way 
possible to advance the goals of the project and contribute new innovations to 
cancer clinical trials methodology. 

Sincerely, 

Steven A. Loiftmel, PhD 
Associate Dean for Research, College of Agriculture and Life Sciences 

Cc: Ray Fornes 
Mike Cross 
Joy Martin 
Gail Hill 
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January 14,2009 

Marie Davidian, PhD 
Program Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trial" Program Project 
Center for Quantitative Sciences in Biomedicine and 
Department of Statistics, North Carolina State University 
Raleigh, NC 27695 

Re: PAR-09-025, National Cancer Institute Program Project (POl) Applications 

Dear Marie: 

Sastry 6. Pantula 
Head. Department of Statistics 
Director, institute of Statistics 
Campjs Box 8203 / Patterson Hall 
Raleigh. NC 27695-8203 

College of Ftiysical and Mathematical Sciences 
College of Agriculture and Life Sciences 

919.515.1949 
919.515.7591 (fax) 
pantula@stat.ncsu.edu 
www.stat.ncsu.edu 

1 am delighted to lend my enthusiastic support to your application for a National Cancer Institute 
Program Project (POl) Award, entitled "Statistical Methods for Cancer Clinical Trials," which will be a 
joint venture between North Carolina State University, Duke University, and the University of North 
Carolina at Chapel Hill and which will involve a number of faculty from the Department of Statistics. 
This project fits well with the Department's many activities related to the health sciences, including our 
popular graduate and research programs in biostatistics, bioinformatics, and biomathematics; our 
established relationship with Duke Clinical Research Institute through our joint training and graduate 
internship programs; and our recently minted relationship with the Department of Biostatistics at the 
University of North Carolina at Chapel Hill (UNC-CH) through your membership in the Biostatistics 
Core ofthe Translational and Clinical Sciences (TraCS) Center. I am especially excited about the 
opportunity the project represents for expanded and deeper collaboration among faculty in our 
Department, the Department of Biostatistics and Bioinformatics at Duke, and the Department of 
Biostatistics at UNC-CH. The project will be an important resource for all of our faculty, students, and 
postdocs, who will be exposed to the cutting-edge research on methodology for cancer clinical trials that 
you propose. 

I am pleased that the both Colleges of Physical and Mathematical Sciences and Agriculture and Life 
Sciences, in which our Department jointly resides, have committed generous support to the project. In 
addition to the funds they have provided, I am pleased to commit space in the new Mathematics and 
Statistics Building, to which the Department will move in May 2009, to house the equipment that will 
host the project software repository as well as office and meeting space for project activities as needed. 

The Department is eager to contribute to the success of this high-profile and important project in any 
way we can. Please do not hesitate to contact me if you need further resources. Also, as the President-
Elect ofthe American Statistical Association, I am thrilled to see this proposal and its benefits to our 
profession and for human health. 

Sincerely, 

Sastry G. Pantula 
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Duke University 
, . r Rii _!• • ' Nancy C. Andrews. M.D., Ph.D. 

School ot Medicine Oean, Duke university school of Medicine 
Vice Chancellor for Academic Affairs 

Stephen L George, Ph.D. 
Co-Direcior/Co-lM 
"Statistical Methods for Cancer Clinical Trials" Prograni Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Rc: PAR-09-025 - National Cancer InsiiuKc Program Project (PO I) Applications 

Dear Steve: 

As Dean ofthe Duke University School of Medicine und Vice Chancellor of Academic Affairs, 1 
am writinii to express my strong support for the Duke piirticipation in the multi-institutional 
Prograni Project (POl) application lo the National Cancer Institute entitled "Statistical Methods 
for Cancer Clinical Trials". The overall scientific goal of this project, to develop highly 
innovative methods for cancer clinicnl trials, is especially important in speeding the introduction 
of etTcctivc new therapies into practice, and is in line with the strategic research plans for the 
School of Medicine. The involvemenl oftwo other major universities in our region, the 
Universiiy of North Carolina and North Carolina State University, provides an outstanding 
opportunity for collaborative research. 

Because of the importance and value ol" this program. The School of Medicine will contribute 
S 15,000 per year towards this granl for each of the live years ofthe award. 

In summary, the program project "Slalislical Melhotis in Cancer Clinical Trials" has my 
enthusiuslic support and conimilnient. I pledge lo do whatever I can lo see that we achieve the 
goals you have laid oul. 

Sincerely, 

Nancy Andrews, M.D.. Ph.D. 
Dean. School of Medicine 
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DUKE UNIVERSITY MEDICAL CENTER 
Departmenl of Biostatistics and Bioinformatics 

Tclcplioiic; (919)684-9447 
Facsimile (919)681-7918 

January 13, 2009 

Stephen L George, Ph.D. 
Co-Director/Co-PI 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Rc: PAR-()9-()25 - National Cancer Institute Program Project (POI) Applications 

Dear Steve: 

As chair ofthe Department of Biostatistics and Bioinformatics, I am writing lo express 
my enthusiastic support for the POl application entitled "Statistical Methods for Cancer 
Clinical Trials", in which Duke will participate jointly with the Universiiy of North 
Carolina - Chapel Hill and North Carolina State University. The overall goal ofthe 
research, to transform the current paradigm for drug discovery and translation lo clinic, 
resulting in improved survival and quality of life for cancer patients, is extremely 
important in itself And the opportunity for our faculty to engage in high level 
collaborative research in statistical methodology is consistent with the strategic plans of 
our department. 

Because ofthe importance ofthe research, 1 am willing to commit $15,000 per year of 
the grant for use in offsetting the costs of research. In addition, I will help in whatever 
other ways are needed to help this program succeed. 

Elizabeth R. DeLong, Ph.D. 
Professor and Chair 
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m DukeMed icine Duke Comprehensive Cancer Center 
A National Cancer Instituto-dcsigiwied Conipiehcnsivc Cancer Center 

H. K im Lyeriy, M D 

George Barth Geller Professor of Research in Cancer 
Director 

Duke Comprehensive Cancer Center 

January 13, 2009 

Stephen L George, Ph.D. 
Co-Director/Co-Pl 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Re: PAR-09-025 - National Cancer Institute Program Project (PO 1) Applications 

Dear Steve: 

As Director ofthe Duke Comprehensive Cancer Center, 1 am writing to express my strong 
support for your Program Projeel (POl)-application entitled "Statistical Methods for Cancer 
Clinical Trials". The overall scientific goal of this project, to develop highly innovative methods 
for cancer clinical trials, is highly relevant to the strategic plans ofthe DCCC. Efficient 
statistical methods are cvtremely important in accelerating the development of anti-cancer 
therapy and in translating results into clinical practice. Developments from your proposed 
research program can be quickly implemented in cancer research projects here because of your 
role as the director ofthe biostatistics unit in the DCCC. 

I am enthusiastic about this program and I pledge to help in whatever I can to see that you 
achieve the goals you have laid out. 

Sincerely, 

J^a u^ 
H. Kim Lyerly< 
George Barth G/eller'Professor of Research in Cancer 
Director, Duke Comprehensive Cancer Center 

80X DUMC 2714, Durham, NC 27710 Ttt 919.684.5613 
ICC 2424 Erwin Road s.v. 919.634,5653 

Hock Plaza, Suite 601 

Durham, NC 27705 
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Cancer and Leukemia Group B 
CENTRAL OFFICE OF THE CHAIRMAN 

230 W. Monroe Street, Suite 2050 
Chicago, IL£O«OM703 

TEL 17731702-9171 
FAX (312) 345^17 

www.calgbx>rg 

RlchanlL Schilsky, M.D. 

Tomorrow's Cancer chairman 
Treatments Today 

CALGB 

January 14,2009 

Stephen L George, Ph.D. 
Co-Director/Co-PI 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Re: PAR-09-025 -National Cancer Institute Program Project (POl) Applications 

Dear Steve: 

As chair of the Cancer and Leukemia Group B (CALGB), I am writing lo express my 
enthusiastic support for your POl application entitied "Statistical Methods for Cancer Clinical 
Trials". Indeed, the CALGB will be a major partner in this research through the participation of 
several clinical co-investigators participating from Duke and UNC, through the involvement of 
statisticians from the CALGB Statistical Center, which you direct as Group Statistician, and 
through the sharing of data from selected CALGB stiidies to illustrate the methods that are 
developed. The overall goal ofthe research, to transform the cunent paradigm for drug discovery 
and translation to practice, resulting in improved survival and quality of life for cancer patients, 
is a shared goal ofthe CALGB. For all of these reasons, it is anticipated that the results from this 
program can and will be implemented directly and immediately into the design and analysis of 
CALGB studies, to the benefit of all. 

In summary, I enthusiastically suppori this program and look forward to our partnership in 
achieving its aims. 

Sincerely, 

Richard L. Schilsky, M.D. 
Chair, Cancer and Leukemia Group B 
Professor of Medicine 
University of Chicago 
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NISS 
National Institute of Statistical Sciences 
PO Box 14006, Research Triangle Park, NC 27709-4006 
Tel: 919.685.9300 FAX: 919.685.9310 
www.nlss.org 

Alan F, Karr, Director 
karr@nlss.org 

January 5,2009 

Dr. Michael Kosorok 
Dr. Marie Davidian 
Dr. Stephen George 
Department of Biostatistics 
Gillings School of Global Public Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg, CB 7420 
Chapel Hill, North Carolina 27599-7420 

Dear Michael, Marie, and Steve, 

I am delighted to hear that you and your colleagues at Duke University, North Carolina State University, 
and the University of North Carolina at Chapel Hill are collaborating on a application for a joint Program 
Project grant from the National Cancer Institute on "Statistical Methods for Cancer Clinical Trials." 

The Research Triangle is a natural setting for trans-institutional research projects such as the one you 
are proposing, and, as you know, the National Institute of Statistical Sciences (NISS) and the Statistical and 
Applied Mathematical Sciences Institute (SAMSI) have a long history of catalyzing and facilitating such 
interactions. NISS would be pleased to support this important initiative by making our centrally-located 
facilities available to you and other project personnel for meetings during the project period, as we have 
already done during the months leading up to the submission of your application. These facilities include 
"traditional" conference rooms, a fully-equipped video conference room and a lecture room and conference 
that support web streaming of events. 

I wish you success with this proposal, and NISS looks forward to hosting activities associated with the 
project. 

Sincerely, 

Sincerely, 

U Q ^ 
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Colin B. Begg, PhD 
Eugene W. Kettering Chair 

Department of Epidemiology & Biostatistics 

December 23, 2008 

Michael R. Kosorok, PhD 
Marie Davidian, PhD 
Stephen L. George, PhD 
Gillings School of Global Public Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg Hall 
CB 7420 
Chapel Hill, NC 27599-7420 

Re: Statistical Methods in Cancer Clinical Trials 

Dear Michael, Marie and Steve, 

I am writing to confirm ray willingness to serve on the External Advisory Committee for your 
joint POl Program Project application entitled "Statistical Methods in Cancer Clinical Trials", 
Although the key ingredients of clinical trial methodology have been established for many 
decades, the new drug development paradigm of trying to create new agents that are 
specifically targeted to the characteristics of relatively small subgroups of patients, with the 
ultimate goal of "personalized medicine", promises to change the landscape for designing and 
analyzing clinical trials, At this juncture we certainly need fresh, innovative approaches to 
maximize the efficiency ofthe drug development and testing stiategies in the context of this 
paradigm, Statistical methods must play a central role in tiiis effort. The group of investigators 
you have put together to tackle these difficult issues is impressive, drawing on the 
considerable strengths of your three institutions. Your team encompasses several prominent 
experts in both statistical theory and the application of clinical trials, and so you are in a great 
position to enhance our knowledge in this important area, I am very happy to serve on your 
External Advisory Committee, and generally to help in any way I can. 

