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�� ��The Profile Sampler

Lee, Kosorok and Fine (2005) proposed inference based on sampling from

a posterior distribution based on the profile likelihood.

The quadratic expansion of the previous section can generate confidence

sets for θ by inverting the log-likelihood ratio.
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Translating this elegant theory into practice can be computationally

challenging.

In principle, having an estimator of θ and its variance simplifies this issue

considerably.

However, the computation of these quantities using the semiparametric

likelihood poses stiff challenges relative to those encountered with

parametric models, as has been illustrated in several places in this book.
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Finding the maximizer of the profile likelihood is done implicitly and

typically involves numerical approximations.

When the nuisance parameter is not
√
n estimable, nonparametric

functional estimation of η for fixed θ may be required, which depends

heavily on the proper choice of smoothing parameters.
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Even when η is estimable at the parametric rate, and without smoothing,

Ĩ0 does not ordinarily have a closed form.

When it does have a closed form, it may include linear operators which are

difficult to estimate well, and inverting the estimated linear operators may

not be straightforward.

The validity of such variance estimators must be established on a

case-by-case basis.
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The bootstrap is a possible solution to some of these problems.

Theoretical justification for the bootstrap is possible but quite challenging

for semiparametric models where the nuisance parameter is not
√
n

consistent.
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Even when the bootstrap can be shown to be valid, the computational

burden is quite substantial, since maximization over both θ and η is

needed for each bootstrap sample.

A different approach to variance estimation is possible via Corollary 19.4

(presented previously) which verifies that the curvature of the profile

likelihood near θ̂n is asymptotically equal to Ĩ0.
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In practice, one can perform second order numerical differentiation by

• evaluating the profile likelihood on a hyperrectangular grid of 3k

equidistant points centered at θ̂n,

• taking the appropriate differences,

• and then dividing by 4h2,

• where p is the dimension of θ

• and h is the spacing between grid points.
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While the properties of h for the asymptotic validity of this approach are

well known, there are no clear cut rules on choosing the grid spacing in a

given data set.

Thus, it would seem difficult to automate this technique for practical usage.

As an alternative, Lee, Kosorok and Fine propose an application of Markov

chain Monte Carlo to the semiparametric profile likelihood.
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The method involves generating a Markov chain {θ(1), θ(2), . . . } with

stationary density proportional to

pθ,n(θ) ≡ exp (pLn(θ)) q(θ),

where q(θ) = Q(dθ)/(dθ) for some prior measure Q.

This can be accomplished by using, for example, the Metropolis-Hastings

algorithm (Metropolis, et al., 1953; and Hastings, 1970).
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Here are the steps:

• Begin with an initial value θ(1) for the chain.

• For each k = 2, 3, . . . , obtain a proposal θ̃k+1 by random walk from

θ(k).

• Compute pθ̃k+1,n(θ̃k+1), and decide whether to accept θ̃k+1 by

evaluating the ratio

pθ̃k+1,n(θ̃k+1)

pθ(k),n(θ(k))

and applying an acceptance rule.
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After generating a sufficiently long chain, one may compute the mean of

the chain to estimate the maximizer of pLn(θ) and the variance of the

chain to estimate Ĩ−1
0 .

The output from the Markov chain can also be directly used to construct

various confidence sets, including minimum volume confidence rectangles.
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Whether or not a Markov chain is used to sample from the “posterior”

proportional to

exp (pLn(θ)) q(θ),

the procedure based on sampling from this posterior is referred to as the

profile sampler.

Part of the computational simplicity of this procedure is that pLn(θ) does

not need to be maximized, it only needs to be evaluated.
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The profile likelihood is generally fairly easy to compute as a consequence

of algorithms such as the stationary point algorithm for maximizing over

the nuisance parameter.

On the other hand, sometimes the profile likelihood can be very hard to

compute.

When this is the case, numerical differentiation via Corollary 19.4 may be

advantageous since it requires fewer evaluations of the profile likelihood.
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However, numerical evidence in Section 4.2 of Lee, Kosorok and Fine

(2005) seems to indicate that, at least for moderately small samples,

numerical differentiation does not perform as well in general as the profile

sampler.

This observation is supported by theoretical work on the profile sampler by

Cheng and Kosorok (2007a, 2007b) who show that the profile sampler

yields frequentist inference that is second-order accurate.

Thus the profile sampler may be beneficial even when the profile likelihood

is hard to compute.
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The procedure’s validity is established in Theorem 1 below which extends

Theorem 19.5 to allow the quadratic expansion of the log-likelihood around

θ̂n to be valid in a fixed, bounded set, rather than only in a shrinking

neighborhood.

