
Biometrics DOI: 10.1111/j.1541-0420.2011.01654.x

A Statistical Framework for eQTL Mapping Using RNA-seq Data

Wei Sun,1,∗

1Department of Biostatistics, Department of Genetics, and Carolina Center for Genome Sciences, University of
North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A.

∗email: weisun@email.unc.edu

Summary. RNA-seq may replace gene expression microarrays in the near future. Using RNA-seq, the expression of a
gene can be estimated using the total number of sequence reads mapped to that gene, known as the total read count
(TReC). Traditional expression quantitative trait locus (eQTL) mapping methods, such as linear regression, can be applied
to TReC measurements after they are properly normalized. In this article, we show that eQTL mapping, by directly modeling
TReC using discrete distributions, has higher statistical power than the two-step approach: data normalization followed by
linear regression. In addition, RNA-seq provides information on allele-specific expression (ASE) that is not available from
microarrays. By combining the information from TReC and ASE, we can computationally distinguish cis- and trans-eQTL
and further improve the power of cis-eQTL mapping. Both simulation and real data studies confirm the improved power of
our new methods. We also discuss the design issues of RNA-seq experiments. Specifically, we show that by combining TReC
and ASE measurements, it is possible to minimize cost and retain the statistical power of cis-eQTL mapping by reducing
sample size while increasing the number of sequence reads per sample. In addition to RNA-seq data, our method can also
be employed to study the genetic basis of other types of sequencing data, such as chromatin immunoprecipitation followed
by DNA sequencing data. In this article, we focus on eQTL mapping of a single gene using the association-based method.
However, our method establishes a statistical framework for future developments of eQTL mapping methods using RNA-seq
data (e.g., linkage-based eQTL mapping), and the joint study of multiple genetic markers and/or multiple genes.
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1. Introduction
Since the first genome-wide study of gene expression quanti-
tative trait locus (eQTL) was published in 2002 (Brem et al.,
2002), eQTL mapping has evolved from a novel approach
to a standard strategy in many genome-wide studies. It
has been shown that eQTL not only provides insight on
transcription regulation, but also illuminates the molecular
basis of phenotypic outcomes, such as complex diseases
(Cookson et al., 2009). High-throughput RNA sequencing,
also known as RNA-seq, is becoming a popular technique to
measure gene expression abundance (Mortazavi et al., 2008;
Wang, Gerstein, and Snyder, 2009). Briefly, an RNA sample
extracted from single or multiple cells is first converted to
a library of cDNA fragments of a few hundred base pairs
(bps). Then the sequence segments on one or both ends of
the cDNA fragments are sequenced. One such sequenced
segment is called a sequence read and is typically 30bp to
100bp long, depending on the sequencing platform. In a
typical RNA-seq experiment, tens of millions of sequence
reads are obtained for a sample and the expression of a gene
is measured by the number of sequence reads mapped to this
gene. RNA-seq offers several advantages over microarrays.
For example, RNA-seq is less noisy and has a much larger
dynamic range than microarrays, and RNA-seq can identify
new transcripts whereas microarray’s detection capability is
limited by the probes on the array (Wang et al., 2009).

In terms of eQTL studies, one important advantage of
RNA-seq is its ability to measure allele-specific expression

(ASE). In diploid individuals, there are two sets of chromo-
somes: one is the paternal copy and the other is the maternal
copy. Therefore each gene has two alleles: the paternal allele
and the maternal allele. The transcript abundance of each
allele of a gene is referred to as its ASE, which has been used
to distinguish cis- and trans-eQTL (Doss et al., 2005; Ronald
et al., 2005). Cis-acting regulation is due to DNA varia-
tions that directly influence the transcription process in an
allele-specific manner. Alternatively, trans-acting regulation
affects the expression of a gene by modifying the activity or
expression of factors that regulate the gene, which leads to
the same amount of expression changes for both alleles of the
gene (Wittkopp, Haerum, and Clark, 2004). For example,
suppose a DNA polymorphism site D is located at the pro-
moter of a gene G1. A mutation of D disrupts transcription
initiation of G1, and thus D is a cis-eQTL of G1. The allele
of G1 that harbors the mutated copy of D has a reduced
expression level, whereas the allele that harbors the normal
copy of D has a normal expression level. Now assume G1

encodes a transcription factor that regulates the expression
of G2. Then D is a trans-eQTL of G2. Both alleles of G2 will
have the same amount of expression reduction due to the
mutation at D. Gene expression microarrays cannot measure
ASE because both alleles of a gene are targeted by the same
probe set. Thus cis/trans-eQTL cannot be distinguished in
traditional eQTL studies using gene expression microarrays.
However, because cis-eQTLs are often due to DNA poly-
morphisms near the gene, local and distant eQTLs are often
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referred to as cis-eQTL and trans-eQTL, respectively. As
Rockman and Kruglyak (2006) have pointed out, “the casual
conflation of different usages of cis and trans has resulted in
a significant amount of confusion.’ With RNA-seq, we can
measure ASE using the sequence reads that overlap with
at least one heterozygous single nucleotide polymorphism
(SNP). Therefore, it is possible to distinguish cis-eQTLs from
trans-eQTLs when we map eQTLs using RNA-seq data. This
distinction is important for understanding the mechanism of
gene expression regulation, for example, from an evolutionary
point of view (Wittkopp et al., 2004).