With best wishes, 

[ ^ 
Colin Begg, PhD 
Attending Biostatistician 
Chair, Department of Epidemiology and Biostatistics 
Memorial Sloan-Kettering Cancer Center 

Memorial Sloan-Kettering Cancer Center 
ioy East djrd Street, ird Fbor, New York, New YorktooSs 

Telephone646,7$S-BioS 'FAX646.ji$.0009 
E-mail: beggc@mskcc.org 

NCI-designated Comprehensive Cancer Center 
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The University of Michigan 
Department of Statistics 

12/17/2008 

Michael R. Kosorok, PhD, Marie Davidian, PhD, Stephen L. George, PhD 
Gillings School of Global Public Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg Hall 
CB 7420 
Chapel Hill, NC 27599-7420 

Re: Statistical Methods in Cancer Clinical Trials 

Dear Michael, Marie and Steve, 

I am very happy to serve as ctiair of the External Advisory Committee for your Joint 
Program Project "Statistical Methods In Cancer Clinical Trials" that you are submitting to 
ttie National Cancer Institute. This is an exiting project that will bring together the 
combined strengths of Duke University, North Carolina State University and the 
University of North Carolina at Chapel Hill. 

I am keenly aware of the importance of clinical trials in the discovery of new treatments, 
and, as you know, have worked for many years in my own research on creating new 
clinical trial methods, especially in the areas of dynamic treatment regimes and 
reinforcement learning. I believe that the application of these new areas to cancer, as 
well as many of the other novel approaches proposed in your application, will likely have 
a large impact on public health. 

As a member of the External Advisory Committee, I am looking fonward to following your 
research progress and providing feedback on at least an annual basis. I wish you 
success In your application. 

Sincerely, 

H. E. Robbins Professor of Statistics 
Research Professor, Institute for Social Research 
Professor of Psychiatry 

Address Telephone Fax email/URL 
Department of Statistics 734-647-3684 734-763-4676 samurphv@umlch.edu 
444D West Hall http://www.stat.lsa.umich.edu/~samufphv 
The University of Michigan 
AnnArbor, Ml 48109-1107 
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P^ THE SIDNEY HMMEL 
i m GGMPREHENSIVE CANCER CENTER-

? - H A T JOHNS HOPKINS 

CLINICAL TRIALS AND BIOMETRY 

Oncology Biostatistics 
550 North Broadway, Suite 1103 
Baltimore, Maryland 21205-2013 
Office (410) 955-4884 Fax (410) 955-0859 
http://www.cancerbiostats.onc.jhml.edu 

Proaram Leader 
Steven Goodman. MD, PhD 
Professor, Acting Director 
(410)955-4596 

Faculty 
Giovanni Parmigiani, PhD 
Professor, Director Bioinformatics 
Care 
(410)614-3426 

Michael Ochs, PhD 
Associate Professor 
(410)955-8830 

Peng Huang, PhD 
Visiting Associate Professor 
(410)502-0944 

Jeanne KowalsKi, PtiD 
Assistant Professor 
(410)955-4286 

Leslie Cope, PhD 
Assistant Professor 
(410) 502-0945 

Sarah Wheelan, MD, PhD 
Assistant Professor 
(410)955-8841 

Xiaobu Ye, MD, MS 
Research Associate 
(410)614-6261 

Senior Blostatlstictens 
Marianna Zahurak, MS 
(410)955-4219 

Blostaflstlclans 
Amanda Blackford, ScM 
(410)614-0361 

Hua-Ling Tsai, MS 
(410) 502-6529 

Zhe Zhang, MS 
(410)502-0946 

Administrative Staff 
Helen Cromwell 
Administrative Manager 
(410)955-4885 

Alisa Moore 
Administrative Coordinator 
(410)614-3432 

December 18, 2008 

Michael R. Kosorok, PhD 
Marie Davidian, PhD 
Stephen L, George, PhD 
Gillings School of Global Public Health 
University of North Carolina at Chapel Hill 
3101 McGavran-Greenberg Hall 
CB 7420 
Chapel Hill, NC 27599-7420 

Re: Statistical Methods in Cancer Clinical Trials 

Dear Michael, Marie and Steve, 

I am pleased to serve as a member of the External Advisory Committee for 
your joint Program Project "Statistical Methods in Cancer Clinical Trials" 
that you are submitting to the National Cancer Institute. 

Many of your research aims involve genomics and Bayesian methods, areas 
of research in which I have been very active. Thus I am keenly aware ofthe 
potential these methods have in improving design and analysis of cancer 
clinical trials. I believe your proposed research in cancer clinical trials is 
fundamental and will likely have a large public health impact. This is an 
exciting project that will bring together the combined strengths of Duke 
University, North Carolina State University and the University of North 
Carolina at Chapel Hill. 
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December 19,2008 
Page 2 

As a member ofthe External Advisory Committee, I am looking forward to following 
your research progress and providing feedback on at least an annual basis. I wish you 
success on your application. 

Best wishes. 

Giovanni Parmiaiani, PhD 
Professor of Bkfstatisties 
Johns Hopkins University 
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20 RESOURCE SHARING PLAN(S) 

The services ot the Core A will be utilized by all of the projects in this program. Our estimate of the percentage 
utilization of the core by the five project are as follows: 

Project 1 
2 • 

3 • 
4 
5 • 

- 20% 
• 20% 
- 20% 
- 20% 
- 20% 

The following is the external component of our resource sharing plan: 

(a) Data Sharing Plan: The data-related resources generated by the program project consist of new statisti
cal methodology, software packages for implementation of the methodology, and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy. Summaries of the methodology, the software and tutorials will 
be shared through a public web site managed by Core A, while Gore C (Computational Resource and 
Dissemination Core) will prepare the software and tutorials for dissemination. Core C will only use de-
identified data prepared by Core B (Data Compilation Core). Gore A will not be involved in sharing of the 
data prepared in Core B; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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CORE B 

DATA COMPILATION CORE 

Core Director: Stephen L. George, PhD 
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Program Director/Principal Investigator (Last, First, Middle): KoSOrok, M ichae l R. , e t a l . 

PROJECT SUMMARY (See instructions): 

The Data Compilation Core (Core B) will develop and maintain a central resource of analysis-ready, 
annotated and documented data sets from clinical trials and related studies to be utilized by the investigators 
of the program. These data sets will be used to evaluate the methods developed in this program as well as 
to demonstrate the software developed in the Computational Resource Core (Core C). The primary source of 
the data will be the clinical trials and related studies of the Cancer and Leukemia Group B (CALGB), one of 
the major NCI-sponsored cancer cooperative groups. In addition, data from cancer research studies 
conducted at two large NCI-designated Comprehensive Cancer Centers, the Lineberger Comprehensive 
Cancer Center at UNC and the Duke Comprehensive Cancer Center, will also be utilized. This is a major 
advantage for the program in that the data sets provided can be exceptionally well annotated and 
documented, with the direct involvement of clinical and statistical scientists who were involved in the primary 
design and analysis of the studies. 

RELEVANCE (See instructions): 

A major disadvantage of using public data sets is that the investigator is often unable to understand the 
clinical and molecular data as the data are provided without appropriate documentation. Indeed, it is not 
possible to carry out a thorough statistical analysis of data from clinical trials without taking into account and 
understanding the design of the study, the specifics of the data collection process, the history of the study 
and the medical issues. This core will address these issues by providing analysis-ready data sets with 
extensive annotation and documentation. 

PROJECT/PERFORMANCE SITE(S) (if additional space is needed, use Project/Performance Site Format Page) 

Project/Performance Site Primary Location 

Organizational Name: The University of North Carolina at Chapel Hill 

DUNS: 608195277 

street 1: Office of SpoHsofed Research, CB #1350 

City: Chapel Hill 

Province: 

County: 

street 2: 104 Alrport Dr., Suite 2200 

Orange 

Country: U S A 

state: NC 

Zip/Postal Code: 2 7 5 9 9 - 1 3 5 0 

Project/Performance Site Congressional Districts: N C 0 4 

Additional Project/Performance Site Location 

Organizational Name: North Carolina State University 

DUNS: 042092122 

street 1: Research Admin/ SPARCS 

City: Raleigh 

Province: 

County: 

street2: 2701 Sullivan Dr.Admin Serv III, Box 7514 

Wake 

Country: U S A 

State: NC 

Zip/Postal Code: 2 7 6 9 5 - 7 5 1 4 

Project/Performance Site Congressional Districts: N C - 0 2 
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Use only if additional space is needed to list additional project/performance sites. 
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METHODS AND SERVICES TO BE PROVIDED 

1 . SPECIFIC AIMS 

The Data Compilation Core (Core B) will develop and maintain a central resource of analysis-ready, well anno
tated, and documented data sets from clinical trials and related studies to be utilized by the investigators of the 
program. Its mission will be to address the following specific aims in support of the program projects. 

• Identification and acquisition of data sets. The primary data sources for this program will be the 
studies conducted by the Cancer and Leukemia Group B (CALGB) supplemented by studies conducted 
at the comprehensive cancer centers at Duke and UNC. As the CALGB Statistical Center is located at 
Duke (Dr. George is the Group Statistician) and the heads of the biostatistics units of the two cancer 
centers (Drs. George and Ibrahim) are participating in this program, we are especially well situated to 
identify appropriate data sets and to obtain them for the program researchers. 

• De-ldentificatlon and anonymlzing the data sets. Data from clinical trials are subject to patient con
fidentiality regulations. Furthermore, because the data we will use are owned by external groups, it is 
necessary to get permission for use ofthe data for the purpose of research by project investigators. The 
owner of the data may also restrict the permission to a certain set of analyses. The core will follow all 
federal and local regulations and obtain the necessary clearances before processing any data. The core 
will also work on de-identifying and, when needed, anonymizing the data. For each data set, the core will 
develop a detailed data access plan which will outline the access levels for project investigators and will 
outline the specific analyses for which a data set may be used. 

• Annotation and documentation of data sets. The core will carefully annotate and document the data 
sets so that project investigators can conduct more appropriate analyses and draw mdre informed conclu
sions. The core will also facilitate queries regarding the data sets on behalf of the project investigators. 

• Formatting of data sets. One of the challenging aspects of analyzing data using statistical software is 
that the data are often not formatted appropriately The core will provide data sets that are analysis-ready 
in the sense that they are merged and formatted so that they could be easily imported into statistical 
software. 

• Managing Information Technology (IT) resources. The data sets have to be managed and made 
accessible using appropriate information technology systems. The core will acquire and maintain the 
appropriate information technology infrastructure to maintain and distribute the data set in an efficient, 
robust and secure manner. 

2. BACKGROUND AND SIGNIFICANCE 

This broad overall objective of this program is to develop and implement new methodology for the design and 
analysis of cancer clinical trials. In order to evaluate and illustrate these new methods, it is important to have 
access to analysis-ready, well annotated and documented data from actual clinical trials. The Data Compilation 
Core, henceforth referenced as Core B for brevity will provide such data to the investigators in this program. 

The Core B leadership is comprised of leaders in the field of clinical biostatistics and bioinformatics. Core 
B will be under the directorship of Dr Stephen George. In addition to directing Core B and serving as a PD/PI 
for this program. Dr. George is the Group Statistician for the CALGB and directs the biostatistics units in the 
Duke Comprehensive Cancer Center (DCCC) and the Duke Translational Medicine Institute (DTMI). Because 
of these roles, he is well positioned to carry out the aims of this core in an efficient and effective manner 

In the day-to-day activities of the core, Dr. George will be assisted by the core co-Director Dr. Kouros 
Owzar. Dr. Owzar is an Assistant Professor in the Department of Biostatistics and Bioinformatics at the Duke 
University Medical Center. His research interests are in the areas of pharmacogenomics, survival analysis, 
statistical computing and, statistical dependence, specifically copulas. Dr. Owzar serves as the director of the 
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CALGB Bioinformatics Unit and the Director of the Radiation Countermeasures Center of Research Excellence 
Biostatistics and Computational Biology Core. Dr Owzar serves as the chair of the Department of Biostatistics 
and Bioinformatics computing committee. Other co-Directors of Core B are Drs. Chu and Ibrahim at the Univer
sity of North Carolina at Chapel Hill (UNC-CH) and Drs. Davidian and Tsiatis at North Carolina State University 
(NCSU). 

