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�� ��Maximum Likelihood Estimation

The most common approach to efficient estimation is based on

modifications of maximum likelihood estimation that lead to efficient

estimates.

These modifications, which we will call “likelihoods,” are generally not

really likelihoods (products of densities) because of complications resulting

from the presence of an infinite dimensional nuisance parameter.

Recall the setting of estimation of an unknown real density f(x) from an

i.i.d. sample X1, . . . ,Xn.
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The likelihood is
∏n
i=1 f(Xi), and the maximizer over all densities has

arbitrarily high peaks at the observations, with zero at the other values,

and is therefore not a density.

This problem can be fixed by using an empirical likelihood
∏n
i=1 pi, where

p1, . . . , pn are the masses assigned to the observations indexed by

i = 1, . . . , n and are constrained to satisfy
∑n

i=1 pi = 1.

This leads to the empirical distribution function estimator, which is known

to be fully efficient.

3



Empirical Processes: Lecture 26 Spring, 2010

Consider again the Cox model for right-censored data explored in the

previous section.

The density for a single observation X = (V, d, Z) is proportional to

[
eβ
′Zλ(V )

]d
exp

[
−eβ′ZΛ(V )

]
.

Maximizing the likelihood based on this density will result in the same

problem raised in the previous paragraph.
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A likelihood that works is the following, which assigns mass only at

observed failure times:

Ln(β,Λ) =
n∏

i=1

[
eβ
′Zi∆Λ(Vi)

]di
exp

[
−eβ′ZiΛ(Vi)

]
, (1)

where ∆Λ(t) is the jump size of Λ at t.

For each value of β, one can maximize or profile Ln(β,Λ) over the

“nuisance” parameter Λ to obtain the profile likelihood pLn(β), which for

the Cox model is exp [−∑n
i=1 di] times the partial likelihood (3.4).
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Let β̂ be the maximizer of pLn(β).

Then the maximizer Λ̂ of Ln(β̂,Λ) is the “Breslow estimator”

Λ̂(t) =

∫ t

0

PndN(s)

Pn
[
Y (s)eβ̂′Z

] .

We showed in Chapter 4 that β̂ and Λ̂ are both efficient.
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Another useful class of likelihood variants are penalized likelihoods.

Penalized likelihoods add a penalty term (or terms) in order to maintain an

appropriate level of smoothness for one or more of the nuisance

parameters.

This method was used in the partly linear logistic regression model

described in Chapter 1.

Other methods of generating likelihood variants that work are possible.
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The basic idea is that using the likelihood principle to guide estimation of

semiparametric models often leads to efficient estimators for the model

components which are
√
n consistent.

Because of the richness of this approach to estimation, one needs to verify

for each new situation that a likelihood-inspired estimator is consistent,

efficient and well-behaved for moderate sample sizes.

Verifying efficiency usually entails demonstrating that the estimator

satisfies the efficient score equation described in the previous section.
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�� ��Approximately Least-Favorable Submodels

One of the key challenges in this setting is to ensure that the efficient score

is a derivative of the chosen log likelihood along some submodel.

Something helpful in this setting are approximately least-favorable

submodels.
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The basic idea is to find a function ηt(θ, η) such that

• η0(θ, η) = η, for all θ ∈ Θ and η ∈ H , where ηt(θ, η) ∈ H for all t

small enough, and such that

• κ̃θ0,η0 = ˜̀
θ0,η0 , where

κ̃θ,η(x) =
∂lθ+t,ηt(θ,η)(x)

∂t

∣∣∣∣
t=0

,

lθ,η(x) is the log-likelihood for the observed value x at the parameters

(θ, η), and where (θ0, η0) are the true parameter values.

Note that we require κ̃θ,η = ˜̀
θ,η only when (θ, η) = (θ0, η0).
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If (θ̂n, η̂n) is the maximum likelihood estimator, i.e., the maximizer of

Pnlθ,η , then the function

t 7→ Pnlθ̂n+t,ηt(θ̂n,η̂n)

is maximal at t = 0, and thus (θ̂n, η̂n) is a zero of Pnκ̃θ̃,η̃ .

Now if θ̂n and

ˆ̀̃
θ,n = κ̃θ̃,η̂n

satisfy the conditions of Theorem 3.1 at (θ, η) = (θ0, η0), then the

maximum likelihood estimator θ̂n is asymptotically efficient at (θ0, η0).
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Consider now the maximum likelihood estimator θ̂n based on maximizing

the joint empirical log-likelihood

Ln(θ, η) ≡ nPnl(θ, η),

where l(·, ·) is the log-likelihood for a single observation.