The conclusion of these arguments is that the “posterior” distribution of the

profile likelihood with respect to a prior on θ is asymptotically equivalent to

the distribution of θ̂n.
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In order to do this, the new theorem will require an additional assumption

on the profile likelihood.

Define

∆n(θ) ≡ n−1(pLn(θ)− pLn(θ̂n)).
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Here is the theorem:

THEOREM 1. Assume Θ is compact, Ĩ0 is positive definite, Q(Θ) <∞,

q(θ0) > 0, and q is continuous at θ0.

Assume also that θ̂n is efficient and that (19.10) holds for θ̌n = θ̂n and for

any possibly random sequence θ̃n
P→ θ0.

Assume moreover that for every random sequence θ̃n ∈ Θ

∆n(θ̃n) = oP0(1) implies that θ̃n = θ0 + oP0(1). (1)
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Then, for every measurable function g : Rk 7→ R satisfying

lim sup
k→∞

k−2 log

(
sup

u∈Rk:‖u‖≤k
|g(u)|

)
≤ 0, (2)

we have
∫

Θ g
(√

n(θ − θ̂n)
)
pθ,n(θ)dθ

∫
Θ pθ,ndθ

(3)

=

∫

Rk
g(u)(2π)−k/2|Ĩ0|1/2 exp

[
−u
′Ĩ0u

2

]
du+ oP0(1).
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Note that when g(u) = O(1 + ‖u‖)d, for any d <∞, Condition (2) is

readily satisfied.

This means that

• indicators of measurable sets

• and the first two moments of
√
n(T − θ̂n), where T has the posterior

density proportional to t 7→ pt,n(t),

are consistent for the corresponding probabilities and moments of the

limiting Gaussian distribution.
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Specifically,

E(T ) = θ̂n + oP0(n−1/2)

and

nvar(T ) = Ĩ−1
0 + oP0(1).

Thus we can calculate all the quantities needed for inference on θ without

having to actually maximize the profile likelihood directly or compute

derivatives.
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Note that the interesting Condition (1) is not implied by the other conditions

and is not implied by the identifiability of the Kulback-Leibler information

from the full likelihood.

Nevertheless, if it can be shown that ∆n(θ) converges uniformly over Θ

to the profiled Kulback-Leibler information ∆0(θ), then identifiability of the

Kulback-Leibler information for Ln(θ, η) is sufficient.
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This approach works for the Cox model for right-censored data, as we will

see below.

However, this strategy based on ∆0(θ) is usually not fruitful, and it seems

to be easier to establish (1) directly.
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The Condition (1) is needed because the integration in (3) is over all of Θ,

and thus it is important to guarantee that there are no other distinct modes

besides θ̂n in the limiting posterior.

Condition (19.10) is not sufficient for this since it only applies to shrinking

neighborhoods of θ0 and not to all of Θ as required.

24



Empirical Processes: Lecture 27 Spring, 2010

The examples and simulation studies in Lee, Kosorok and Fine

demonstrate that the profile sampler works very well and is in general

computationally efficient.

The Metropolis algorithm applied to pθ,n(θ) with a Lebesgue prior

measure is usually quite easy to tune and seems to achieve equilibrium

quickly.
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By the ergodic theorem, there exists a sequence of finite chain lengths

{Mn} → ∞ so that

• the chain mean

θ̄n ≡M−1
n

Mn∑

j=1

θ(j)

satisfies

θ̄n = θ̂n + oP0(n−1/2);

• the standardized sample variance

Vn ≡M−1
n

Mn∑

j=1

n(θ(i) − θ̄n)(θ(i) − θ̄n)′

is consistent for Ĩ−1
0 ; and
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• the empirical measure

Gn(A) ≡M−1
n

Mn∑

j=1

1
{√

n(θ(j) − θ̄n) ∈ A
}
,

for a bounded convex A ⊂ Rk, is consistent for the probability that a

mean zero Gaussian deviate with variance Ĩ−1
0 lies in A.
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Hence the output of the chain can be used for inference about θ0, provided

Mn is large enough so that the sampling error from using a finite chain is

negligible.

We now verify the additional Assumption (1) for the Cox model for right

censored data and for the Cox model for current status data.
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�
�

�
Example 1: The Cox Model for Right Cen-

sored Data

For this example, we can use the identifiability of the profile

Kulback-Leibler information since the profile likelihood does not involve the

nuisance parameter.