We plan to partner with the CALGB Information Systems Unit to address the information technology needs 
for the core. Kimberly Johnson, Director of the CALGB Information Systems Unit, will participate in Core B to 
ensure the successful operation of the core. Ms. Johnson has over 25 years of information systems experience 
in research computing and clinical trials informatics. She is responsible for the overall direction of CALGB 
information systems and represents the CALGB to external entities by participating in several National Cancer 
Institute (NCI) and Cooperative Group information technology most notably caBIG, initiatives. In the day-to
day information technology related activities, Ms. Johnson will be assisted by Amish Shah, who serves as the 
Deputy Director ofthe CALGB Information Systems Unit. More specifically Mr Shah will oversee the mentoring, 
training and supervision of the core Systems Administrator. 

3. METHODS AND SERVICES TO BE PROVIDED 

3.1 Data Services 

3.1.1 Data Acquisition and Identification 

Core B will facilitate the acquisition and identification of data sets for the project. The CALGB and Duke and 
UNC-CH cancer centers are expected to be the major contributors of data for the project. Data from the clinical 
trials discussed in the individual project narratives will be among the many clinical trial data sets compiled 
by the core for use by the investigators. As Dr George is the Group Statistician for the CALGB Statistical 
Center and the Executive Director of the DCCC biostatistics unit; and Dr Ibrahim is the Director of the UNC-
CH Lineberger Comprehensive Cancer Center (LCCC) biostatistics unit, the process of identifying data will be 
greatly facilitated. Once the data have been identified and permission is granted to retrieve the data for the 
project, the process of acquiring the data will be facilitated, as Drs. George and Ibrahim know the processes for 
each group. Core B investigators are highly experienced in dealing with clinical, demographics and molecular 
data from clinical studies. This will be a major advantage in determining if a particular data set is appropriate 
for a given project and if so which data points should be requested. 

We will now describe several specific examples of CALGB trials that play an important role in the proposed 
program project research. Pharmacogenomics, a topic studied in Project 4 (Methods for Pharmacogenomics 
and Individualized Therapy Trials), features extensively in CALGB trials such as protocols 80303 (pancreatic 
cancer), 40101 (breast cancer), and 90401 (prostate cancer). Similarly, collection of both time to death or 
relapse and longitudinal biomarkers such as prostate specific antigen (PSA) and measures such as quality of 
life (QOL), atopic studied in Projects 1 (Innovative Clinical Trial Design and Analysis) and 2 (Methods for Missing 
and Auxiliary Data in Clinical Trials), features extensively in CALGB trials such as protocol 90401 and 49907 
(breast cancer). In addition, there is growing recognition that treatment of cancer is an ongoing process involving 
a sequence of treatment decisions, and the study of the entire sequence of treatment decisions requires a 
fundamentally new approach to design and analysis. This is the them of Project 5 (Methods for Discovery 
and Analysis of Dynamic Treatment Regimes), and the design of CALGB studies such as protocol 19808 in 
acute myelogenous leukemia, which involves a series of randomizations at treatment decision points, offers a 
promising starting point in this area. 

Although clinical trials are the gold standard fpr evaluating the safety and efficacy of cancer therapies, less 
than 2% of patients with incident cancers enroll on NCI sponsored clinical trials. Furthermore, the fraction of trial 
enrollees is lower in racial/ethnic minority groups as well as older patients (Murthy, Krumholz, and Gross 2004). 
Those limitations have created gaps for the generalization of clinical trial findings to general populations. On 
the other side, the observational studies such as the Surveillance Epidemiology and End Results (SEER) and 
Cancer Care Outcomes Research and Surveillance Consortium (CanCORS) datasets, discussed below, are 
more representative for the general population. By combining data from both clinical trials such as ACCENT 
(see below) and observational studies such as SEER and CanCORS, we will develop novel meta-analysis 
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methods as proposed in Project 3 (Methods for Post Marketing Surveillance and Comparative Effectiveness 
Research) to generalize clinical trial findings to general populations. 

As examples of the types of data sets to be made available to investigators in this program, we describe 
briefly some data sets that will be particularly useful for the research of Project 3 involving Bayesian paramet
ric and semiparametric models for meta-analysis of continuous or discrete data, longitudinal data, and time to 
event data. 
SOS/ACORN. The SOS/ACORN data are a unique dataset containing extensive patient-reported outcomes, 
administrative claims data, and electronic medical records data. The ACORN data warehouse currently imports 
data from 11 community oncology sites in 10 states. Data are comprised of (1) Electronic Medical Record, (2) 
Claims/Billing Systems, and (3) Patient Care and Education System (PACE). The PACE system is an e/Tablet 
based education and assessment system that administers the Patient Care Monitor (PCM), a multi-dimensional, 
point of care symptom based patient reported outcome (PRO) measure. PCM 2.0 (previously known as the 
Cancer Care Monitor) is an e/Tablet based assessment of clinically relevant PROs administered to patients 
as part of routine care. Patients at the community oncology sites complete the PCM at regular medical visits 
prior to seeing health care professionals and before completing any visit-related laboratory work such as blood 
draws and scans. Patients answer questions on e/Tablets, and their responses are wirelessly relayed to their 
health care professionals. Patients provided written informed consent for their de-identified data to be used for 
research. 
CanCORS. The NCI-funded Cancer Care Outcomes and Research Consortium (CanCORS) is comprised of 7 
research groups with integrated health systems, VA medical centers, and population-based registries covering 
nearly 30 million people. The majority of enrollment in CanCORS occurred in 2003 through 2005, and as it 
pertains to this program, included approximately 4.000 adults over the age of 21 with adenocarcinoma of the 
colon or rectum, including an oversampling of African Americans and other minorities. Patient surveys, physi
cian surveys, and extensive medical records abstraction comprise the data representing the care and outcomes 
of this population from 3 months prior to diagnosis through 15 months post diagnosis. Data elements reflect de
cision making about major treatments, patient-reported symptoms and outcomes, assessments of patient care, 
and financial burdens related to treatment. Many items and scales were obtained from published surveys on 
patient-reported outcomes, symptoms, and quality of life. The CanCORS Consortium is one of the most com
prehensive observational studies ever undertaken to understand the experiences, treatments, and outcomes of 
patients with lung cancer or colorectal cancer in the United States. 
SEER-Medicare and SEER. The data come from the Surveillance. Epidemiology and End Results (SEER) pro
gram of cancer registries linked to administrative and claims data from Medicare, the primary health insurer for 
97% of the US population age 65 and older The SEER Program is a surveillance system of population-based 
cancer registries spanning 14 states that systematically collects information on all newly diagnosed cancer 
cases that occur among the 26% of all persons residing in SEER areas. With a program standard of 98% 
complete case ascertainment within their regions, the registries and Cancer cases within them are very closely 
representative of the US population. Medicare claims files include extensive diagnostic and treatment data for 
Medicare beneficiaries, including inpatient services for 97% of Americans age 65 and older, and outpatient and 
physician services for 93%. The SEER-Medicare data reflect the linkage between these registries and Medi
care insurance claims, providing detailed information about elderly persons with cancer and offering a large 
population-based cohort that is one of few that can be used to longitudinally examine individuals from diagnosis 
through treatment and follow-up. As described by the Institute of Medicine, the SEER-Medicare data comprise a 
valuable and powertul resource for population-based examinations of cancer incidence, treatment patters, and 
care quality and outcomes. 
PS-2/ACCENT. Recently Drs. Goldberg and colleagues compiled individual patient data for 6,286 patients 
enrolled among 9 phase III randomized trials of chemotherapy for metastatic colorectal cancer. These data 
were complied in order to address whether patients who present for first-line colorectal cancer therapy with 
impaired function, as measured by a pertormance status of 2 (thus, PS 2), benefit from chemotherapy to the 
same extent as those with only minimal or no decline in function at the time of initiating therapy As most trials 
enroll fewer than 10% PS 2 patients, and functional assessments are lacking from most population databases, 
a pooled analysiis was thought to be the only way to answer this question. The analysis confirmed PS 2 patients 
benefit just as much as PS 0-1 patients do from chemotherapy in terms of progression-free survival, overall 
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survival, and response rate despite the markedly worse prognosis of PS 2 patients. Not surprisingly, however, 
toxicity was greater in PS 2 patients, including greater incidence of nausea and vomiting, and a 12% higher 60 
day mortality The database used to perform this analysis of outcomes by performance status is managed at the 
Mayo Clinic. Because clinical trial selection criteria limit inclusion to the healthiest of patients, the outcomes of 
patients treated outside the realm of protocol specified treatment is likely worse. Thus, this is a unique dataset, 
as it has over 500 PS 2 patients. This unique dataset will provide a minimum basic standard against which 
effectiveness of chemotherapy may be compared. 

The ACCENT database is comprised of individual patient data from phase III clinical trials of adjuvant colon 
cancer therapy Originally compiled to confirm the benefit of adjuvant FU, this database has now expanded to 
include data from 20,898 patients treated on trials between 1977 and 1999. This database has been used to 
demonstrate the excellent predictive ability of 3 year disease-free survival for 5 year overall survival in adjuvant 
colon cancer trials, leading to acceptance of 3 year DFS as an adequate endpoint for approval of adjuvant 
therapies by the FDA. Among other things, this database has also been used to explore racial differences in 
adjuvant therapy benefit for patients treated on clinical trials. Just as the PS 2 database represents a large 
number of patients with metastatic colorectal cancer, the ACCENT database serves the same purpose as a 
benchmark for our investigations of stage III colon cancer. 
DECIDE Network. The DEclDE (Developing Evidence to Inform Decisions about Effectiveness) Network is a 
new network of research centers that AHRQ created in 2005 to generate new knowledge. The DEclDE Net
work conducts accelerated practical studies about the outcomes, comparative clinical effectiveness, safety and 
appropriateness of health care items and services. The network is comprised of 13 research-based health orga
nizations with access to electronic health information databases and the capacity to conduct rapid turnaround 
research (http://effectiveheal1hcare.ahrq.gov/). Initial research focuses on the outcomes of prescription drug 
use and other interventions for which randomized controlled trials would not be feasible or timely, or would raise 
ethical concerns that are difficult to address. Other DEclDE Network projects may focus on electronic registries, 
methods for analyzing health databases, and prospective observational or interventional studies. The DEclDE 
research network of the Effective Health Care (EHC) program was developed to provide a variety of services 
and products to support the development of new scientific knowledge through studies on the outcomes of health 
care items and services. 

3.1.2 Data Protection 

Given that the data sets to be compiled by the core are obtained from clinical trials and other studies with 
individual patient records, adherence to patient data confidentiality and security is paramount. Furthermore, 
because the data are owned by external entities, such as the CALGB, it is important that the analyses are 
carried out within the framework of the agreements with the owner. To this end, the core will produce a data 
access plan for each data set. This plan will describe which individuals will have access to the data as well as 
any restrictions with respect to the usage of the data. We will always provide formal acknowledgment of the 
source of the data, in some cases, co-authorship for the clinical investigators who collected the data may be 
appropriate in publications by the project investigators using the data. 