For now, η will be regarded as a nuisance parameter, and thus we can

restrict our attention to the profile log-likelihood

θ 7→ pLn(θ) ≡ sup
η
Ln(θ, η).

Note that Ln is a sum and not an average, since we multiplied the

empirical measure by n.
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While the solution of an efficient score equation need not be a maximum

likelihood estimator, it is also possible that the maximum likelihood

estimator in a semiparametric model may not be expressible as the zero of

an efficient score equation.

This possibility occurs because the efficient score is a projection, and, as

such, there is no assurance that this projection is the derivative of the

log-likelihood along a submodel.

This is the main issue that motivates approximately least-favorable

submodels.
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An approximately least-favorable submodel approximates the true

least-favorable submodel to a useful level of accuracy that facilitates

analysis of semiparametric estimators.

We will now describe this process in generality: the specifics will depend

on the situation.

As mentioned previously, we first need a general map from the

neighborhood of θ into the parameter set for η, which map we will denote

by t 7→ ηt(θ, η), for t ∈ Rk .
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We require that

ηt(θ, η) ∈ Ĥ, for all ‖t− θ‖ small enough, and (2)

ηθ(θ, η) = η for any (θ, η) ∈ Θ× Ĥ,

where Ĥ is a suitable enlargement of H that includes all estimators that

satisfy the constraints of the estimation process.

Now define the map

`(t, θ, η) ≡ l(t, ηt(θ, η)).
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We will require several things of `(·, ·, ·), at various point in our

discussion, that will result in further restrictions on ηt(θ, η).

Define

˙̀(t, θ, η) ≡ ∂

∂t)
`(t, θ, η),

and let

ˆ̀
θ,n ≡ ˙̀(θ, θ, η̂n).

Clearly, Pn ˆ̀̂
θn,n

= 0, and thus θ̂n is efficient for θ0, provided ˆ̀
θ,n

satisfies the conditions of Theorem 3.1.
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The reason it is necessary to check this even for maximum likelihood

estimators is that, as mentioned previously, η̂n is often on the boundary (or

even a little bit outside of) the parameter space.

Recall again the Cox model setting for right censored data.
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In this case, η is the baseline integrated hazard function which is usually

assumed to be continuous.

However, η̂n is the Breslow estimator, which is a right-continuous step

function with jumps at observed failure times and is therefore not in the

parameter space.

Thus direct differentiation of the log-likelihood at the maximum likelihood

estimator will not yield an efficient score equation.
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We will also require that

˙̀(θ0, θ0, η0) = ˜̀
θ0,η0 . (3)

Note that we are only insisting that this identity holds at the true parameter

values.

This approximately least-favorable submodel structure is very useful for

developing methods of inference for θ.
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�� ��Example 1: Right Censored Cox Model

The Cox model for right censored data has been discussed previously.

Because of notational tradition, we will use β instead of θ for the

regression parameter and Λ instead η for the baseline integrated hazard

function.
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Recall that an observation from this model has the form X = (W, δ, Z),

where

• W = T ∧ C and δ = 1{W = T},

• Z ∈ Rk is a regression covariate,

• T is a right-censored failure time with integrated hazard given Z equal

to

t 7→ eβ
′ZΛ(t),

• and C is a censoring time independent of T given Z and

uninformative of (β,Λ).
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We assume that there exists a τ <∞ such that

P (C ≥ τ) = P (C = τ) > 0.

We require H to consist of all monotone increasing, functions

Λ ∈ C[0, τ ] with Λ(0) = 0.

We define Ĥ to be the set of all monotone, increasing functions

Λ ∈ D[0, τ ].
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As shown previously, the efficient score for β is

˜̀
β,Λ =

∫ τ

0
(Z − h0(s))dM(s),

where

M(t) ≡ N(t)−
∫ t

0
Y (s)eβ

′ZdΛ(s),

N and Y are the usual counting and at-risk processes respectively, and

h0(t) ≡ P [Z1{W ≥ t}eβ′0Z ]

P [1{W ≥ t}eβ′0Z ]
,

where P is the true probability measure (at the parameter values

(β0,Λ0)).