Let B be the compact parameter space for β, where β0 is known to be in

the interior of B, and assume that ‖Z‖ is bounded by a constant.
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We know from our previous discussions of this model that n−1pLn(β)

equals, up to a constant that does not depend on β,

Hn(β) ≡ Pn
[∫ τ

0

(
β′Z − log

[
PnY (s)eβ

′Z
])
dN(s)

]
.

By arguments which are by now familiar to the reader, it is easy to verify

that ‖Hn −H0‖B P→ 0, where

H0(β) ≡ P0

[∫ τ

0

(
β′Z − logP0

[
Y (s)eβ

′Z
])
dN(s)

]
.
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It is also easy to verify that H0 has

• first derivative

U0(β) ≡ P0

[∫ τ

0
(Z − E(s, β)) dN(s)

]
,

where E(s, β) is as defined in Section 4.2.1,

• and second derivative −V (β), where V (β) is defined in (4.5).
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By the boundedness of ‖Z‖ and B combined with the other assumptions

of the model, it can be shown (see Exercise 19.5.8 below) that there exists

a constant c0 > 0 not depending on β such that

V (β) ≥ c0varZ,

where for k × k matrices A and B, A ≥ B means that c′Ac ≥ c′Bc for

every c ∈ Rk .

Thus H0 is strictly concave and thus has a unique maximum on B.
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It is also easy to verify that U0(β0) = 0 (see Part (b) of Exercise 19.5.8),

and thus the unique maximum is located at β = β0.

Hence

‖∆n(β)−∆0(β)‖B P→ 0,

where

∆0(β) = H0(β)−H0(β0) ≤ 0

is continuous, with the last inequality being strict whenever β 6= β0.

This immediately yields Condition (1) for β replacing θ.
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�� ��The Cox Model for Current Status Data

For this example, we verify (1) directly.

Let β̃n be some possibly random sequence satisfying

∆n(β̃n) = oP0(1),

where β is replacing θ.
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Fix some α ∈ (0, 1) and note that since ∆n(β̃n) = oP0(1) and

∆n(β0) ≤ 0 almost surely, we have

n−1
n∑

i=1

log

{
f(β̃n, F̂β̃n ;Xi)

f(β0, F0;Xi)

}
≥ oP0(1),

where

f(β, F ;X) ≡ δ
{

1− F (Y )exp(β′Z)
}

+ (1− δ)F (Y )exp(β′Z),

F ≡ 1− F = exp(−Λ), and

F̂β ≡ 1− exp(−Λ̂β)

is the maximizer of the likelihood over the nuisance parameter for fixed β.
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This now implies

n−1
n∑

i=1

log

[
1 + α

{
f(β̃n, F̂β̃n ;Xi)

f(β0, F0;Xi)
− 1

}]
≥ oP0(1),

because

α log(x) ≤ log(1 + α{x− 1})
for any x > 0.

This implies that

P0 log

[
1 + α

{
f(β̃n, F̂β̃n ;Xi)

f(β0, F0;Xi)
− 1

}]
≥ oP0(1) (4)

by Lemma 1 below, since x 7→ log(1 + αx) is Lipschitz continuous for

x ≥ 0 and f(θ0, F0;X) ≥ c almost surely, for some c > 0.
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Because x 7→ log x is concave, we now have by Jensen’s inequality that

P0 log

[
1 + α

{
f(β̃n, F̂β̃n ;Xi)

f(β0, F0;Xi)
− 1

}]
≤ 0.

This combined with (4) implies that

P0 log

[
1 + α

{
f(β̃n, F̂β̃n ;Xi)

f(β0, F0;Xi)
− 1

}]
= oP0(1).
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This forces the result

P0

∣∣∣F β̃n(Y )exp(β̃′nZ) − F 0(Y )exp(β′0Z)
∣∣∣ = oP0(1)

by the strict concavity of x 7→ log x.

This, in turn, implies that

P0

[{
(β̃n − β0)′(Z −E[Z|Y ])− cn(Y )

}2
∣∣∣∣Y
]

= oP0(1),

for almost surely all Y , where cn(Y ) is uncorrelated with Z − E[Z|Y ].
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Hence

β̃n = θ0 + oP0(1),

and Condition (1) now follows.

LEMMA 1. The class

F ≡ {f(β, F ;X) : β ∈ B,F ∈M} ,

whereM is the class of distribution functions on [0, τ ], is P0-Donsker.
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�� ��Other Methods

• The penalized profile sampler (Cheng and Kosorok, 2007c).