We propose three statistical methods to map eQTLs using
RNA-seq data: the total read count (TReC), ASE, and Total
Read Count and Allele-Specific Expression (TReCASE)
methods, together with a statistical test to distinguish
between cis-eQTL and trans-eQTL. The TReC method maps
either cis- or trans-eQTLs by assessing the significant associ-
ation between the TReC per gene and the SNP genotype via
a negative binomial or Poisson regression. The ASE method
maps cis-eQTLs using ASE. Specifically, it tests whether
the overexpression of one allele of a gene is associated with
one allele of a target SNP, while modeling allele-specific read
counts using a beta-binomial distribution. Allele-specific
reads can only be identified if there are heterozygous SNPs in
the coding regions of the gene, and some reads overlap with
such heterozygous SNPs. In addition, an association can be
tested only if the target SNP is heterozygous. Thus the ASE
method can only use part of the sequence reads (those over-
lapping with at least one heterozygous SNP), and part of the
samples (those in which ASE can be measured and the target
SNP is heterozygous). The TReC method uses all available
samples and all mapable reads, although it is sensitive to pos-
sible confounding effects, such as observed/unobserved batch
effects. In contrast, although the ASE method only uses part
of the data, it is less sensitive to confounding effects. This
is because ASE measures the expression of one allele using
the other allele as a within-sample control; therefore most
confounding effects will be cancelled (Pastinen, 2010). The
TReCASE method maps cis-eQTLs by combining TReC and
ASE data in a likelihood-based framework. Thus TReCASE
not only exploits more information than the TReC or ASE
method alone, but also is more robust because it is less likely
that an unobserved confounding effect will alter TReC and
ASE measurements in a consistent manner.

Traditional eQTL mapping methods that were developed
for microarray expression data often assume the expression
data follow a normal distribution (conditioning on certain co-
variates including genetic factors), and apply linear regression
or equivalent approaches for eQTL mapping (Kendziorski
and Wang, 2006). A straightforward application of such
linear regression approaches for RNA-seq data requires
appropriate normalization of the TReC measurements. For
example, Pickrell et al. (2010) normalized TReC measure-
ments of each gene by normal quantile transformation and
then applied linear regression for the eQTL mapping. As
is shown in simulation and real data studies, our TReC
or TReCASE method has significantly higher power than
the two-step approach of normalizing TReC data followed
by linear regression. In addition, it will be clear from our
derivation that by modeling the RNA-seq data using discrete

distributions, it is natural to combine TReC and ASE data
for joint inference. However, if one transforms TReC and/or
ASE measurements into a continuous scale, it is difficult if
not impossible to combine them into one model.

Similar to many other new techniques at their emergence,
how to design RNA-seq experiments to achieve high power
and low cost is of great interest. In this article, we show
that by using our TReCASE method for cis-eQTL mapping,
it is possible to retain statistical power, while reducing the
sample size and increasing the total number of reads per
sample. Because the sequencing cost is falling rapidly as
the techniques advance, sample collection, especially for
human studies, will contribute the major cost of an eQTL
experiment. Therefore this strategy of increasing the number
of reads per sample, but decreasing the sample size could
dramatically reduce the overall cost.

2. Proposed Methods
2.1 Overview
The diagram in Figure 1 illustrates an example of a cis-eQTL
in three individuals. For a hypothetical gene with two exons,
we assume there is an SNP on the first exon, which has two al-
leles A and T, and we test for the association of this gene’s ex-
pression with an upstream SNP (target SNP), which has two
alleles C and T. To simplify the discussion, we assume there
is no read on the exon junction, all the reads in the first exon
overlap with the exonic SNP, and the two exons have the same
number of reads. Individuals (i) and (ii) have heterozygous
genotypes on the exonic SNP, and thus ASE can be measured.
Individual (i) has a heterozygous genotype for the target SNP,
thus we can test cis-eQTL using ASE from that individual
(Figure 1b). This cis-eQTL also manifests its effect through
the TReC across the three individuals (Figure 1c). In this ex-
ample, TReC and ASE eQTLs have the same cause, the ex-
pression of the T allele is half of the expression of the C allele.

Another feature illustrated in this diagram is that we
need to know the haplotype around the gene for detecting
cis-eQTL using ASE. For example, in individual (i), given
haplotype C-A and T-T, we can assign the ASE to the two al-
leles of the target SNP. Haplotype information is also needed
to combine the ASE across different SNPs in the gene body.
The ambiguity of haplotype construction (i.e., phasing) may
influence the accuracy of ASE measurements. Usually phas-
ing by statistical methods is not accurate across a long range
of genetic distance, thus ASE can hardly be used to identify
distant cis-eQTLs. However, recent technique advancements
show that direct phasing of the whole genome is possible,
and may become an integral part of genome-wide analysis in
the near future (Fan et al., 2010; Kitzman et al., 2010).

