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1 Overview

> library(eMap)

This vignette describes eQTL mapping, visualization and other analysis tools in R/eMap package. To improve
efficiency, we implemented the computational intensive parts of our algorithms by C using GSL library
(http://www.gnu.org/software/gsl/). Therefore in order to install this R package, GSL library need to be
installed. Users may need to change the Makevars file in src folder to provide the correct location for hearder
file and library file of GSL.

2 eQTL mapping

2.1 Linear regression

To maintain a reasonable power given limited sample size and multiple testing correction in eQTL studies,
the smallest model with only additive genetic effect is often used to map eQTL [Stranger et al., 2007]:

y = a+ bx+ ε,

where y indicates a gene expression trait and x indicates the additive genetic effect, which can be coded by
the number of minor alleles, and ε is the residual error. Sometime two genetic effects need to be modeled
simultaneously. For example, if we want to model both additive or dominant effects, or total copy number
and alleleic copy number effects:

y = a+ b(nA+ nB) + c(nA− nB) + ε,

where nA and nB indicates the number of A and B alleles of a SNP.
This linear regression approach with up to tow genetic effects is implemented in function eMap1:

eMap1(me, mm1, mm2=NULL, output.tag, p.cut, cis.only=FALSE, cis.distance=1e6,

eChr=NULL, ePos=NULL, mChr=NULL, mPos=NULL, tol=1e-7,

nna.percent=0.75)

Here me, mm1, and mm2 are matrices of gene expression data and two types of genotype data respectively, with
each row corresponds to one gene/marker and each column corresponds to one individual. The result of this
function are written into two files, tag eqtl.txt and tag freq.txt, where tag is specified by output.tag. Only
the results with p-values smaller than p.cut are kept. The following is an example of tag eqtl.txt:

geneID markerID a a_p b b_p N

1 4516 -0.374 7.21e-03 0.661 7.74e-05 59

1 18632 -0.420 3.88e-03 0.687 8.83e-05 63

...
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where geneID and markerID are the row IDs of genes and markers in matrices me and mm respectively, a_b
and b_p are p-values for coefficient a and b respectively, and N is the sample size after excluding missing
values. The file tag freq.txt includes the frequencies of the p-values so that although only those p-values
smaller than p.cut are recorded, we still have the distribution information for all the p-values.

If cis.only=TRUE, only cis-eQTL computation is carried out, and an eQTL is defined as cis-eQTL if the
distance between the gene and the marker is smaller than cis.distance. In order to identify cis-eQTL, we
need the chromosome locations of all the genes and markers, which are specified by eChr, ePos, mChr, and
mPos, respectively. Notice the expression/genotype data are matched to their location information based on
row ID. Therefore, eChr should be a vector of which the length equals to the number of rows of me. Similar
length restrictions apply to ePos, mChr, and mPos. It is assumed that mm1 and mm2 have the same number
of rows and the same row of mm1 and mm2 correponds to the same genetic marker. It is also assumed that
both eChr and mChr are integer vectors, so chromosome X, Y should be coded as numbers.

2.2 Linear regression with permutation

Multiple testing correction is implemented in two levels. First, given a gene, multiple tests across markers are
corrected by evaluating permutation p-value. Secondly, multiple tests across genes are corrected by choosing
a permutation p-value cutoff based on False Discovery Rate (FDR) estimates. In this R package, we focus
on the calculation of permutation p-value. Once we obtain the permutation p-values, FDR can be estimated
by existing method such as R/qvalue.

The function that carry out permutations is defined as follows:

eMap1P(me, mm1, mm2=NULL, ptype, output.tag, n.permute=10,

p.cut=1e-4, cis.only=FALSE, cis.distance=1e6, eChr=0, ePos=0,

mChr=0, mPos=0, trace.it=TRUE, tol=1e-7, nna.percent=0.75,

np.max=100000, np=c(100, 1000, 5000, 10000, 50000),

aim.p=c(0.1, 0.05, 0.02, 0.01, 0.002), confidence.p=0.0001,

permute.grp=NULL)

In addition to the parameters in function eMap1, this function has a few additional parameters for permu-
tations. If ptype=1, it simply runs the function eMap1 K times using permuted gene expression data, where
K = n.permute. In each permutation, both tag eqtl.txt and tag freq.txt are written out. If ptype=2, we
carry out adaptive permutations with the rules specified by parameters np.max, np, and aim.p. Specifically,
we stop the permutation if there is strong evidence that the permutation p-value is bigger than aim.p[i]

after np[i] permutations, otherwise permute at most np.max times. The strong evidence means the binomial
p-value of the test

H0 : permutation p-value = aim.p[i] vs. H1 : permutation p-value > aim.p[i]

is smaller than confidence.p . When ptype=2, the output is also written into a file. Here is an example of
the output:

geneID markerID pval permuteP npermute

1 42729 1.4e-05 0.75 20

2 63293 8.6e-07 0.114 1000

...

where geneID and markerID are the row IDs of genes and markers in matrices me and mm respectively, pval
and permuteP are p-values and permutation p-values respectively, and npermute is the number of permuta-
tions used.