• The exchangible bootstrap (Cheng and Huang, In press, Annals of

Statistics).

• m within n subsampling (Bickel, Götze and van Zwet, 1997).

• Subsampling (Politis and Ramono, 1994).

• Block jacknife (Ma and Kosorok, 2005a).

• Bayesian methods (Shen, 2002).

• Others.

40



Empirical Processes: Lecture 27 Spring, 2010

�
�

�
Efficient Inference for Infinite Dimensional

Parameters

For most semiparametric models where the joint parameter is regular, we

can assume a little more structure than in the previous paragraphs.

For many jointly regular models, we have that η = A, where t 7→ A(t) is

restricted to a subset H ∈ D[0, τ ] of functions bounded in total variation,

where τ <∞.

The composite parameter is thus ψ = (θ,A).
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We endow the parameter space with the uniform norm since this is usually

the most useful in applications.

Examples include

• many right-censored univariate regression models,

• including the proportional odds model of Section 15.3,

• certain multivariate survival models, and

• certain biased sampling models.
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The index setH we assume consists of all finite variation functions in

D[0, τ ], and we assign to

C = Rk ×H

the norm

‖c‖C ≡ ‖a‖+ ‖h‖v,
where

• c = (a, h),

• ‖ · ‖ is the Euclidean norm, and

• ‖ · ‖v is the total variation norm on [0, τ ].
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We let

Cp ≡ {c ∈ C : ‖c‖C ≤ p},
where the inequality is strict when p =∞.

This is the same structure utilized in Section 15.3.4 for the proportional

odds model aside from some minor changes in the notation.
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The full composite parameter ψ = (θ,A) can be viewed as an element of

`∞(Cp) if we define

ψ(c) ≡ a′θ +

∫ τ

0
h(s)dA(s), c ∈ Cp, ψ ∈ Ω ≡ Θ×H.

As described in Section 15.3.4, Ω thus becomes a subset of `∞(Cp), with

norm

‖ψ‖(p) ≡ sup
c∈Cp
|ψ(c)|.
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Moreover, if ‖ · ‖∞ is the uniform norm on Ω, then, for any 1 ≤ p <∞,

‖ψ‖∞ ≤ ‖ψ‖(p) ≤ 4p‖ψ‖∞.

Thus the uniform and ‖ · ‖(p) norms are equivalent.

For a direction h ∈ H, we will perturb A via the one-dimensional

submodel

t 7→ At(·) =

∫ (·)

0
(1 + th(s))dA(s).

46



Empirical Processes: Lecture 27 Spring, 2010

We now modify the score notation slightly.

For any c ∈ C, let

U [ψ](c) =
∂

∂t
`

(
θ + ta,A(·) + t

∫ (·)

0
h(s)dA(s)

)∣∣∣∣∣
t=0

=
∂

∂t
` (θ + ta,A(·))

∣∣∣∣
t=0

+
∂

∂t
`

(
θ,A(·) + t

∫ (·)

0
h(s)dA(s)

)∣∣∣∣∣
t=0

≡ U1[ψ](a) + U2[ψ](h).
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Note that

Ψn(ψ)(c) = PnU [ψ](c),

and

Ψ(ψ)(c) = P0U [ψ](c),

where P0 = Pψ0 .

In this context, PψU2[ψ](h) = 0 for all h ∈ H by definition of the

maximum and under identifiability of the model.
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It is important to note that the map ψ 7→ U [ψ](·) actually has domain

lin Ω and range contained in `∞(C).

We now consider properties of the second derivative of the log-likelihood.
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Let ā ∈ Rk and h̄ ∈ H.

For ease of exposition, we will use the somewhat redundant notation

c = (a, h) ≡ (c1, c2).
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We assume the following derivative structure exists and is valid for

j = 1, 2 and all c ∈ C:

∂

∂s
Uj [θ + sā, A+ sh̄](cj)

∣∣∣∣
s=0

=
∂

∂s
Uj [θ + sā, A](cj)

∣∣∣∣
s=0

+
∂

∂s
Uj [θ,A+ sh̄](cj)

∣∣∣∣
s=0

,

≡ ā′σ̂1j [ψ](cj) +

∫ τ

0
σ̂2j [ψ](cj)(u)dh̄(u),

where σ̂1j [ψ](cj) is a random k-vector and u 7→ σ̂2j [ψ](cj)(u) is a

random function contained inH.
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Denote σjk[ψ] = P0σ̂jk[ψ] and σjk = σjk[ψ0], for j, k = 1, 2, and

where P0 = Pψ0 .