2.2 An Association Model Using TReC per Gene
We consider one gene and study the association of its expres-
sion with the jth SNP. Let ti be the total number of reads
mapped to this gene in the ith sample, where 1 ≤ i ≤ N, and
N is sample size. We model ti by a Poisson distribution or a
negative binomial distribution, depending on whether there is
significant overdispersion for the Poisson distribution, which
can be assessed by a score test (Dean, 1992). Let fNB (; µi , φ)
be the density function for a negative binomial distribution
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Figure 1. A diagram to illustrate the RNA-seq count variation of one gene due to an cis-eQTL. (a) RNA-seq measurements of
a hypothetic gene with two exons in three diploid individuals. The target SNP which we test for association has the genotype
CT, CC, and TT for the three individuals. There is an SNP on the first exon, which has genotype AT, AT, and AA for the
three individuals. ASE can be measured by those sequence reads that overlap with a heterozygous exonic SNP. Therefore
we can measure ASE for individuals (i) and (ii). However, association testing by ASE is only possible if the target SNP is
heterozygous, thus only individual (i) can be used to test for eQTL by ASE (b) ASE measurements for individual (i). (c)
TReC measured for the three individuals across the two exons of this gene.

with mean µi and dispersion parameter φ:

fNB (ti ; µi , φ) =
Γ(ti + 1/φ)
ti !Γ(1/φ)

(
1

1 + φµi

)1/φ (
φµi

1 + φµi

)t i

.(1)

A negative binomial distribution can be considered a gener-
alization of a Poisson distribution to allow for overdispersion.
Specifically, if a random variable X follows a Poisson distri-
bution with mean µi , and µi follows a gamma distribution,
then the resulting distribution for X is a negative binomial
distribution. The variance of a negative binomial distribution
is µi + φµ2

i , where φµ2
i is the overdispersion part of the

variance. As φ → 0, fNB (ti ; µi , φ) reduces to a Poisson
distribution with parameter µi .

Denote the major and minor alleles of the jth SNP as A
and B, respectively. Let xij , the genotype of the jth SNP in
the ith sample, be the number of B alleles, i.e., xij = 0, 1, and
2 for genotypes AA, AB, and BB, respectively. For either a
Poisson or negative binomial regression, we employ a log link
function to acknowledge the fact that µi > 0:

log(µi ) = b0 + bκ κi +
p∑

u=1

bu ηiu + w(bxj , xij ), (2)

where κi is the logarithm of the total number of reads for
sample i, and

∑p
u =1buηiu controls other confounding effects.

In the real data analysis in this article, following Pickrell et al.
(2010), we capture such additional confounding effects by
principal component (PC) analysis of the expression data, and
thus ηiu is the loading of the uth PC in the ith sample. Specif-
ically, PCs are calculated using log-transformed standardized
TReCs, where standardization means dividing a TReC by the

total number of reads per sample. The coefficients of these
confounding effects (e.g., TReCs per sample and PCs) are es-
timated for each gene separately, because they may influence
the expression of different genes by different magnitudes. For
example, suppose a batch effect is due to two protocols in
RNA amplification. One protocol favors amplification of genes
with higher GC content, i.e., genes with larger proportions of
C or G nucleotides but the other does not. Thus this batch
effect may have different influences for genes with different
GC contents. Note that PCs from genotype data may also be
used as covariates to capture population stratification. We do
not include them in our real data analysis because this is a
well-studied population without apparent population stratifi-
cation. Gene length is another factor that is often considered
in measuring gene expression by RNA-seq. However it is not
relevant to our study because we map eQTL for each gene
separately. w(bxj , xij ) models the genetic effect of the jth SNP

w(bxj , xij ) =

⎧
⎪⎨

⎪⎩

0 if xij = 0

log(1 + exp(bxj )) − log(2) if xij = 1

bxj if xij = 2

The functional form of w(bxj , xij ) can be derived as follows.
First, let

log(µiAA) ≡ log(µi |xij = 0) = b0 +
p∑

u=1

bu ηiu + bκ κi , (3)

log(µiBB ) ≡ log(µi |xij = 2) = b0 +
p∑

u=1

bu ηiu + bκ κi + bxj .

(4)
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In other words, we define bxj as

bxj =log
(

µiBB

µiAA

)
=log

(
µBB

µAA

)
=log

(
2µB

2µA

)
=log

(
µB

µA

)
.

(5)

Thus

log
(

µiAB

µiAA

)
= log

(
µA + µB

µA + µA

)
= log

(
1 + µB /µA

2

)

= log
{

1 + exp(bxj )
2

}
, (6)

and

log(µiAB ) ≡ log(µi |xij = 1) = b0 +
p∑

u=1

bu ηiu + bκ κi

+ log
{

1 + exp(bxj )
2

}
.

(7)

We refer to the model specified by equations (1)-(2) as the
TReC model. Let b = {b0, b1, . . . , bp , bκ }. In a general form, we
write the likelihood of the TReC model of the ith sample as

gTR(ti ;b, bxj , φ,X) = IN B fNB (ti ; µi , φ) + (1 − INB )fP (ti ; µi ),
(8)

where X indicates all the relevant covariates, and INB is an
indicator that equals 1 if a negative binomial distribution is
used, and 0 if a Poisson distribution is used. The maximum
likelihood estimate (MLE) of the model parameters can be
estimated by the following iterative procedure.