User can also specify a categorical parameter permute.grp such that all the permutations are carried out
with each category of this parameter. This conditional permutation is useful to control some confounding
effect such as race or sex effects.
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2.3 Multiple linear regression

For eQTL studies with enough samples, both additive and dominant genetic effects can be considered. Specif-
ically, we refer to the coding “(AA, AB, BB) → (-1, 0, 1)” as additive effect, and the coding “(AA, AB, BB)
→ (-1, 1, -1)” as dominant effect. The additive and dominant effects are complementary to each other. The
additive effect is actually a linear effect proportional to the number of either A or B alleles, and the dominant
effect captures the deviation from the linear effect. Note the dominant effect does not correspond to the
dominant inheritance, for example, dominant inheritance of allele B corresponds to the coding of “(AA, AB,
BB) → (a, b, b)”, where a 6= b. A dominant inheritance can be represented by a combination of additive
and dominant effects.

As a confounding variable, sex effect often need to be taken into account in eQTL studies. Besides the
binary variable sex, which is present in every model to control the sex main effect, there are four other possi-
ble predictors, two genetic main effects, additive effect (add) and dominant effect (dom), and two interaction
effects, add:sex and dom:sex. Here we use X:Y to indicate the interaction between X and Y. Thus there
are altogether 15 models with at least one genetic effect. The significance of each model can be assessed by
comparing it with the baseline model y = µ+ β(sex) + ε by likelihood ratio test.

We reduce the 15 models to 5 models (equation (1)-(5)) based on the following three principles: (1) If an
interaction term is included in the model, the corresponding main effects should also be included. (2) If the
dominant effect is included in the model, the additive effect should also be included. (3) If the interaction
term sex:dom is included in the model, the sex:add effect should also be included. The first principle is a
commonly used criteria for model selection. Principle (2) and (3) are biologically meaningful because the
dominant effect by itself means the two homozygous genotypes have the same effect which is different from
the effect of heterozygous genotype. This is rarely the case, and any deviation from this situation requires
the presence of additive effect. The commonly encountered dominant, recessive, or co-dominant inheritance
patterns all require both the additive and dominant effects.

model 1: y = µ1 + β11(sex) + β12(add) + ε1 (1)

model 2: y = µ2 + β21(sex) + β22(add) + β24(sex:add) + ε2 (2)

model 3: y = µ3 + β31(sex) + β32(add) + β33(dom) + ε3 (3)

model 4: y = µ4 + β41(sex) + β42(add) + β43(dom) (4)

+β44(sex:add) + ε4

model 5: y = µ5 + β51(sex) + β52(add) + β53(dom) (5)

+β54(sex:add) + β55(sex:dom) + ε5

In our implementation (function lmEQTL), we either output the results of all the five models or select
model by a backward procedure (Figure 1). Motivated by the observation that in many cases, the additive
and/or sex:add effects are significant, while the dominant and sex:dom effects are not [Sun, 2007], we also
allow the option of only considering additive and sex:add effects, i.e., model (1) and (2).

Currently adaptive permutation has not been implemented for this linear regressions with sex effects. A
fixed number of permutations can be carried out by functions eMap2P and lmEQTL.byChr.permute. Merging
permutations across genes saves a significantly amount of computation time, and can provide an initial
estimate of the overall significance. However, as suggested by empirical studies, a large number of gene-
specific permutations is more appropriate [Carlborg et al., 2005].

3 eQTL visualization

The function, ePlot which visualize the eQTL results, is defined as follows

ePlot(geneID, markerID, scores, scuts, cols, eChr, ePos, mChr,
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Figure 1: Backward linkage model selection. The default model is model 1: y = µ1+β11(sex)+β12(add)+ε1.
Comparing with the forward model selection procedure in a previous publication [Wang et al., 2006], our
backward model selection procedure aims to find smaller models, e.g., model 1 instead of model 3, model
2 instead of model 4. The decision of dropping a term is made based on regular likelihood ratio test for
comparing nested models.

mPos, chroms, xlab="QTL Location", ylab="Transcript Location",

plot.hotspots=TRUE, hotspots.cut=10, score.type="p-value"),

where geneID, markerID and scores are three vectors of same length. One triplet of geneID[i], markerID[i],
and scores[i] indicates an association between a gene (ID=geneID[i]) and a marker (ID=markerID[i]),
with p-value equals to scores[i]. Note here ID is just row ID of gene/marker in the gene expression/marker
genotype data matrix, and eChr, ePos, mChr, and mPos are vectors including location information for all
the genes/markers, with the same order as the original data matrices. For example, the information of gene
with ID=geneID[i] is stored at eChr[geneID[i]], and ePos[geneID[i]]. The scores can be either p-value
or regression coefficients, which is specified by parameter score.type. Parameter scuts and cols specify
the colors for eQTL results of different significance levels. For example, if score.type = "p.value", scuts
= c(1e-4, 1e-5), and cols = c("green", "blue"), then all the associations with p-values within (1e-5,
1e-4] are plotted as green points and all the associations with p-values smaller or equal to 1e-5 are plotted
as blue points. An example is listed below using the eQTL data of Brem and Kruglyak (2005).