Let ψ̂n = (θ̂n, Ân) be the maximizers of the log-likelihood.

Then Ψn(ψ̂n)(c) = 0 for all c ∈ C.
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Moreover, since lin Ω is contained in C, we have that the map

c̄ ∈ lin Ω 7→ −Ψ̇(c̄)(·) ∈ `∞(C)

has the form−Ψ̇(c̄)(·) = c̄(σ(·)), where σ ≡ σ[ψ0] and

σ[ψ](c) ≡


 σ11[ψ] σ12[ψ]

σ21[ψ] σ22[ψ]




 c1

c2




and, for any c, c̄ ∈ C,

c̄(c) = c̄′1c1 +

∫ τ

0
c2(u)dc̄2(u).
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Provided σ : C 7→ C is continuously invertible and onto, we have that

Ψ̇ : lin Ω 7→ C is also continuously invertible and onto with inverse

satisfying−Ψ̇−1(c)(·) = c(σ−1(·)).

In this set-up, we will need the following conditions for some p > 0:
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{U [ψ](c) : ‖ψ − ψ0‖ ≤ ε, c ∈ Cp} is Donsker for some ε > 0,(5)

sup
c∈Cp

P0 |U [ψ](c)− U [ψ0](c)|2 → 0, as ψ → ψ0, and (6)

sup
c∈Cp
‖σ[ψ](c)− σ[ψ0](c)‖(p) → 0, as ‖ψ − ψ0‖(p) → 0. (7)
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Note by Exercise 20.3.1 that (7) implies Ψ is Fréchet-differentiable in

`∞(Cp).

It is also not hard to verify that if Conditions (5)–(7) hold for some p > 0,

then they hold for all 0 < p <∞ (see Exercise 20.3.2).

This yields the following corollary:
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COROLLARY 1. Assume Conditions (5)–(7) hold for some p > 0, that

σ : C 7→ C is continuously invertible and onto, and that ψ̂n is uniformly

consistent for ψ0 with

sup
c∈C1

∣∣∣PnΨn(ψ̂n)(c)
∣∣∣ = oP0(n−1/2).

Then ψ̂n is efficient with

√
n(ψ̂n − ψ0)(·) ; Z(σ−1(·))

in `∞(C1), where Z is the tight limiting distribution of
√
nPnU [ψ0](·).
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�
�

�
Example 1: The Cox Model for Right-

Censored Data

This model has been explored extensively in previous sections, and both

weak convergence and efficiency have already been established.

Nevertheless, it is useful to study this model again from the perspective of

this section.

We make the usual assumptions for this model as done in Section 4.2.2,

including requiring the baseline hazard to be continuous, except that we

will use (θ,A) to denote the model parameters (β,Λ).
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It is not hard to verify that

• U1[ψ](a) =
∫ τ

0 Z
′adMψ(s)

• and U2[ψ](h) =
∫ τ

0 h(s)dMψ(s),

• where Mψ(t) ≡ N(t)−
∫ t

0 Y (s)eθ
′ZdA(s)

• and N and Y are the usual counting and at-risk processes.
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It is also easy to show that the components of σ are defined by

σ11a =

∫ τ

0
P0

[
ZZ ′Y (s)eθ

′
0Z
]
dA0(s)a,

σ12h =

∫ τ

0
P0

[
ZY (s)eθ

′
0Z
]
h(s)dA0(s),

σ21a = P0

[
Z ′Y (·)eθ′0Z

]
a, and

σ22h = P0

[
Y (·)eθ′0Z

]
h(·).
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The maximum likelihood estimator is

ψ̂n = (θ̂n, Ân),

where θ̂n is the maximizer of the well-known partial likelihood and Ân is

the Breslow estimator.

Conditions (5)–(7) are easy to verify by recycling arguments we have used

previously, and most of the remaining conditions are easy to verify.

The only somewhat difficult condition to verify is that σ is continuously

invertible and onto, but we refer to the book for details.
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�� ��Example 2: A Biased Sampling Model

We will now consider a special case of a class of biased sampling models

(generalizations of case-control designs to vaccine break-through infection

studies) which were studied by Gilbert (2000).

The data consists of n i.i.d. realizations of X = (δ, Y ).

Here, δ ∈ {0, 1} is a random stratum identifier, taking on the value j with

selection probability λj > 0, j = 0, 1, with λ0 + λ1 = 1.
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Given δ = j, Y ∈ [0, τ ] has distribution Fj defined on a sigma field of

subsets B of [0, τ ] by

Fj(B, θ,A) ≡W−1
j (θ,A)

∫

B
wj(u, θ)dA(u)

for B ∈ B.