Initialization: Fit a null model by a Poisson regression
using the confounding variables κi and ηiu (1 ≤ u ≤ p), and
estimate b = {b0, b1, . . . , bp , bκ }. Then conduct a score test
for overdispersion. If the score test p-value is smaller than
a cutoff value, e.g., 0.05, fit a negative binomial regression
model and estimate b = {b0, b1, . . . , bp , bκ } and φ. The deci-
sion regarding the distribution family is kept for the following
iterations. Occasionally, when an SNP has a large effect, we
might see that a negative binomial distribution fits the data
better under null hypothesis, but a Poisson distribution is not
unreasonable under alternative hypothesis. We fit negative
binomial models for both the null and alternative models in
such cases to facilitate a nested likelihood ratio test, which
is more robust and is computationally more efficient. When
the sample size is large and computational efficiency is less
of a concern, replacing this likelihood ratio test with a Wald
test under alternative hypothesis is a reasonable choice.

Iteration:

(i) Given b, estimate bxj by numerical method, see
Supplementary Materials (Section A) for details.

(ii) Given bxj , estimate b by a Poisson regression with
offsets w(bxj , xij ), or estimate b and φ by a negative
binomial regression with offsets w(bxj , xij ). The likeli-
hoods of b and φ are independent, and hence they can
be estimated separately. See Supplementary Materials
(Section A) for details of the estimation of φ.

Termination: Iterate steps (1) and (2) until estimates of
all the parameters converge.

The significance of association can be tested by a likeli-
hood ratio test comparing the null model estimated in the
initialization step and the alternative model estimated at the
end of the iterations.

2.3 An Association Model Using ASE
The measurement of ASE and ASE-based eQTL mapping
are two independent steps. We first discuss the former. For
a particular individual, suppose the two haplotypes of a
gene of interest are known and denote them by ha and hb .
Then any sequence read that overlaps with at least one
heterozygous exonic SNP of this gene can be assigned to
either ha or hb . The ASE of a haplotype is simply the total
number of allele-specific reads mapped to this haplotype.
In other words, we merge the ASE captured by each exonic
SNP of this gene using haplotype information. Let ni be the
total number of allele-specific reads mapped to this gene in
the ith sample. If there is no heterozygous SNP within the
exon regions of this gene at sample i, then ni = 0 and we do
not include this sample in the likelihood. Otherwise, let nihb

be the number of allele-specific reads mapped to haplotype
hb , and thus niha = ni − nihb

.
Next let us consider the association between the expression

of a gene and SNP j (target SNP). SNP j can be anywhere
in the genome and does not need to be within the gene
body. We can study the ASE association as long as SNP j
is connected with the gene body by a contiguous haplotype.
In practice, the haplotype phasing may not be accurate in
a long range, thus we may focus on SNPs around the gene
body. For example, in the real data study, we examine all the
SNPs within the gene body or outside the gene body, but
within 200kb of the transcription start or end sites. If SNP
j is heterozygous in sample i with genotype AB, let nijB

be
the number of alelle-specific (AS) reads mapped to the same
haplotype as allele B. Then nijB

= nihb
if SNP j’s B allele is

on haplotype hb , and nijB
= ni − nihb

otherwise. We model
nijB

by a beta-binomial distribution, which is an extension of
a binomial distribution to allow for possible overdispersion.
Specifically, let nijB

follow a binomial distribution with the
number of trials ni , and the probability of success pS . If pS

follows a beta distribution with parameters α and β, the
resulting distribution for nijB

is a beta-binomial distribution

h(nijB
; ni , α, β) =

(
ni

nijB

)
B(nijB

+ α, ni − nijB
+ β)

B(α, β)
.

(9)
To connect this ASE model with the TReC model, we

adopt a commonly used strategy to parameterize a beta-
binomial distribution by π = α/(α + β) and θ = 1/(α + β)
(Griffiths, 1973):

h(nijB
; ni , π, θ)

=
(

ni

nijB

)∏n ijB −1
k=0 (π + kθ)

∏n i −n ijB −1
k=0 (1 − π + kθ)

∏n i −1
k=1 (1 + kθ)

,

(10)
where π is the expected proportion of AS reads from
haplotype HB and θ is a dispersion parameter. If there is
no overdispersion, then θ = 0 and nijB

follows a binomial
distribution. Let π0 and π1 be the proportion of AS reads
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from haplotype HB under the null and alternative hypotheses,
respectively. π0 is a fixed constant, whereas π1 is estimated
from the data. Ideally, if the two genome-wide haplotypes of
an individual are known, and the sequence reads are mapped
to these two haplotypes separately, then there is no mapping
bias and π0 = 0.5. In practice, the complete haplotypes may
be unknown and sequence reads are mapped to the reference
genome, which may lead to preferential mapping to the
reference alleles of the SNPs. One remedy is to exclude those
SNPs with strong mapping bias and then assume π0 = 0.5
(Pickrell et al., 2010). We adopt this strategy in our studies.