Drs. George and Owzar have extensive experience in data sharing issues both from regulatory and owner
ship points of view through their work with the CALGB and the DCCC. This experience will greatly facilitate the 
implementation of our data sharing policies and activities and interactions with regulatory bodies such as IRBs 
and the owners of the data. In fact, many of the existing policies and procedures used by the CALGB and the 
DCCC will be adopted by the core. These have been carefully developed over many years, in compliance with 
the changing landscape of data sharing in clinical research. 

3.1.3 Data Documentation and Annotation 

To conduct appropriate analyses and to draw informed conclusions from the results, one needs to understand 
the data from a scientific and clinical point of view. No level of technical rigor substitute for an understanding of 
the scientific question addressed by the study and the data collection methods. 
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To this end, the core will provide data annotation and documentation services. Specifically each data point 
provided will be given a meaningful variable name along with a detailed description. 

3.1.4 Data Formatting 

For data to be useful, they must be properly formatted so that they can be readily imported into statistical 
software. In many cases, this requires merging multiple data sets together, often with very complicated queries. 
The data may need to be provided in long format, one row per observation, or wide format, one row per case. 
For single nucleotide polymorphism (SNP) data, this may require extracting genotype calls from millions of rows 
and creating a standardized file for Import into analysis software. These large standardized files then need to 
be linked to the phenotypic data. 

The core will work with individual project investigators to provide data in a format best suited for their projects. 
The core investigators have extensive experience in using the R statistical environment and SAS for data man
agement. They also have extensive experience using Python and C/C++ languages for more complicated 
situations. 

The core will employ a data programmer, who will report to Dr. Owzar and assume primary responsibility for 
formatting the data. The code written for formatting the data will be kept under source code management. For 
complicated situations, unit testing will be employed to protect against unintended consequences due to code 
modification. 

3.2 Information Technology Infrastructure 

The core will acquire, manage, and maintain its own dedicated hardware resources. Rather than building a 
completely new costly information technology infrastructure, for cost effectiveness the core will partner with the 
CALGB Information Systems (IS) unit at Duke University This partnership will enable the core to house its 
server in a professional grade server room. Rather than purchasing a complete backup system, the core will 
purchase extensions to the existing CALGB backup system to support the archiving needs of the core. The 
cost effectiveness is not limited to the cost of hardware acquisition and housing. The CALGB IS unit also has 
extensive experience in how to retrieve, store, archive and manage clinical and correlative science data using 
state of the art methods within a secure environment. The core will be able to harness this valuable experience. 
Specifically the core will collaborate with Ms. Johnson and Mr. Shah to ensure appropriate support in this 
partnership. 

To protect sensitive confidential information, applications incorporate sound security practices and comply 
with guidelines for Health Insurance Portability and Accountability Act (HIPAA). Web applications safeguard 
protected health information (PHI) by requiring secure logins, limiting access to authorized users, and incor
porating timeouts forjnactivity within an open application. Applications will encrypt all data transmissions to 
ensure security and confidentiality of data as It Is entered and viewed. Users are provided accounts and roles 
that determine their access to data or functions. 

The core will employ best practices for IT. For example, the core will employ a source code management 
system to keep track of the development of its code produced for data formatting and the software for its 
hardware systems. As another example, the core will employ unit testing to ensure that modifications to its 
code do not have unintended consequences such as regressions. The CALGB IS Unit has a comprehensive 
set of policies and procedures in place to ensure adherence to these practices. The core will adopt these 
policies and procedures. 

3.2.1 Data Server 

The core will acquire and maintain a file-server to host and disseminate the data sets. This system will be 
referred to as the project data server. Since the core will make both raw and pre-processed genomic data 
available to the project investigators, a file server with large disk space will be acquired for this purpose. To 
provide some level of redundancy against hard-drive failure, the file server will have hardware RAID with battery 
backup. To reduce bottlenecks induced when processing or accessing large volumes of data, the server will be 
equipped with multi-core processors, large amount of dynamic memory and a high-end multi-port network card. 
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The file server will be housed in the state-of-the-art CALGB server room, which includes raised flooring, 
automated fire detection and suppression systems, an uninterruptible power supply key card security systems, 
and a separate cooling system. The server will be connected to the Duke University high-speed network link to 
allow high bandwidth access from inside and outside of Duke. 

The data sets will be posted on the data server using a web-based content management system (CMS). 
This will allow project investigators to download the data using a secure interface. For each data set, a dedi
cated page will be created within the content management system. Access and permissions on this page will 
be customized according to the data access plan. Along with the data sets, the data access plan and data 
documentation material will be posted on the page. Possible choices for the CMS used by Core B are plone, 
alfresco, MediaWiki or xwiki. All of these systems are under active development. The final choice will be made 
at the time when the grant is funded after a careful comparative review of the available systems to determine 
which system is best suited for the needs of the core. The CALGB IS unit has extensive experience in installing, 
deploying, and customizing these types of systems. The CALGB protocol for file and web server management 
and security will be followed. 

As an example of the experience of the Core B investigators, Dr. Owzar and his colleagues from the 
CALGB Bioinformatics and IS units are currently developing a content management system using the Python 
web framework called Django, a modern object-oriented infrastructure designed for building web applications 
using the Model-View-Controller paradigm. The concept of a web framework is that of a modular system, 
where different components can be replaced, as long as the whole conforms to the underfying Application 
Programming Interface (API). This has the advantage of scalability over more traditional systems. In particular, 
Django has a transparent database API and built-in support for file upload. For performance reasons. Django 
stores files on the file system rather than in the database. However, a reference to the location of the file on 
the file system, along with file metadata, is stored in a database. We believe this is a good choice, particularly 
in the context of large files like those found in bioinformatics. The alternative, storing files in the database, is 
problematic for large files because of database size limitations. This feature will enable seamless integration with 
other systems, as files can be extracted using database queries or copied directly off the file-system. Another 
important feature of this type of setup is the ability to integrate with other applications, including those developed 
through the caBIG project, via the API. To assess the viability of the proposed web application, Dr Owzar and 
his colleagues have developed a prototype that implements secure authentication, three upload modes (single-
file, multiple-file in zipped archive and multiple-file using a point-and-click graphical interface), and remote data 
capture through database queries. The results of the prototype indicate the proposed approach is feasible and 
further development is warranted. Given that the core expects to host a considerable amount of large genomics 
data, the core will evaluate the use of this system as a supplement to its CMS. 

3.2.2 Backup 

Core B is tasked with the stewardship of the data. Although the RAID array of the file server will provide some 
level of redundancy it will not be relied on as a backup system to protect against catastrophic hardware failure, 
catastrophic software corruption, and unrecoverable user errors. The core will employ a tape-based system 
for archiving the data sets. The tape media will be stored remotely The CALGB protocol for backups will be 
followed. 

3.2.3 Secure E-mail System 

The core will provide a secure e-mail system for transmission of sensitive and protected data. A typical example 
for which such a system is needed is if one has to query patient data for a given sample ID. The commercial 
enterprise system used by the CALGB IS Unit will be employed for this purpose. 

3.2.4 Issue Tracking System 

The core will implement an electronic issue tracking system to allow project investigators to report issues and 
request support. This will allow us to track the progress of the support requests and allow the leadership to 
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assess the responsiveness of the core staff to issues. We will employ the CALGB JIRA issue tracking system 
for this purpose. 

3.2.5 Mailing List 

The core will maintain a mailing list to transmit communications efficiently to the project investigators and per
sonnel. The mailing membership list will be actively maintained to ensure that new members are added in an 
expeditious manner and that individuals no longer Involved with the projects are removed. The CALGB mailing 
list system will be employed. 

4 . INCLUSION ENROLLMENT REPORT 

N/A 

5. BIBLIOGRAPHY AND REFERENCES CITED 

N/A 

6. PROTECTION OF HUMAN SUBJECTS 

Core B will receive and manage information from human subjects. It will, however, not directly solicit information 
from patients. Data received, maintained and analyzed by the core will fall under HIPAA regulations. Thus, all 
procedures for handling data will be created to adhere to these regulations. The core will manage IRB approvals 
required for receiving and managing the data. Patient confidentiality and data security for electronic data are 
of paramount importance. Data security is ensured through physical security and backup of data, separating 
patient identifiers from confidential data, and preventing unauthorized access to data. Unauthorized access to 
data is prevented through data encryption "across the wire", restricted access to the server, and limitations on 
data availability as required. The core will not provide data to anyone who has not been specifically authorized 
to have access and will generally provide only de-indentified data. In cases where identifiable protected health 
information is required by thr nature of the research, we will provide limited data sets after all appropriate IRB 
requirements are met and approval has been granted by the IRB. Drs. George and Owzar have experience in 
applying data sharing policies of the CALGB and of Duke. 

7. INCLUSION OF WOMEN AND MINORITIES 

The data sets created and maintained by Core B will often have information on gender, ethnicity and race, 
but we are not the investigators who generated the original data. However, we will be able to report on the 
distribution of these vanables in the data sets, particularly women and minorities. 

8. TARGETED/PLANNED ENROLLMENT TABLE 

N/A 
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9. INCLUSION OF CHILDREN 

Although most of the studies for which we will be preparing data sets are from studies in adults, it is possible 
that we will also handle some data from studies involving children. These data will be handled in the same 
fashion and we will be able to report on the age distribution in the data sets. 

10. VERTEBRATE ANIMALS 

N/A 

1 1 . SELECT AGENT RESEARCH 

N/A 

12. MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

13. CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute subcontracts 
with the consortium institutions (Duke University and North Carolina State University). These inter-institutional 
agreements will be written consistent with the NIH consortium agreement policy 

14 . LETTERS OF SUPPORT 

• H. Shelton Earp, MD, Director of the UNC-CH Lineberger Comprehensive Cancer Center, Providing insti
tutional support. 

• H. Kim Lyeriy MD, Director ot the Duke Comprehensive Cancer Center, Providing institutional support. 

• Richard L. Schilsky MD, Chair of Cancer and Leukemia Group B, Providing institutional support. 
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LINEBERGER COMPUEHENSIVB 
CANCER CENTBR 
N.C. CANCBR HOSPITAL 

December 19, 2008 

Michael R. Kosorok, PhD 
Lead Principal Director/Principal Investigator 
"Statistical Methods for Cancer Clinical Trials" Program Project 
University of North Carolina at Chapel Hill 
Chapel Hill, NC 27599-7420 

Re: PAR-09-025 - National Cancer Institute Program Project (POl) Applications 

Dear Michael: 

The strong partnership between UNC Lineberger Cancer Center and the Department of Biostatistics is 
decades old but the events ofthe last five years have taken it to another level. Recruitment has assembled 
an extraordinary group of statistical methodologic researchers, including Joe Ibrahim, Danyu Lin, Fred 
Wright, and Jason Fine, who contribute substantially to our cancer research. Under your leadership, an 
impressive era of scientific productivity is underway that will measurably improve clinical trials 
methodology. 

As Director ofthe UNC Lineberger Comprehensive Cancer Center, I am writing to express my great 
enthusiasm and support for your application for an NCI Program Project (POl) entitled "Statistical 
Methods for Cancer Clinical Trials" at the University of North Carolina at Chapel Hill. This is certainly 
an important initiative for the UNC Lineberger, the Gillings School of Global Public Health, and for the 
University of North Carolina at Chapel Hill. With all ofthe recent advances in biomedicine, there 
remains a serious bottleneck between laboratory discoveries and their utilization in clinical practice. New 
clinical trials methodology is needed to keep abreast of and take advantage of molecular genetic 
discovery. I believe that the iimovative program you have outlined will make important breakthroughs in 
solving this fundamental problem and have broad applicability for breast, colon and lung cancer as well as 
for other cancers and other diseases. I am very supportive of you and your research group utilizing 
existing clinical trial data sets housed in the Lineberger Comprehensive Cancer Center. 