The wj , j = 0, 1, are nonnegative (measurable) stratum weight functions

assumed to be known up to the finite dimensional parameter θ ∈ Θ ⊂ R.
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We will assume hereafter that w0(t, θ) = 1 and that w1(t, θ) = eθt.

Wj(θ,A) ≡
∫ τ

0
wj(u, θ)dA(u)

is assumed to be finite for all θ ∈ Θ.

The probability measure A is the unknown infinite dimensional parameter

of interest, and ψ = (θ,A) is the joint parameter.
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We assume that A0 is continuous with support on all of [0, τ ].

The goal is to estimate ψ based on information from samples from the Fj

distributions, j = 0, 1.

Thus the log-likelihood for a single observation is

`(ψ)(X) = logwδ(Y, θ) + log ∆A(Y )− logWδ(θ,A),

= δθY + log ∆A(Y )− log

∫ τ

0
eδθsdA(s),

where ∆A(Y ) is the probability mass of A at Y .
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Thus the score functions are

U1[ψ](a) = δ

[
Y −

∫ τ
0 se

δθsdA(s)∫ τ
0 e

δθsdA(s)

]
a, and

U2[ψ](h) = h(Y )−
∫ τ

0 e
δθsh(s)dA(s)∫ τ

0 e
δθsdA(s)

.
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The components of σ are obtained by taking the expectations under the

true distribution P0 of σ̂jk, j, k = 1, 2, where

σ̂11a =
(
Eδ([δy]2)− [Eδ(δy)]2

)
a,

σ̂21a =
eδθ0(·)

∫ τ
0 e

δθ0sdA0(s)
[δ(·)− Eδ(δy)] a,

σ̂12h = Eδ(δyh(y))− Eδ(δy)Eδ(h(y)), and

σ̂22h =
eδθ0(·)

∫ τ
0 e

δθ0sdA0(s)
[h(·)−Eδ(h(y))] ,

where, for a B-measurable function y 7→ f(y),

Ej(f(y)) ≡
∫ τ

0 f(y)ejθ0ydA0(y)∫ τ
0 e

jθ0ydA0(y)
,

for j = 0, 1.
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Then σjk = P0σ̂jk, j, k = 1, 2.

We now show that σ : C 7→ C is continuously invertible and onto.

First, as with the previous example, it is easy to verify that σ = κ1 + κ2,

where κ1c ≡ (a, ρ0(·)h(·)), κ2 ≡ σ − κ1,

ρ0(·) ≡ P0

[
eδθ0(·)

∫ τ
0 e

δθ0sdA0(s)

]
,

and where κ2 is a compact operator and κ1 is continuously invertible and

onto.
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Provided we can show that σ is one-to-one, we will be able to utilize again

Lemma 6.17 to obtain that σ is continuously invertible and onto.

Our argument for showing that σ is one-to-one will be similar to that used

for the Cox model for right censored data.
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Accordingly, let c = (a, h) ∈ C satisfy σc = 0, and let

c̄ = (a,
∫ (·)

0 h(s)dA0(s)).

Thus c̄(σc) = 0.

After some algebra, it can be shown that this implies

0 = P0Eδ (aδy + h(y)− Eδ[aδy + h(y)])2 (8)

= λ0V0(h(y)) + λ1V1(ay + h(y)),

where, for a measurable function y 7→ f(y), Vj(f(y)) is the variance of

f(Y ) given δ = j, j = 0, 1.
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Recall that both λ0 and λ1 are positive.

Thus, since (8) implies V0(h(y)) = 0, y 7→ h(y) must be a constant

function.

Since (8) also implies V1(ay + h(y)) = 0, we now have that a = 0.
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Hence h(Y ) = Eδ(h(y)) almost surely.

Thus P0h
2(Y ) = 0, which implies h = 0 almost surely.

Hence c = 0, and thus σ is one-to-one.
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Conditions (5)–(7) can be established for p = 1 by recycling previous

arguments (see Exercise 20.3.6).

Gilbert (2000) showed that the maximum likelihood estimator

ψ̂n = arg maxψ Pnlψ(X) is uniformly consistent for ψ0.
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Since Ψn(ψ̂n)(c) = 0 almost surely for all c ∈ C by definition of the

maximum, all of the conditions of Corollary 1 hold for ψ̂n.

Thus ψ̂n is efficient.

74