If SNP j is homozygous in sample i, nijB
equals 0 or ni ,

and thus it is not informative for cis-eQTL mapping because
it does not provide any information regarding the degree of
allelic imbalance or the degree of overdispersion (θ). However,
as long as there are heterozygous exonic SNPs in this gene,
we still have nontrivial nihb

(i.e., 0 < nihb
< ni ), which is

informative for estimation of the dispersion parameter θ.
Therefore, we have the following likelihood function:

h(nijB
, nihb

; ni , π1, π0, θ)

=1 if there is no AS read in samplei; otherwise

h(nijB
, nihb

; ni , π1, π0, θ)

=

{(
ni

nijB

)∏n ijB −1
k=0 (π1+kθ)

∏n i −n ijB −1
k=0 (1−π1+kθ)

∏n i −1
k=1 (1+kθ)

}ζ ij

×

{(
ni

nihb

)∏n ihb
−1

k=0 (π0+kθ)
∏n i −n ihb

−1
k=0 (1−π0+kθ)

∏n i −1
k=1 (1+kθ)

}1−ζ ij

,

(11)

where ζ ij is an indicator, which equals 1 or 0 if SNP j is
heterozygous or homozygous in sample i, respectively. Under
the null hypothesis that there is no cis-association,

h(nihb
; ni , π0, θ)

= 1 if there is no AS read in samplei; otherwise

h(nihb
; ni , π0, θ)

=
(

ni

nihb

)∏n ihb
−1

k=0 (π0 + kθ)
∏n i −n ihb

−1
k=0 (1 − π0 + kθ)

∏n i −1
k=1 (1 + kθ)

.

(12)

We refer to the model specified by equations (11) and (12)
as the ASE model. The MLE of parameters π1 and θ can be es-
timated using a quasi-Newton method (Byrd et al., 1995), see
Supplementary Materials (Section B) for details. The signifi-
cance of cis-association can be tested by a likelihood ratio test
comparing the null model with a fixed π0 and an MLE of θ and
the alternative model with MLE of π1 and θ. Note that θ un-
der the null and alternative models are estimated separately.

2.4 Joint Study of TReC and ASE
We connect the TReC and ASE models by formulating the
log odds of observing reads from the same haplotype of allele
B or allele A of the target SNP:

bxj = log
(

µB

µA

)
= log

(
π1

1 − π1

)
, and thus π1 =

exp(bxj )
1 + exp(bxj )

.

(13)

Therefore we can use the information from both TReC and
ASE to estimate bxj , and we name the combined model the
TReCASE model. Let b = (b0, . . . , bp , bκ ) and let X indicate
all the relevant covariates. Based on the above definition of
the TReC and ASE models, the likelihood of the TReCASE
model across N samples can be written as

L(b, bxj , θ, φ|ti , ni , nijB
,X)

=
N∏

i=1

gT R (ti ;b, bxj , φ,X)
∏

i :n i > 0

h(nijB
, nihb

; ni , π1, π0, θ).

(14)

We obtain the MLE of the parameters using the following
algorithm.

Initialization: The TReC and ASE models are fitted
separately to obtain the initial estimates of b, φ, and θ under
the null model.

Iteration:

(i) Given θ, φ, and b, estimate bxj by numerical methods
(see Supplementary Materials [Section C] for details).

(ii) Given bxj , calculate π1 by equation (13), and then
estimate θ given π1, as shown in the Supplementary
Materials (Section B).

(iii) Given bxj , estimate b and φ by a Poisson or negative bi-
nomial regression with offsets 0, log

[
{1 + exp(bxj )}/2

]
,

and bxj , whereas the genotype of the SNP is 0, 1, and
2, respectively.

Termination: Iterate steps (1) to (3) until the estimates
of all the parameters converge.

Under the null hypothesis, bxj = 0 and π0 = 0.5, the likeli-
hoods of TReC and ASE models are independent, and we can
obtain the MLE of all the parameters and the corresponding
likelihoods, as described in the previous sections. Finally, the
significance of the association is tested by a likelihood ratio
test comparing the null and alternative models.

2.5 TReC, ASE, or TReCASE?
We have proposed three methods for eQTL mapping: TReC,
ASE, and TReCASE. An immediate question is: which
method should be used in practice? If the underlying eQTL
is a cis-eQTL, then the TReC and ASE methods should give
consistent results and the TReCASE method should be used
because it combines information from both TReC and ASE
measurements, hence it should be more powerful. However,
if the underlying eQTL is a trans-eQTL, ASE provides
no information regarding the eQTL and the TReC model
alone should be used. Based on the above rationale, we can
computationally distinguish a trans-eQTL from a cis-eQTL
by hypothesis testing.

H0(cis-eQTL) : b(A )
xj

= b(T )
xj

, v.s. H1(trans-eQTL) : b(A )
xj

̸= b(T )
xj

,

where b(T )
xj and b(A )

xj denote the bxj ’s estimated from the
TReC model and ASE model, respectively. Let logLikM
be the log likelihood of model M. We test the above
hypothesis by a likelihood ratio test with test statistic:
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Figure 2. Comparison of the power of four methods for eQTL mapping when the MAF of the target SNP is 0.05 (a) or
0.2 (b). p-value cutoff of 0.05 is used to call significance and power is calculated as the percentage of simulations where the
p-values are smaller than 0.05, among 2,000 simulations. The horizontal dash line at the bottom of each figure corresponds
to a power of 0.05. When the fold change is 1.0, all methods’ power is approximately 0.05, which indicates that type I errors
are controlled at a desired level by all methods.