An important aspect of this program project is the collaboration with North Carolina State University and 
Duke University. This brings together a diverse group of investigators not only in biostatistics but also in 
medical oncology, health policy, pharmacogenomics, and computer science. 

In summary, your program project application has my highest level of support and commitment. I will do 
all that I can to help you and your colleagues achieve the goals of this forward-looking POl and, in the 
process, to help UNC become a leader in the field of cancer clinical trials. 

Sincerely yours. 

/ J ^ ^ . . 
H. Shelton Earp IH, MD 
Director and Lineberger Professor 
Professor of Medicine and Pharmacology 
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H. K im Lyeriy, M D 

George Barth Geller Professor of Researcii In Cancer 
Director 

Duke Coinprehensivo Cancer Center 

January 13, 2009 

Stephen L George, Ph.D. 
Co-Director/Co-PI 
"Statistical Methods for Cancer Clinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833. 

Re: PAR-09-025 - National Cancer Institute Program Project (POI) Applications 

Dear Steve: 

As Director of the Duke Comprehensive Cancer Center, I am writing to express my strong 
support for your Program Projeel (POI) application entitled "Statistical Methods fbr Cancer 
Clinical Trials". The overall scientific goal of tliis project, to develop highly innovative methods 
for cancer clinical trials, is highly relevant to the .strategic plans ofthe DCCC. Efficient 
statistical methods are extremely important in accelerating the development of anti-cancer 
therapy and in translating results into clinical practice. Developments from your proposed 
research prograni can be quickly implemented in cancer research projects here because of your 
role as the director ofthe biostatistics unit in the DCCC. 

I am enthusiastic about this program and 1 pledge to help in whatever 1 can to sec that you 
achieve the goals you have laid out. 

Sincerely, 

4(̂  LA^ 

H. Kim Lyerlyr^. 
George Barth Geller Professor of Research in Cancer 
Director, Duke Comprehensive Cancer Center 
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CALGB 

Cancer and Leukemia Group B 
CENTRAL OFFICE OF THE CHAIRMAN 

230 W. Monroe Street, Suite 2050 
aicago, 11606064703 

TEL t773) 702-9171 
fAX PI2) 34SOII7 

www.algh.ors 

RIchaRlL Schilsky, M.a 

Tomorrow's Cancer aairman 
Treatments Today 

January 14,2009 

Stephen L George, Ph.D. 
Co-Dlrector/Co-PI 
"Statistical Methods for Cancer Ciinical Trials" Program Project 
Duke University School of Medicine 
Durham, NC 27705-3833 

Re: PAR-09-025 -National Cancer Institute Program Project (POI) Applications 

Dear Steve: 

As chair of the Cancer and Leukemia Group B (CALGB), I am writing lo express my 
enthusiastic support for your POl application entitled "Statistical Methods for Cancer Clinical 
Trials". Indeed, the CALGB will be a major partner in this research through the participation of 
several clinical co-investigators participating from Duke and UNC, through the involvement of 
statisticians from the CALGB Statistical Center, which you direct as Group Statistician, ahd 
through the sharing of data from selected CALGB studies to illustrate the methods that are, 
developed. The overall goal ofthe research, to transform the current paradigm for drug discovery 
and translation to practice, resulting in improved survival and quality of life for cancer patients, 
is a shared goal ofthe CALGB. For all of these reasons, it is anticipated that the results from this 
program can and will be implemented directly and immediately into the design and analysis of 
CALGB studies, to the beneflt of all. 

In summary, I enthusiastically support this program and look forward to our partnership in 
achieving its aims. 

Sincerely, 

) 
Richard L. Schilsky, M.D. 
Chair, Cancer and Leukemia Group B 
Professor of Medicine 
University of Chicago 
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15. RESOURCE SHARING PLAN(S) 

The services of the Core B will be utilized by all of the projects in this program. Our estimate of the percentage 
utilization of the core by the five project are as follows: 

Project 1 • 
2 • 
3 • 
4 
5 • 

• 30% 
• 20% 
• 10% 
• 30% 
- 10% 

The following is the external component of our resource sharing plan: 

(a) Data sharing plan: The de-identified data sets generated in core B will be available to all investigators 
in this program for addressing the specific aims of the program. However, since this program did not 
generate the original data, the owners of the original data must agree to any wider use or distribution of 
the data sets. In case wider use or distribution of a particular data set is appropriate, a prior written data 
use agreement with the owner(s) of the original data will be required. For example, Core B will assist in 
preparing a few simple data sets which will be used in the tutorials that are developed in Core C to assist 
with training users of software developed in this program project. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 
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COREC 

COMPUTATIONAL RESOURCE AND DISSEMINATION CORE 

Core Director: Marie Davidian, PhD 
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PROJECT SUMMARY (See instructions): 

The overall scientific goal of this ambitious Program Project is to develop innovative statistical methods for 
cancer clinical trials that can help to hasten successful introduction of effective new therapies into practice 
The Computational Resource and Dissemination Core (Core C) will carry out several critical functions related 
to the implementation and dissemination of the statistical methods for the design and analysis of cancer 
clinical trials developed in the five research projects. The Core will be tasked with developing, in close 
collaboration with project investigators, efficient, robust code implementing the statistical methods that can 
be used for evaluation of the methods in extensive simulation studies and for application of the methods to 
data compiled by Core B and from other sources. The Core will also be tasked with leading and facilitating, 
in close collaboration with project investigators, development of robust, reliable, user-friendly, and well-
documented software applications suitable for public dissemination to practitioners involved in the design 
and analysis of cancer clinical trials. Core C wili adopt best practices for these tasks and provide the 
necessary information technology and educational infrastructure to disseminate these applications. 

RELEVANCE (See instructions): 

Before the new statistical methods for design and analysis of cancer clinical trials to be developed in this 
Program Project can be adopted for use in cancer research, they must be tested and evaluated, and they 
must be implemented in user-friendly software accessible to practitioners. Core C will collaborate closely 
with project investigators to facilitate these efforts. 

PROJECT/PERFORMANCE SITE(S) (if additional space is needed, use Project/Performance Site Format Page) 

Project/Performance Site Primary Location 

Organizational Name: The University of North Carolina at Chapel Hill 

DUNS: 608195277 

streeti: Office of Sponsored Research, CB #1350 street2: 104 Airport Dr., Suite 2200 

City: Chapel Hill County: Orange state: NC 

Province: Country: U S A Zip/Postal Code: 2 7 5 9 9 - 1 3 5 0 

Project/Performance Site Congressional Districts: N C 0 4 

Additional Project/Performance Site Location 

Organizational Name: North Carolina State University 

DUNS: 042092122 

street 1: Research Admin/ SPARCS street2: 2701 Sulllvan Dr.,Admin Serv III, Box 7514 

City: Raleigh County: W a k e state: NC 

Province: Country: U S A Zip/Postal Code: 2 7 6 9 5 - 7 5 1 4 

Project/Performance Site Congressional Districts: N C - 0 2 
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Use only if additional space is needed to list additional project/performance sites. 

Additional Project/Performance Site Location 

Organizational Name: Duke University 

DUNS: 044387793 

streeti: Hock Plaza 

City: Durham 

Province: 

County: 

Street 2: Box2716 Med Ct. 

Durham 

Country: USA 

State: NC 

Zip/Postal Code: 27705 

Project/Performance Site Congressional Districts: NC-004 

Additional Project/Performance Site Location 

Organizational Name: 

DUNS: 

Streeti: Street 2: 

City: County: State: 

Province: Country: Zip/Postal Code: 

Project/Performance Site Congressional Districts: 

Additional Project/Performance Site Location 

Organizational Name: 

DUNS: 

Street 1: Street 2: 

City: County: State: 

Province: Country: Zip/Postal Code: 

Project/Performance Site Congressional Districts: 

Additional Project/Performance Site Location 

Organizational Name: 

DUNS: 

Street 1: Street 2: 

City: County: State: 

Province: Country: Zip/Postal Code: 

Project/Performance Site Congressional Districts: 

Additional Project/Performance Site Location 

Organizational Name: 

DUNS: 

Street 1; Street 2: 

City: County: State: 

Province: Country: Zip/Postal Code: 

Project/Performance Site Congressional Districts: 
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SENIOR/KEY PERSONNEL. See instructions. Use continuation pages as needed to provide the required information in the format shown below. 
Start with Program Director(s)/Principal lnvestigator(s). List all other senior/l<ey personnel in alphabetical order, last name first. 

Name 

Davidian, Marie 
Lin, Danyu 
Owzar, Kouros 

eRA Commons User Name 

davidian2 
DANYU_LIN 
KOWZAR 

Organization 

NC State University 
UNC-CH 
Duke University 

Role on Project 

Core Director 
Core Co-Director 
Core Co-Director 

OTHER SIGNIFICANT CONTRIBUTORS 
Name Organization Role on Project 

Human Embryonic Stem Cells [ ^ No EH Yes 
If the proposed project Involves human embryonic stem cells, list below the registration number of the specific cell llne(s) from the following list: 
http://stemcells.nih.qov/research/reqistrv/. Use continuation pages as needed. 

If a specific line cannot be referenced al this time, include a statement that one from the Registry will be used. 

Cell Line 
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METHODS AND SERVICES TO BE PROVIDED 

1 SPECIFIC AIMS 

Statistical methods for design and analysis of clinical trials are fundamental tools in cancer research. Before 
any statistical method can be advocated for use in practice, it must be evaluated to ensure that it yields reliable 
conclusions over the range of conditions under*which it is likely to be employed. Moreover, in order that new, 
tested methods be adopted by the research community, they must be made available in accessible, friendly 
software, and demonstrations of their use in applications must be provided. The mission of the Computational 
Resource and Dissemination Core (Core C) will be to address the following specific aims in support of the goal of 
this program project to provide new statistical methods for a host of data-analytic challenges in cancer research: 

• Aim 1: Implementation of project methodology. Core directors and staff will collaborate with project 
investigators to develop efficient, robust, and reliable code implementing the new methods for use in testing 
and evaluation of the methods and in analysis of data when such professional development is required. 

• Aim 2: Computational resources in support of project methodology. Certain generic computational 
tasks and methods will be required and used by multiple projects. Core directors and staff will collaborate 
with project investigators to identify such tasks and methods, and core staff will develop multi-use routines 
and modules for use by project investigators and core programmers. The core will also assist investigators 
with computational issues, such as development of code embedding multiple languages. 

• Aim 3: Creation and dissemination of public-use software and project methodology. Core investi
gators will, in collaboration with the project investigators, develop well-tested, reliable, user-friendly and 
well-documented software applications to bring the methodologies developed by the program projects into 
practical use. Once an application in development is deemed to be mature enough for dissemination to the 
general user community the core will post it on the program project public web interface. Each application 
will have its own page, where a summary of the methodology and the application are provided. The corre
sponding documentation along with technical references will be posted as well. Core C will also collaborate 
with project investigators to arrange workshops to demonstrate and educate the user community about the 
methodologies developed by the projects, including showcasing the applications. 

For all Aims, the core will conduct application evaluation, development, and deployment according to best prac
tices and employ a systematic software development process. This includes use of a source code management 
system to keep track of and document modifications to code, and implementing unit testing for identifying re
gressions and evaluating the outcome for extreme or pathological test cases. Core C will also provide tools 
for systematic production of documentation, employ an issue tracking system to keep track of problems and 
requests reported by the users of the code, and maintain mailing lists to provide updates to the users. 

In the sequel, the Computational Resource and Dissemination Core is referred to for brevity as Core C. 