> data(eqtl.y112)

> data(eInfo.y112)

> data(mInfo.y112)

> eq = eqtl.y112

> mI = mInfo.y112

> eI = eInfo.y112

> ePlot(eq$geneID, eq$markerID, eq$pValue, scuts = c(1e-06, 1e-07,

+ 1e-08, 1e-09), cols = c("green", "blue", "red", "black"),

+ eChr = eI$chr, ePos = 0.5 * (eI$start + eI$end), mChr = mI$chr,

+ mPos = mI$start, chroms = 1:16, xlab = "eQTL Location", ylab = "Transcript Location",

+ plot.hotspots = TRUE, hotspots.cut = 10)
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eQTL Location
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As shown in Figure 2, the eQTL results are visualized a scatter plot with marker location on the X-axis
and gene location on the Y-axis (function eplot). Different levels of significance are plotted using different
colors. At the bottom of the scatter plot, we also plot the number of genes linked to each marker.

4 eQTL module

An eQTL hotspot is a small segment of DNA sequence that harbors the eQTL of multiple genes, and we
define an eQTL module as an eQTL hotspot together with the associated genes. eQTL modules can be
detected by moving window of constant size or by a hypothesis testing method which allows variable hotspot
sizes [Sun et al., 2007] (function eModule). Another question is how to quantify the significance of an eQTL
module. If all the genes in an eQTL module are independent, the joint significance can be measured by
the product of individual p-values. However, the independence assumption is obviously not correct and it
exaggerates the significance level. Suppose there are T genes in an eQTL module, of which the expressions are
highly correlated regardless of the DNA variation. Then as long as one of them is associated with a marker
by chance, the other genes are probably associated with the marker as well. Based on this concern, we
propose to evaluate the significance of an eQTL module as follows. First, identify a representative genotype
profile in the eQTL hotspot; record it as mc. Then find the gene that is most significantly associated with
mc; record it as e(1) and the corresponding p-value as p1. Next, from all the remaining genes, find the gene
with the most significant relation with mc, given e(1) (by linear model y = β0 + β1e(1) + γmc + ε); record
it as e(2) and the corresponding p-value as p2. Then include both e(1) and e(2) into the model to identify
the third gene. Repeat this procedure until a p-value cutoff q (e.g., q=0.01) is met, then we can calculate
a statistics for the eQTL module as

∑
pi≤q log(pi) (function moduleScore). An example is shown below for
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an eQTL module on chromosome 15 including 122 genes.

> data(eData.y112)

> data(mData.y112)

> data(mInfo.y112)

> data(eqtl.y112)

> eqtl = eqtl.y112

> eqtl = eqtl[eqtl$pValue <= 1e-06, ]

> module = eModule(eData.y112, mData.y112, mInfo.y112, eqtl.y112,

+ p.binom = 0.05, plrt.cut = 0.1, prop.cut = 0.2, haploid = TRUE)

> mIDs = module$chr15$mod1$mID

> mc = mData.y112[mIDs[1], ]

> eIDs = module$chr15$mod1$eID

> eD = eData.y112[eIDs, ]

> moduleScore(eD, mc)

$geneID

[1] 10 17 39 16 37

$pval

[1] 2.645702e-14 1.434475e-03 2.524796e-03 6.901860e-03 1.798608e-02

$score

[1] -52.78593

5 Integrated study of eQTL and other variables

Integrated studies of eQTL and other variables is of great interest because the ultimate goal of an eQTL
study is often beyond the relation between gene expression and genetic markers. Interesting questions
include how does a genetic variation affect gene expression [Sun et al., 2007], what is the relation between
an eQTL and a clinical outcome [Schadt et al., 2005]? To answer these questions, we often need to dissect
the relation between DNA, gene expression, and another quantitative variable, e.g., identifying the following
causal relations: DNA → Transcription factor → gene expression, or DNA → gene expression → clinical
outcome. In this software, we implemented a likelihood testing method (function cauLR) to dissect the
possible relations between three variables: X → Y → Z, X → Z → Y , and Z ← X → Y . As demonstrated
by [Sun et al., 2007], this likelihood testing method is effective to identify the transcription factors that
mediate the eQTL modules. These basic network structures including only three elements can also be the
basis to build larger networks. An example using simulated data is shown below. The underlying true model
is y0→ y1→ y2, i.e., a causal model. The likelihood ratio test does correctly identify this relation.

> y0 = rnorm(100)

> y1 = y0 + rnorm(100, 0, 1)

> y2 = y1 + rnorm(100, 0, 1)

> cauLR(y0, y1, y2)

$lr

[1] -9.867328e+01 -1.181957e+02 -1.355016e+02 3.827654e+00 6.468527e-05

$label

[1] "causal"

It is worth to mention that to compare the three models, because they are not nested to each other, we
employ likelihood ratio tests for non-nested models [Vuong, 1989]. Sometime it is also desired to compare
one of the three models to a complete model where any two of the variables are related. This is can be done
by commonly used likelihood ratio test of nested models.
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