−2(logLikTReCASE−logLikTReC − logLikASE), where the log
likelihood under H0 is logLikTReCASE and the log likelihood
under H1 is logLikTReC + logLikASE. We use the TReCASE
model if H0 cannot be rejected (i.e., treat the eQTL as a
cis-eQTL), and the TReC model otherwise (i.e., treat the
eQTL as a trans-eQTL).

3. Simulation Studies
The power of our methods is affected by multiple factors, such
as the effect size and the minor allele frequency (MAF) of the
target SNP. We first use simulation studies to compare the
power of our methods and an existing approach: normalizing
the TReC data by normal quantile transformation followed
by linear regression (Pickrell et al., 2010). We simulate ti , the
total number of reads of a gene in the ith sample, by a nega-
tive binomial distribution with mean parameter µAA, µAB , or
µBB as specified later, and an overdispersion parameter φ =
1.0. The total number of allele-specific reads, denoted by ni ,
is decided by a relation identified from our real data study:
ni ≈ 0.005 × ti . The number of allele-specific reads from one
haplotype is simulated by a beta-binomial distribution with
mean decided by effect size and overdispersion parameter
θ = 0.1. The values of φ and θ are decided by the results
from the real data study. For the robustness of likelihood
ratio test, the ASE model is only applied to those genes with
five or more allele-specific reads in at least five samples.

In the first simulation setup, we assume sample size
N = 65, mean values µAA = 500, µAB = µAAfd , and µBB =
µAA(2fd − 1), where fd is the fold change of expression
level with one minor allele. When the MAF of the target
SNP is small (MAF=0.05, Figure 2a), the TReC, ASE,
and linear regression methods have similar power, although
TReCASE apparently has higher (almost twofold) power.
When the MAF of the target SNP is moderate (MAF = 0.2,
Figure 2b), both the TReC and ASE methods have higher
power than linear regression. The TReCASE method again

has significantly higher power than any other method. The
simulation results also show that all methods control type I
error at desired levels when the fold change is 1.0.

Suppose we want to improve the power of eQTL mapping
given a fixed total number of reads in the experiment. We
can either (1) fix the sample size and increase the number of
reads per sample, (2) fix the number of reads per sample and
increase the sample size, or (3) increase both sample size and
the number of reads per sample. We carry out simulations
for these three situations. Specifically, although the relation
µAB = µAAfd , and µBB = µAA(2fd − 1) remains the same, we
consider (1) µAA = 1000, N = 65, (2) µAA = 500, N = 130,
and (3) µAA = 650, N = 100. The power of the TReC method
increases as the sample size increases (Figure 3a and b).
However, the power of the ASE and TReCASE methods are
similar if we either increase the sample size or the number
of reads per sample (Figure 3c– f), except for the TReCASE
when the MAF is small, where increasing the sample size has
a slight advantage over increasing the number of reads per
sample (Figure 3e).

Based on the results from Figures 2 and 3, we can conclude
that the TReCASE method has better power than any
other method we considered. More importantly, using the
TReCASE method, the power of cis-eQTL mapping can
be improved by increasing the number of reads per sample
instead of increasing the sample size. Except for simple
experimental organisms such as yeast, the sample recruiting
process is often very expensive. Thus given a fixed total
number of reads per experiment, increasing the number of
reads per sample (i.e., increasing read depth) could be much
cheaper than increasing the sample size. Therefore application
of the TReCASE method could have an important financial
impact on designing eQTL experiments using RNA-seq
data.

We have derived approximated formulas for the power
of the TReC and ASE methods under the assumption that
the eQTL effect size is relatively small (see Supplementary
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Figure 3. Comparison of the powers of TReC, ASE, and TReCASE for eQTL mapping. “500 × 65” indicates the baseline
situation that µAA = 500 and sample size N = 65. “1000 × 65,” “650 × 100,” and “500 × 130” indicate three strategies
to improve power by increasing the number of reads per sample, increasing the sample size, or both. Similar to Figure 2, a
p-value cut-off of 0.05 is used to call significance, and power is calculated as the percentage of simulations where the p-values
are smaller than 0.05, among 2000 simulations. The horizontal dash line at the bottom of each figure corresponds to a power
of 0.05.

Materials [Section D]). Based on our derivation, the test
statistics for the TReC and ASE methods are affected by
the number of reads through the factors 1/(1/ti + φ) and
1/(1/ni + θ), respectively. ni is often much smaller than ti .
For example, in the real data study presented in the next
section, ni ≈ 0.005 × ti . Therefore if ti = 600, ni ≈ 3; and
if we double the number of reads per individual, ti = 1200
and ni ≈ 6. This only affects the denominator of TReC’s test
statistic by 1/1200, but affects the denominator of ASE’s
test statistic by 1/6. Therefore, increasing the read depth
can lead to a limited power increase for the TReC model,
but a significant power increase for the ASE model.