2 BACKGROUND AND SIGNIFICANCE 

2.1 Background 

The overall scientific goal of this ambitious program project is to develop innovative statistical methods for cancer 
clinical trials that can help hasten successful introduction of effective new therapies into practice. Before the new 
methods can be recommended for use toward this objective in cancer research, several critical issues must be 
addressed. First, potential users, such as biostatisticians collaborating on the design and analysis of cancer 
trials, must be assured that the methods are reliable; e.g., when used to conduct a hypothesis test at level of 
significance 0.05, a new procedure does in fact reject the hypothesis of no effect at most 5% of the time when 
it is really true. Second, the methods must be made accessible. Scientists involved in the design and analysis 
of clinical studies will not employ new methods if to do so is difficult or, worse, requires them to implement the 
methods themselves. If the new methods developed by the program project are to enjoy widespread adoption, 
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software implementing them that is straightfonward to use, well-documented, and well-tested must be provided. 
Finally the utility of new methods in practice must be convincingly demonstrated to potential users in applications 
for which they were designed through illustrative and detailed case studies that exemplify their use. We now 
elaborate on each these points. 

A statistical method is of no practical use unless it has acceptable operating characteristics. For example, 
for a test statistic, one needs to determine its sampling distribution, which characterizes how values of the 
statistic vary over all possible data sets of the same size that could have resulted from conducting a study, 
which is required to calculate p-values. As discussed above, one then needs assurance that the p-value so 
calculated is reliable. When interest focuses on obtaining an estimate of a quantity such as a treatment effect 
(e.g., difference in means, odds ratio, hazard ratio), one would like to trust that the estimator used performs well 
in general; e.g., does not exhibit unacceptable bias when targeting the true value of the quantity of interest. One 
also requires an estimate of sampling variability of the estimator to calculate standard errors and confidence 
intervals. Here, for example, one would expect that a 95% confidence interval for the true value of the quantity 
being estimated, calculated using the method, would contain the true value across all possible data sets 95% 
of the time. In summary, that a statistical method has sound operating characteristics, including negligible bias, 
sampling variability that is not too large that can be characterized accurately and advertised test and interval 
performance, is a requirement for its widespread use. 

In all but the most trivial cases, the operating characteristics of a statistical method cannot be derived exactly 
by straightforward analytical calculations as they can for the simple methods introduced in introductory statistics 
courses. Rather, both for methods that are in routine use, such as the logrank test for survival analysis, and for 
new methods like those being developed in this program project, the usual approach is to appeal to statistical 
theory from which approximations to the behavior of the methods, e.g., a description of sampling distribution, 
can be derived. Such so-called asymptotic approximations are obtained under the condition that the sample 
size available in a study is infinitely large, but are then used to calculate standard errors, confidence intervals, 
and p-values as if the approximation were exact. There is thus no guarantee that the approximation will lead to 
acceptable operating characteristics in practice with finite sample sizes. Moreover, the theory does not establish 
how large the sample size needs to be in order that the approximation be reasonable. 

In the development of new statistical methods, it has thus become routine, if not required, to carry out 
so-called simulation studies to evaluate how well the asymptotic theory can approximate the true operating 
characteristics of a method in sample sizes like those encountered in practice and to determine how large the 
sample size needs to be in order to use the approximations with confidence. Similarly in many cases, there may 
be more than one method available, e.g., a new method has been proposed that is purported to improve over 
an existing one. Here, a comparison of properties, such as unbiasedness, sampling variability, and efficiency a 
measure derived from these features, is then called for. Although it may be possible to base the comparison on 
the asymptotic theory again, how the methods compare in realistic sample sizes is of paramount interest, and 
simulation studies are the primary mechanism for such evaluations. 

A simulation study is an empirical, computational investigation of performance of statistical methods that is 
designed to reflect conditions actually encountered in practice. Typically random samples of data are generated 
according to a mechanism that has been chosen to resemble conditions in actual studies, including sample size; 
variability of outcomes across subjects; true values of quantities of interest such as proportions of responders, 
hazard ratios, and degrees of censoring; and other factors. Ideally a method should be robust, that is, yield 
acceptable operating characteristics over a range of such conditions. Accordingly, new methods are ordinarily 
subject to an extensive battery of simulation scenarios to demonstrate robustness, and to establish under what, 
conditions the asymptotic approximations are reasonable and the new method outperforms existing ones. 

Fortunately with the advent of affordable high-performance computing (HPC) resources, large-scale, com
putationally intensive empirical studies to investigate the operating characteristics of complex statistical methods 
under a wide array of scenarios are readily facilitated. Such studies are considered an essential component of 
research developing new statistical methods; indeed most biostatistical journals ordinarily demand that articles 
proposing new methods include a report of the results of relevant simulation studies. 

In addition to operating characteristics, a second issue in the development of new, complex statistical meth
ods is their implementation itself. For example, calculation of an estimator for a quantity of interest may involve 
an iterative algorithm embedding a complex series of manipulations that require the use of sophisticated opti
mization techniques and numerical approximations, and hence may be computationally intensive and sensitive 
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to conditions such as sample size and anomalies in data. The speed with which such algorithms "converge" to a 
result and the extent to which they yield acceptable results are critical issues. Simulation studies are also used 
to evaluate the performance and speed of the nurnerical algorithms under different scenarios. 

Once a method has been implemented and thoroughly evaluated, it must be made accessible to the user 
community in order to enjoy successful adoption in practice. To this end, a software application must be devel
oped. An application is unlikely to be adopted for routine use if it fails to be perceived as reliable and well-tested. 
It is also unlikely to be adopted if it is not straightfonward to use or lacks proper documentation. 

Often, biostatistical researchers implement methods they have developed for their own purposes; e.g., to 
facilitate simulation studies of their performance and illustrative analyses demonstrating their use to be reported 
in journal articles. However, although they may make the associated code publicly available, the code is often 
not sufficiently general, is poorly documented, or is inefficient because it was not developed with widespread use 
in mind. Many researchers are admittedly not trained as programmers and do not have the expertise or time to 
adapt their code so that it is broadly accessible; accordingly it is unlikely that their methods will be widely used. 
Professional programmers, who have specific expertise in the development of efficient and robust code and in 
the creation of user interfaces and documentation that facilitate intuitive and straightfonward use of the methods, 
are best equipped to develop software that is suitable for public dissemination. 

2.2 Overview 

Core C will be tasked with leading and facilitating, in collaboration with the project investigators, efforts to ad
dress all of the foregoing issues through three key functions, described in greater detail in Section 4. As noted 
at the outset. Core C will assist project investigators with the development and testing of efficient, robust code 
implementing project methods when required that can be used to facilitate simulation studies to evaluate op
erating characteristics and numerical performance of methods and data analyses. Core C will also provide 
resources such as multi-use generic routines implementing tasks and methods that are used by several projects 
and assistance with coding issues. Finally Core C will develop software for public dissemination to the user 
community 

In carrying out these functions, the core will adopt best practices for its processes to ensure that the code, 
simulations and case studies, and software applications are developed and implemented in a professional fash
ion. A source code management system will be employed to manage and annotate the software projects. The 
applications will be tested under normal and pathological conditions and unit testing will be implemented to en
sure that the applications are robust and reliable. Automated documentation systems will be used throughout 
the development process. The intellectual output of the core will be stored, disseminated and protected using 
state-of-the-art information technology resources. The computing systems available to the investigators have 
multiple processing cores ranging from two cores to a few thousand. The core will implement procedures for 
harnessing the power of these multi-core system which make it possible to spread the work over several cores 
whereby greatly reducing the time needed to complete the task. The applications will be built using open source 
software as much as possible, not only to provide greater flexibility to the developers, as the underlying code can 
be customized to ones need, but also to eliminate licensing issues for users. Implementations of some project 
methodology in SAS will also be developed as deemed necessary Applications will also be built, to the extent 
possible, using cross-platform software to ensure that they can be run by Linux, Windows and MacOS users. 
Software will be packaged with installer routines to facilitate easy set-up by a variety of users. Further details 
are presented in Section 4. 

3 CORE PERSONNEL AND STRUCTURE 

3.1 Core Leadership and Experience 

The Core C leadership is comprised of leaders in the field of clinical biostatistics from all three institutions with 
wide-ranging expertise and keen interest in statistical computing and the development of software applications 
for statistical methodology This highly qualified group of individuals will oversee the activities of the core Staff, 
who are profiled below, and facilitate interactions between the core and project investigators. 
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I^arie Davidian, PhD, will serve as core Director. Dr. Davidian is William Neal Reynolds Professor of Statistics at 
North Carolina State University (NCSU) and will also serve as the NCSU Program Director/Principal Investigator 
(PD/PI) for the program project. Dr. Davidian is internationally known for her research on methods for longitudinal 
data analysis, design and analysis of clinical trials, and methods for causal inference and handling missing 
data. Dr. Davidian will be responsible for overall administration of core activities and for overseeing core efforts 
associated with the core Aim 1 related to shared computational resources. 

Dr. Davidian has considerable experience in the design and execution of large scale simulation studies 
involving complex methods and data generating mechanisms, including a current effort in another project spon
sored by NIAID involving simulations of within-host HIV infection dynamics across a population treated according 
to different adaptive treatment strategies in connection with the design of treatment strategies and clinical trials. 
She has developed and taught a course discussing design and execution of simulation studies for PhD students 
at NCSU. Dr. Davidian was one of the invited participants at a National Cancer Institute (NCI) workshop on "Bar
riers to Producing Well-Tested, User-Friendly Software for Cutting-Edge Statistical Methodology" held in May 
2008; see below. As a PD/PI for the overall program project, she will be well-positioned to ensure that the core 
is responsive and adapts to needs and issues of the entire project as they arise. Her experience in this regard 
makes her well-qualified to oversee these efforts. 
Danyu Un, PhD, will serve as core co-Director Dr. Lin is the Dennis Gillings Distinguished Professor of Biostatis
tics at the University of North Carolina at Chapel Hill (UNC-CH) and a co-Director of the overall program project. 
Dr Lin is an internationally recognized biostatistician who has made numerous methodological contributions to 
the designs and analysis of clinical trials and genetic studies. He will oversee the software development and 
dissemination activities of the core associated with core Aim 3. 

Dr. Lin has developed and published computer programs implementing the statistical methods he has devel
oped. Several of his methods are available in commercial statistical software packages, including SAS, S-Plus, 
and Stata, and widely used by a variety of researchers. He has served as a consultant to SAS; Insightful, Inc.; 
and Stata, Inc. Dr Lin has posted several computer programs for his recent methods on genetic data analysis at 
his website, and his software interface HAPSTAT, which was developed by a professional computer programmer 
under Dr. Lin's supervision, has been downloaded by more than 100 researchers and used in several genetic 
association studies. His more recent software interface SNPMStat is also very popular. Computer programs 
implementing many of his recent methods for survival analysis and clinical trials are posted at the website of his 
main collaborator, Donglin Zeng. Dr. Lin is a strong advocate of developing software for new statistical methods 
and was one of the 6 invited speakers at the NCI workshop on "Barriers to Producing Well-Tested, User-Friendly 
Software for Cutting-Edge Statistical Methodology" noted above. This experience makes Dr. Lin highly qualified 
to lead the application development and dissemination efforts. 
Kouros Owzar, PhD, will serve as core co-Director Dr. Owzar is Assistant Professor in the Department of 
Biostatistics and Bioinformatics at the Duke University Medical Center. His research interests are in the areas 
of pharmacogenomics; survival analysis; statistical computing; and statistical dependence, specifically copulas. 
Dr. Owzar will oversee the implementation efforts of core Aim 1. 