4. eQTL Mapping for HapMap Yoruba in Ibadan
samples

We downloaded the mapped RNA-seq reads of 69 lym-
phoblastoid cell lines from the Pritchard lab’s website
(http://eqtl.uchicago.edu/) (Pickrell et al., 2010). These 69
cell lines, which were derived from unrelated individuals
from Yoruba in Ibadan, Nigeria, were part of the samples
of the HapMap project (Frazer et al., 2007). Haplotype
data were available for 65 of these cell lines, which were
downloaded from the HapMap website (Thorisson et al.,
2005) (“version HapMap3 r2”). These 65 samples were
used for all the studies that follow. Among the 1,387,466
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Table 1
The proportion of cis-eQTL among local eQTL

p-value threshold for
the TReC model 10−3 10−4 10−5 10−6

# of genes passed the TReC
p-value threshold

6474 2055 838 412

# of genes with enough AS
reads for cis/trans test

1093 399 174 83

# of genes with cis-eQTL by
the cis/trans test

809 298 136 67

Proportion of cis-eQTL 0.740 0.747 0.782 0.807

phased autosome SNPs, we used ∼1.1 million (1,131,131)
common SNPs with MAF larger than 0.05. The TReC
data of 22,032 autosomal genes were downloaded from
http://eqtl.uchicago.edu/RNA_Seq_data/results/final_
gene_counts.gz. We calculated the ASE of these 22,032
genes using the R function asCount in our R package R/asSeq
(see the Supplementary Materials [Section E] for details).
The total number of sequence reads per sample varied from
2.7 million to 25.4 million with a median of 10.7 million. The
total number of allele-specific reads per sample varied from
12,000 to 135,000, with a median of 58,000 (Supplementary
Table 1). Overall, about 0.5% of the sequence reads were
allele-specific reads (Supplementary Figure 1).

Seven confounding factors were included in the TReC
model, the total number of reads per sample and six PCs
derived from TReC data. No confounding factor was needed
for the ASE model, because the ASE from one allele was
directly compared with the other allele so that the effects
of all the confounding factors in the TReC model were
cancelled. Pickrell et al. (2010) have applied linear regression
to identify eQTLs in these data using normal quantile
normalized TReC data and 3.8 million SNPs in 69 samples.
Due to the limitation of haplotype data, we considered
eQTLs at 1.1 million phased common SNPs in 65 samples.
To make the results from our methods directly comparable
with the results from linear regression, we carried out eQTL
mapping by linear regression as follows. We transformed the
TReC data by normal quantile normalization, regressed out
the effects of the seven confounding factors, and then applied
normal quantile normalization again to obtain the normalized
expression data. Finally we carried out eQTL mapping by lin-
ear regression using the normalized expression data together
with the 1.1 million phased SNPs in 65 samples. Following
Pickrell et al. (2010), for each gene, only local eQTLs within
200kb of the transcription start site were considered.

One gene was often associated with several local SNPs due
to linkage disequilibrium among SNPs. To reduce such redun-
dancy, we only considered the most significant local-eQTL
for each gene. However, this strategy raised a multiple testing
problem because different genes have different numbers of
nearby SNPs, and thus the smallest local eQTL p-values
across genes were not directly comparable. We corrected
this multiple testing problem by calculating a permutation
p-value for each gene. Specifically, for each gene we permuted
its expression up to 5000 times. In each permutation,
we randomly shuffled the TReC data among individuals

followed by a random switch of two ASE measurements per
individual. Then the permutation p-value was calculated
as the proportion of permutations where we observed more
significant p-values than in the nonpermuted data.

As shown in Figure 4a, the TReC model clearly had higher
power than linear regression, which we believe was due to the
TReC model’s capability to more accurately model counts
with overdispersion. The TReCASE model had even higher
power than the TReC model, and the ASE model had the
lowest power. The low power of the latter was mainly the
consequence of the limited number of allele-specific reads,
due to both the relatively low read depth and incomplete
haplotype information. For the robustness of the likelihood
ratio test, we employed an ad hoc rule, to run the ASE model
only if at least five samples had five or more allele-specific
reads. With this restriction, the ASE model was only applied
to 5438 (∼25%) genes. If there were not enough allele-specific
reads to fit the ASE model, then the TReCASE model was
degenerated to the TReC model. Therefore the small number
of allele-specific reads also limited the power of the TReCASE
model.

The results in Figure 4 illustrate the powers of the differ-
ent methods across a range of permutation p-value cutoffs.
In practice, we may choose a permutation p-value cutoff
by controlling the false discovery rate (FDR) (Benjamini
and Hochberg, 1995; Storey, 2003). We calculate FDR as
E(FD)/D, where D is the number of discoveries at permuta-
tion p-value cutoff p, and E(FD) is the expected number of
false discoveries. We estimate E(FD) by Dπ0p, where π0 is the
expected proportion of null hypotheses across all tests (all
the 22,032 genes in our case), and this was calculated as two
times the proportion of genes with permutation p-values ≥
0.5. By controlling FDR at 10%, linear regression, TReC,
ASE, and TReCASE identified 690, 709, 435, and 815 genes
with significant local eQTLs, respectively. For FDR 5%, the
number of discoveries of linear regression, TReC, ASE, and
TReCASE were 447, 483, 295, and 563, respectively.

Figure 4b and c illustrate the results of the ASE model and
TReC model for one gene. The p-values for the TReC model
were 3.5 × 10−2 and 6.7 × 10−5, respectively, before and after
correcting for confounding factors. This difference underlined
the importance of accounting for the confounding effects in
the TReC model. The p-value for the ASE model was 5.2 ×
10−9. In contrast, the TReCASE model had a p-value 1.9 ×
10−12, which was much more significant than either the ASE
or TReC model. Three examples where eQTLs are missed
by linear model, but identified by TReCASE model are
presented at Supplementary Figure 2. The general pattern is
that TReC model gives slightly more significant p-value than
linear model, ASE p-value is comparable or smaller than
TReC p-value, and the TReCASE p-value is much smaller
than the p-value from TReC, ASE, or linear model.

Finally, we seek to answer an important question: among
the local eQTLs, how many were cis-eQTL? As shown in
Table 1, about 74% to 81% of the local eQTLs were cis-
eQTLs, based on the hypothesis testing approach described in
the Section 2.5 (p-value ≥ 0.05). The proportion of cis-eQTLs
increased as the p-value cutoff became more stringent. This
trend was expected, because generally cis-eQTL affected
the expression more directly than trans-eQTL, which often
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Figure 4. (a) The number of local-eQTLs identified across permutation p-value thresholds. For each gene, only the most
significant local-eQTL is kept and all the other local-eQTLs are discarded. (b) An example of eQTL mapping by the ASE
model. b(A/T) indicates the regression coefficient estimates from the ASE model and TReC model, respectively. (c) An
example of eQTL mapping by the TReC model. The X-axis is the genotype measured by the number of minor alleles, and the
Y-axis is the number of reads per sample. Adjustment means to include seven confounding variables into the TReC model:
the total number of reads per sample plus six PCs.

involved some other proteins (Rockman and Kruglyak, 2006),
hence cis-eQTLs tended to have stronger effects.

5. Discussion
We have developed a statistical framework for eQTL mapping
using RNA-seq data. Linear models are often used for eQTL
mapping, whereas gene expression is measured using mi-
croarrays (Kendziorski and Wang, 2006). Because RNA-seq
measurements are counts of sequence reads, it is natural
and as shown in our study, more powerful, to model them
by distributions for discrete variables, such as a negative
binomial distribution or a beta-binomial distribution. More
importantly, we have incorporated ASE information in our
eQTL mapping method, which enables us to computationally
distinguish cis- and trans-eQTLs, and to further improve the
power of cis-eQTL mapping. In our real data study, the gain
of power is less significant than in our simulation studies;
this is mainly due to an insufficient amount of allele-specific
reads. One can increase the number of allele-specific reads
by increasing the overall read depth and/or the read length.
Meanwhile, methods that are particularly designed to enrich

allele-specific reads are already available or are being
developed (Pastinen, 2010).

When the TReC method identifies an eQTL, if the ASE
method detects a consistent association, it is a cis-eQTL; if
the ASE method detects no association, it is more likely a
trans-eQTL. Our real data study shows it is very rare that
both TReC and ASE models find significant but inconsistent
associations (results not shown). However, we do observe
situations in which significant associations are identified by
the ASE model, but not by the TReC model. One possible
explanation is that the allelic imbalance is due to imprinting
(parent of origin) effects. With proper experimental design,
e.g., family trio studies with complete haplotype information
from both parents, our method could be further extended to
identify such imprinting effects.

In addition to eQTL mapping using RNA-seq data, our
method can also be applied to map the genetic loci underlying
events captured by ChIP-seq (chromatin immunoprecipi-
tation followed by DNA sequencing) data, for example,
transcription factor binding sites (Zheng et al., 2010),
open chromatin regions (McDaniell et al., 2010), or DNA
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methylations (Tycko, 2010). One extra challenge in such
studies is that the sites of interest need to be identified from
ChIP-seq data before mapping their variations to genetic loci.

In this article, we have considered a simple eQTL mapping
approach by associating each gene with each SNP. Following
the work of eQTL mapping using microarray data, our
method can be extended to multiple loci mapping (Sun,
Ibrahim, and Zou, 2010), or simultaneous multiple loci
mapping for all genes (Kendziorski et al., 2006; Gelfond
et al., 2007; Jia and Xu, 2007; Chun and Keles, 2009; Pan,
2009), which are among our future research interests.

We have implemented our methods, the TReC, ASE, and
TReCASE into an R package asSeq, which can be freely down-
loaded from http://www.bios.unc.edu/∼wsun/software.
htm. The computationally intensive parts of these methods
were implemented by C. Our real data study, involving
∼ 22,000 genes and ∼ 1.1 million SNPs, and up to 5000
permutations per gene, took about 100 hours on 64 CPUs
with 2.8 GHz Intel EM64T processors. The computational
load, though affordable for most research institutes, is heavy
due to the large number of permutations for each gene. We
are currently working on possible approximations to improve
the computational efficiency.

6. Supplementary Materials
The Web Appendix, Tables, and Figures referenced in Sec-
tions 2, 3, and 4 are available under the Paper Information
link at the Biometrics website http://www.biometrics.
tibs.org.
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