He currently serves as the director of the Cancer and Leukemia Group B (CALGB) Bioinformatics Unit, direc
tor of the Radiation Countermeasures Center of Research Excellence Biostatistics and Computational Biology 
Core, and as chair of computing for the Department of Biostatistics and Bioinformatics. . Dr. Owzar is a devel
oper of the distR package which is available at h t tp : / / r - fo rge . r -p ro jec t .o rg /p ro jec ts /d is t r / . This 
package provides a conceptual treatment of random variables by means of R S4-classes. Other packages re
lated to distR are d is t les t , distSim and distMod. These can be used to provide conceptual treatments to 
testing, simulation and modeling. All of these packages will be extensive used by Core C. Dr Owzar and his 
CALGB colleagues are also in the process of developing an R package for analysis of SNP and microarray data. 
These activities make Dr. Owzar very well-qualified to lead the implementation efforts. 

The core leadership will meet weekly by conference call or face-to-face if deemed necessary at one the 
institutions or at the National Institute of Statistical Sciences (NISS) building in Research Triangle Park. Core 
leaders will discuss investigator proposals for core assistance, as outline in Section 4, performance and progress 
of the programmers (see below), and other issues related to the core functions and activities. Core leadership 
will also participate in meetings with the core Staff, as discussed below. 
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3.2 Core Staff 

Core Programmmers. Core C will recruit three programmers, one at each institution, to support the tasks 
associated with each of the core Aims. Some of the programs and applications will require implementation of 
technically advanced and complicated numerical novel algorithms. For these cases, programming expertise in 
numerical algorithms is needed. For many computationally intensive applications, such as vectorizing a loop, 
parallelizing an embarrassingly parallel simulation study or processing large genomic data, understanding of the 
underlying algorithm is of lesser importance. For these cases, the ability to write efficient code and to be able 
to tap into multi-core computing resources is of relatively greater importance. Public-use software disseminated 
by the program project is intended to be used by practitioners and not only expert users. This will necessitate 
equipping the application with a graphical user interface or a web interface. Given that users may use a variety 
of operating systems such as Linux, Microsoft Windows or Mac OS, it is imperative to develop cross platform 
application so as to minimize if not eliminate the need for writing platform specific applications. To address 
these needs, three different types of programmers will be recruited by the core. One of the programmers will 
have primary expertise in algorithms. The second programmer will have expertise in writing efficient code, 
parallelization, and embedding foreign languages. The third programmer will have expertise in creating user 
interfaces. 

The core programmers will be in constant communication with one another via email. They will have a stand
ing weekly conference call to discuss issues and progress. The main focus of these weekly calls will be on 
technical issues. This call will be attended by at least one member of the core leadership, the core director or 
one of the core co-Directors. Additionally, there will be a monthly conference call to be attended by the core 
leadership and the programmers to discuss more general issues. The programmers will take turns writing and 
posting minutes of these calls. These minutes will include follow-up Items for each member of the core staff. 
Project investigators and the systems administration personnel described below will be invited to attend these 
calls as needed. Core programmers will also meet face-to-face as needed at one the institutions or at the NISS 
facilities. The core leadership will periodically review the progress of the programmers and provide feedback. 
The core leadership will also provide mentoring to the core programmers. 
Core Management and Systems Administration. The NCSU Department of Statistics will provide systems 
management and administration support to the core. Professional systems administration staff at NCSU will 
manage and host the information technology resources needed to support the mission of the core; as discussed 
in Section 4.6, the server hosting core code, software, documentation, and related materials will be housed at 
NCSU. Mr. Terry Byron is the Systems Administrator of the Department of Statistics at NCSU and is in charge 
of supporting the information technology needs of over 35 faculty and 170 graduate students. Mr. Byron has 
over 18 years experience in the planning, acquisition, and maintenance of academic computing systems, and 
he has a close working relationship with Dr Davidian, with whom he has collaborated on other projects involving 
acquisition and management of computing resources. Mr. Byron will be assisted by Mr Chris Waddell, who is 
also a full-time Systems Administrator in the Department. Mr. Waddell has 7 years experience, with 3 of these 
in the Department. Together, Mr. Byron and Mr. Waddell will manage the information technology needs of the 
core. 

Dr Davidian will meet weekly with Mr Byron to review issues related to these functions. 

4 METHODS AND SERVICES TO BE PROVIDED 

Core C will provide an extensive host of services in support of the program research projects. We summarize 
each of these services and the methodology used in providing these in this section. 

4.1 Aim 1: Implementation of Project Methodology 

Simulation studies to test and evaluate performance of methods and the numerical algorithms involved in their 
implementation will be a key activity across all projects, as will be application of the methods to data from Core 
B and other sources demonstrating their use. In some cases, the nature of the methodology may be such 
that the investigators themselves can develop efficient and robust implementations for these purposes. In other 
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situations, the methods may be sufficiently complex and/or time-consuming to compute that implementation by a 
professional programmer with expertise in developing efficient code and/or algorithms is required. For example, 
in settings such as Aim 1 of Project 2 or Aim 1 of Project 5, where extensive empirical studies will be a main focus 
of the research, the need for code that of necessity must be fast and efficient is critical, given the computationally 
intensive nature of the studies to be conducted. The core will assist investigators faced with these challenges 
with the development and testing of of efficient, robust code implementing methods that the investigators can 
use to facilitate simulation studies and data analyses. 

Project investigators requiring assistance will contact Dr Owzar, the co-Director for this function, and work 
with him to develop a software development plan outlining in detail the required scope of the project. Code 
developed by the investigators to be refined or adapted by the core to efficient implementations will be provided. 
Once the development plan has been approved by Dr. Owzar and the core Director, Dr. Davidian, one or 
more core programmers under the supervision of Drs. Davidian, Lin or Owzar, and in collaboration with the 
investigators, will carry out the programming tasks involved. 

4.2 Aim 2: Computational Resources In Support of Methodology 

Certain computational tasks and methods will be common to several projects. For example, several of the 
projects involve techniques such as bootstrapping, and the intensive, large-scale simulations to be carried out 
in several of them will require parallel processing on a HPC cluster to be feasible. Core C will work with project 
investigators to identify such tasks and methods and develop well-tested and well-documented multi-use rou
tines and modules to be made available as a shared resource across projects. Investigators developing their 
own code as well as core programmers will be able to exploit these routines and modules in developing their 
own applications. Moreover, the availability of such resources, which can be used by multiple investigators and 
projects, will minimize duplicative development efforts and minimize the chance for errors in testing and evalua
tion. Because a number of software tools will be used by investigators and core staff. Core C will also provide 
assistance with issues such as calling modules and routines written in one language from another. 

At the beginning of the project, a meeting of all project Leaders and co-Leaders will be held at which an initial 
list of desired such generic, multi-use routines and modules will be developed. The Core C leadership will review 
the list and, in consultation with the Project Leaders and co-Leaders, develop a final list of initial resources to 
be developed. One or more core programmers under the supervision of Drs. Davidian, Lin and Owzar and in 
collaboration with appropriate investigators, will carry out the programming tasks involved. Subsequently project 
investigators identifying needs for such resources will contact Dr. Davidian, who will oversee this function, and 
work with her to develop a development proposal. Upon approval of the proposal by the core leadership, in 
consultation with Project Leaders, core programmers will execute the plan. 

4.3 Aim 3: Creation and Dissemination of Public-Use Software and Project Methodology 

A key function of the core will be the design and development of robust, reliable, user-friendly and well-
documented software applications to bring the methods developed by the program project into practice. Once 
the operating characteristics and performance of a method have been extensively evaluated in simulation studies 
by the investigators and found to be satisfactory investigators may request development of a public-use software 
application. After development, when an application is deemed to be sufficiently mature, it will be released to 
the users on the program project web portal dedicated to public use software developed by the project. The core 
will be available to assist investigators in arranging workshops, webinars, and other activities to demonstrate the 
software to the user community. 

Investigators wishing to initiate development of public-use software will submit a development proposal to Dr 
Lin, who will oversee this function. Upon approval of the proposal by the core leadership, in consultation with 
Project Leaders, core programmers will execute the plan. The entire development process will be based on an 
intimate collaboration between Core C Directors and staff and the project investigators. The investigators and 
programmers responsible for developing the application will conduct regular conference calls and face-to-face 
meetings as deemed necessary as development proceeds. A monthly conference call with a member of the core 
leadership will be conducted to keep the leadership apprised of progress and any unanticipated issues. 
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Core C will host a well-maintained web presence to provide access and information about its applications, 
activities, and accomplishments. Each software application will have its own dedicated page that will provide a 
summary of the application, links for download, installation information, and other documentation. Each released 
version of the application will be posted along with information about any new features added or bugs fixed since 
the last released version. It will also provide information about how to contact the developers through the issue 
tracking system to report problems or leave feedback. Software downloads will be tracked through this web page 
to give an indication about the usage. 

4.4 Development Process 

In the implementation of the methods. Core C will employ a standard software development process. This 
process will begin by working with the project investigators to understand the requirements and scope of the 
application to be developed. The next step will be to find out if the application needs to developed from scratch 
or it it can be developed by extending or modifying an existing application. The next step is to specify how the 
software will be developed and decide on the architecture. After these steps have been completed, the actual 
coding will begin. Testing and documentation will be carried out simultaneously The software will then be under 
continual maintenance by correcting bugs or adding features provided by users. 
Best Practices. Core C will conduct all of its activities according to so called best practices. It is committed to 
providing code and sofhware that has been developed systematically in consultation with the project investigators 
and has been tested against nice as well as extreme or pathological cases. It is also committed to develop code 
that is well documented for both expert users who seek to understand not only how to use the sofhware but also 
understand the underlying methodology and for non-expert users who are content with using the software as a 
black box. 
Software Tools. Core C investigators have extensive experience in using statistical software and programming 
languages to develop code and applications for support of their statistical research and clinical design. The R 
statistical environment has proven to be a superb platform for statistical computing and application development. 
Its facilities for producing powerful graphics in a straightforward and flexible fashion are unmatched. As R is 
a interpreted language, it is not optimized for looping. The Core C investigators have extensive experience 
embedding the compiled languages C/C++ and Fortran in R. This approach will allow the investigator to code 
computationally intensive parts of the application using one of these compiled languages and the dynamically 
load the the objected as shared libraries. 

The Python programming language has enjoyed great success in the quantitative research field. It offers 
a wide range of modules for manipulating text files and expressions. More importantly it provides facilities for 
interfacing Another useful feature is that one can embed R into Python using Rpy There are also interfaces for 
embedding C/C++ and Fortran into Python. 

The Core C investigators have extensive experience using parallelization programs such as MPl and OpenMP. 
Given that many of these simulations are embarrassingly parallel, the use of these programs is very important 
as it will allow the investigators to take fully take advantage of multi-core HPC resources, which will be critical for 
large-scale computational efforts. 

The investigators also have extensive experience and access to the Maxima, Mathematica, and Maple sym
bolic processing software. One important feature of these software is that they provide powerful facilities for 
manipulating complicated expressions algebraically Once the expression is manipulated into the desired form, 
it can then be exported into either C or Fortran for embedding into R. The core investigators also have access 
and expertise with Matiab and SAS, and will use these software as needed. For some project methodology of 
interest to users who may be involved in the development of regulatory submissions, such as that in Aim 1 of 
Project 2, it will be important to provide public-use implementations in SAS where possible. The need for SAS 
implementation will be determined through consultation between project investigators and the Core C leadership. 

For some applications, especially for those geared toward practitioners, the application may be interfaced 
through a graphical user interfaces (GUI). A flexible approach to this problem is to use wxPython which is a 
GUI toolkit for Python. It is a cross-platform toolkit that will allow us to run the application on multiple platforms 
(e.g., Linux, Microsoft Windows and Mac OS) without modification. One comprehensive approach for developing 
software applications which would benefit from having a GUI is be tb develop the application using Python by 
embedding R, C/C++ and Fortran code as necessary and then equip it with a wxPython interface. Needless 
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to say the C/C++ and Fortran libraries need to be recompiled depending on the platform. However, careful 
programming should greatly minimize if not eliminate the need for rewriting the code. 

It should be noted that all of the software listed above, with the exception of Matiab, Mathematica and Maple, 
are or expected to soon be open-source software. For the application development. Core C will use open source 
software to avoid licensing issues for the users. 
Source Code Management. Source code management is imperative for proper application development. We 
will use the subversion system for source code management. The clients for interfacing with subversion are 
available on several platforms including Linux, Windows and MacOS. This system is used among other projects 
by R and Bioconductor It allows to check out and commit locally or remotely via ssh. 

The programmers will be required to use this system not only to commit code modifications but also to 
document their modifications. This is important as it will facilitate collaboration among programmers and also 
put a new programmer in a better position to get involved as the documentation will contribute to understanding 
the chronological story of the project. The log history will also allow the core leaders to monitor the progress of 
each software project and as such will facilitate the management and evaluation of the project programmers. 

The subversion code repository will hosted on a dedicated server and be backed up to protect against catas
trophic hardware failure, corruption of the repository or unrecoverable user error. Additional details, are provided 
in the description of the information technology infrastructure. 
Unit Testing and Reproducibility. Even a seemingly minor harmless code modification, may have catastrophic 
unintended consequences to the cases. Furthermore, the robustness of a software cannot be adequately judged 
when testing it exclusively against nice cases. The core will employ the concept of unit testing for its software 
projects. A numberof normal, extreme and pathological test cases will be developed. Once we have ascertained, 
in consultation with the project investigators, that the outcome of these tests are what is to be expected, the test 
outcomes are archived. Anytime the code for a software project is modified, all of the test cases for that project 
are rerun. The outcome of these test cases will then be compared to the archived versions. Any discrepancies 
are noted and investigated. Whenever a bug is reported along with a reproducible example, the example is added 
as a new test case. Implementation of unit testing requires considerable effort but given that the software is to be 
used for analyses of data from clinical trials it is incumbent upon us to implement systematic and robust testing 
procedures to protect against regressions. It is also well known that unit testing serves as a live documentation 
and as such will improve the overall quality of the software. It should be noted that for many programming 
environments such as R and Python, there are systems to facilitate the implementation of unit testing. 

Depending on the complexity and nature of the software application, in consultation with the investigators 
who developed the methods implemented, the core may invite potential users, who may be experts in the par
ticular methodological area or practitioners with strong interest in the methods, to serve as beta-testers for a 
relatively mature version of the software prior to its release to the public. The beta-testers will be asked to use 
the software, report any glitches and difficulties encountered, and offer recommendations on refinements that 
may Improve accessibility 
Documentation. The project is tasked with developing software that is useful to both researchers and prac
titioners. To this end, the provision of adequate documentation is Imperative. Proper documentation not only 
improves the quality of the software, as it forces the developer to think through what the code is expecting and 
returning, but also increases the usage as well documented software is considered to be more user-friendly 

For R packages, the native R package documentation system will be used. For other languages, we will use 
existing system for technical documentation systems such as DocBook. 

In addition to standard documention, tutorials providing demonstrations of the use of the software on data 
sets, will be created. The core will facilitate this activity by developing standard templates for these resources. 
The core will work with the relevant investigators to assist them In working with the programmers responsible for 
the software to develop these tutorials. 
Issue Tracking System. Core C will implement an electronic issue tracking system to allow project investigators 
to report issues and request support. This will not only allow us to track the progress of the support requests but 
also allow the leadership to assess the responsiveness of the core staff to issues. 
Mailing List. Core C will maintain a mailing list to transmit communications efficiently to the project investigators 
and personnel. This will ensure that project investigators from all projects are aware of the core's activities and 
milestones. The mailing membership list will be actively maintained to ensure that new members are added in 
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an expeditious manner and that individuals no longer involved with the projects are removed. 

4.5 Training 

To assist the investigators and research assistants working on the individual projects, who will be developing and 
running code for research purposes, to write more efficient and robust programs and execute them effectively the 
core will host periodic training workshops. For example, sessions on parallel computing. Python programming, 
efficient optimization algorithms will be organized, led by the core leaders, programmers, or speakers recruited 
from outside the program project, as appropriate. The core will also develop training materials covering such 
topics and post them and presentation materials on the core web site for access by project personnel. 

4.6 Computing and Information Technology Resources 

Collectively, the three participating institutions boast extensive state-of-the-art HPC resources and general in
formation technology resources to support the mission of Core C. A summary of these resources is provided 
next. 
HPC Computing Resources. Investigators at Duke, have access to departmental HPC resources consisting of 
two 16-core AMD Opteron 8222SE servers with 64GB of RAM (expandable to 128GB) each and one 8-core AMD 
Opteron AMD 8222SE server with 32GB of RAM (expandable to 64GB of RAM). Each server has STB of storage 
in RAID 10. These servers are managed by the Duke University Office of Information technology (OIT). These 
servers provide parallelization facilities using MPl (up to 40 cores) and OpenMP (up to 16 cores). Additionally, 
the Duke core investigators will have access to a server grade two-way dual-core Opteron workstation with 16GB 
of RAM with RAID, a two-way quad-core Xeon workstation with 16GB of RAM and a dual-core mobile workstation 
with 8GB of RAM. 

Investigators at NCSU have access to multiple HPC computing resources to serve their computing needs. 
The Department of Statistics maintains a 20-core Beowulf cluster utilizing 3.6GHz Xeon processors with 4GB 
of RAM (expandable to 24GB) each and a 12-core Windows AD cluster utilizing 2.3GHz Intel processors with 
4GB of RAM (expandable to 24GB) each. These Department clusters are customized according to the needs of 
Department investigators. There are additional Linux HPC computing resources available at both the College of 
Physical and Mathematical Sciences and University levels that are also available, each having similar computing 
power and performance, Each investigator has access at minimum to an Intel 2-core workstation using an Intel 
3.0GHz processor with 4GB of RAM as a primary desktop resource. 

Investigators at UNC-CH, have access to departmental HPC resources consisting of a total of 126 job slots 
for serial jobs and STB of available space on a IBM DS4300 SAN. These include 11 two-way Intel Xeon servers 
each with 4GB of RAM, 8 two-way Xeon quad-core servers with 8GB of RAM and 4 two-way Xeon quad-core 
servers with 16GB of RAM. Additionally the investigators at UNC-CH will have access to university-wide HPC 
resources. The investigators at UNC-CH have access to a wide range of HPC resources through the UNC-CH 
Information Technology Services (ITS) research computing division. These include a 4160-core Dell Linux clus
ter with Infiniband interconnects, a 700-processor general purpose Linux cluster, a 128-processor SGI Altix with 
512 GB of memory and an 8-processor login/interactive front-end, four 16-way Power5-based servers, and a 32-
processor IBM P690. The Dell cluster has ranked in the top 100 of the Top500 supercomputer list since 2006. 
Storage for research data accessed on the above systems includes more than 100 terabytes of disk, comprising 
locally attached disks; nehwork-attached shared scratch space, and network-attached shared file systems. In 
addition, an archival mass storage system, with a capacity of more than 700 TB, is available. 
Application and Source Code Repository Server. The core will acquire and manage a web server to host 
the software applications developed by the project for dissemination to the public and to host the source code 
repository This will be a Dell PowerEdge 2950 4-Core server utilizing 2.5GHz AMD processors with 16GB of 
RAM (expandable to 128GB) or better. It will be housed in a server room in the newly constructed Mathematics 
and Statistics Building at NCSU, scheduled to be dedicated in May 2009. The new server room will have auto
mated fire detection and suppression, a separate cooling system, key card security high speed fiber link, and 
expandable UPS. 
Backup Facilities. Core C is tasked with the stewardship of the source code repository Although the RAID 
array of the server will provide some level of redundancy it will not be relied on as a backup to protect against 
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catastrophic hardware failure, software corruption, or user errors. The core will employ a tape-based system for 
archiving the code repository. The tape media will be stored remotely in a different building house on the NCSU 
campus. The backups will be performed nightly (Monday through Friday) by Mr. Byron or Mr. Waddell and 
archived for at least one month before rotating. If It is determined that longer archival is required, adjustments 
can be easily made with the purchase of additional tape media. 

5 INCLUSION ENROLLMENT REPORT 

N/A 

6 BIBLIOGRAPHY AND REFERENCES CITED 

N/A 

7 PROTECTION OF HUMAN SUBJECTS 

Although the proposed research indirectly involves human subjects through the preparation, in Core B, of de-
identified data sets from identifiable patient data sources, the investigators on Core C will have access only to the 
de-identified data. Thus, the investigators on Core C will have no access to any identifiable patient information. 

8 INCLUSION OF WOMEN AND MINORITIES 

The methods we develop will be applicable to studies with both women and minorities and also to studies which 
examine treatment differences adjusted for gender, ethnicity and race. This is accomplished through the general 
formulation of the statistical designs, models and methods studied that allow for many possible kinds of risk 
factors. Moreover, many of the existing data sets to be studied and provided by Core B Include women and 
minorities, although we will not be generating any new data involving human subjects, 

9 TARGETED/PLANNED ENROLLMENT TABLE 

N/A 

10 INCLUSION OF CHILDREN 

The methods we develop will be applicable to studies with children and also to studies which examine treatment 
differences adjusted for age. This is accomplished through the general formulation of the statistical designs, 
models and methods studied that allow for many possible kinds of risk factors. Moreover, some of the existing 
data sets to be studied and provided by Core B may include children, although we will not be generating any 
new data involving human subjects. 

11 VERTEBRATE ANIMALS 

N/A 
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12 SELECT AGENT RESEARCH 

N/A 

13 MULTIPLE PD/PI LEADERSHIP PLAN 

N/A 

14 CONSORTIUM/CONTRACTUAL ARRANGEMENTS 

If the present application is funded, the University of North Carolina at Chapel Hill will execute subcontracts 
with the consortium institutions (Duke University and North Carolina State University). These inter-institutional 
agreements will be written consistent with the NIH consortium agreement policy 

15 LETTERS OF SUPPORT 

N/A 

16 RESOURCE SHARING PLAN(S) 

The services of Core C will be used by all of five individual research projects in this program. Our estimate is 
that the percentage of core usage by the five projects will be roughly the same, that is. 

Project 1 • 
2 
3 
4 • 
5 

• 20% 
• 20% 
- 20% 
• 20% 
- 20% 

The following is the external component of our resource sharing plan: 

(a) Data sharing plan: The data-related resources generated by the proposed research consists of new statis
tical methodology software packages for implementation of the methodology, and tutorials for the software. 
The statistical methodology will be shared through peer reviewed publications and national meetings and 
through other standard means. All accepted publications will be deposited in PubMed Central in accor
dance with the NIH Public Access Policy Summaries of the methodology the software and tutorials will 
be shared through a public web site managed by Core A, while Core C will assist in preparation of the 
software and tutorials for dissemination. Core C will use de-identified data prepared by Core B to test the 
methods and to create demonstration's of use of the methods to be included in tutorials. Core C will not be 
involved in sharing of these data; this function will be addressed by Core B. 

(b) Sharing model organisms: N/A 

(c) GWAS: N/A 

L 
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PERCENTAGE DISTRIBUTION OF SCIENTIFIC CORE 
RESEARCH RESOURCES TO PROJECTS 

Project 

Core A: 
Administrative 
Core 

Core B: 
Data Compilation 
Core 

Core C: 
Computational 
Resource and 
Dissemination 
Core 

Project 1 

20 

30 

20 

Project 2 

20 

20 

20 

Project 3 

20 

10 

20 

Project 4 

20 

30 

20 

Project 5 

20 

10 

20 

Total 
(100%) 

100 

100 

100 
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