23



Empirical Processes: Lecture 26 Spring, 2010

Recall that the log-likelihood for a single observation is

l(θ,Λ) = (β′Z + log ∆Λ(W ))δ − eβ′ZΛ(W ),

where ∆Λ(w) is the jump size in Λ at w.

We will now verify that Conditions (2) and (3) are both satisfied.

These results will prove useful to develop valid methods of inference for β
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If we let

t 7→ Λt(β,Λ)) ≡
∫ (·)

0
(1 + (β − t)′h0(s))dΛ(s),

then Λt(β,Λ) ∈ Ĥ for all t small enough, Λβ(β,Λ) = Λ, and

˙̀(β0, β0,Λ0) =

∫ τ

0
(Z − h0(s))dM(s) = ˜̀

β0,Λ0 (4)

(see Exercise 19.5.2).

Thus Conditions (2) and (3) are both satisfied.

25



Empirical Processes: Lecture 26 Spring, 2010

�� ��Example 2: Current Status Cox Model

Current status data arises when each subject is observed at a single

examination time, Y , to determine whether an event has occurred.

The event time, T , cannot be observed exactly.
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Including the covariate Z , the observed data consists of n independent

and identically distributed realizations of X = (Y, δ, Z), where

δ = 1{T ≤ Y }.

We assume that the integrated hazard function of T given Z has the

proportional hazards form and parameters (β,Λ) as given in

Section 19.2.1 above.
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We also make the following additional assumptions:

• T and Y are independent given Z .

• Z lies in a compact set almost surely and the covariance of

Z − E(Z|Y ) is positive definite which guarantees that the efficient

information Ĩ0 is strictly positive.

• Y possesses a Lebesgue density which is continuous and positive on

its support [σ, τ ], where 0 < σ < τ <∞,

• for which the true parameter Λ0 satisfies Λ0(σ−) > 0 and

Λ0(τ) < M <∞, for some known M ,

• and is continuously differentiable on this interval with derivative

bounded above zero.
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We let H denote all such possible choices of Λ0 satisfying these

constraints for the given value of M , and we let Ĥ consist of all

nonnegative, nondecreasing right-continuous functions Λ on [σ, τ ] with

Λ(τ) ≤M .

We can deduce that the log-likelihood for a single observation, l(β,Λ),

has the form

l(β,Λ) = δ log[1− exp(−Λ(Y ) exp(β ′Z))] (5)

−(1− δ) exp(β′Z)Λ(Y ).
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From the likelihood, we can deduce that the score function for β takes the

form

˙̀
β,Λ(x) = zΛ(y)Q(x;β,Λ),

where

Q(x;β,Λ) = eβ
′z

[
δ

exp(−eβ′zΛ(y))

1− exp(−eβ′zΛ(y))
− (1− δ)

]
.
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Inserting a submodel t 7→ Λt such that

h(y) = − ∂

∂
t

∣∣∣∣
t=0

Λt(y)

exists for every y into the log likelihood and differentiating at t = 0, we

obtain a score function for Λ of the form

Aβ,Λh(x) = h(y)Q(x;β,Λ).

The linear span of these functions contains Aβ,Λh for all bounded

functions h of bounded variation.
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Thus the efficient score function for θ is

˜̀
β,Λ = ˙̀

β,Λ −Aβ,Λhβ,Λ

for the least-favorable direction vector of functions hβ,Λ minimizing the

distance

Pβ,Λ‖ ˙̀
β,Λ −Aβ,Λh‖2.

The solution at the true parameter is

h0(Y ) ≡ Λ0(Y )h00(Y ) (6)

≡ Λ0(Y )
Eβ0,Λ0(ZQ2(X;β0,Λ0)|Y )

Eβ0,Λ0(Q2(X;β0,Λ0)|Y )

(see Exercise 19.5.4).
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As the formula shows, the vector of functions h0(y) is unique a.s., and

h0(y) is a bounded function since Q(x; θ0,Λ0) is bounded away from

zero and infinity.

We assume that the function h0 given by (6) has a version which is

differentiable with a bounded derivative on [σ, τ ].
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An approximately least-favorable submodel can thus be of the form

Λt(β,Λ)(·) = Λ(·) + φ(Λ(·))(β − t)′h00 ◦ Λ−1
0 ◦ Λ(·),

where φ(·) is a fixed function we will define shortly that approximates the

identity.

Note that we need to extend Λ−1
0 so that it is defined on all of [0,M ].
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This is done by letting Λ−1
0 (t) = σ for all t ∈ [0,Λ0(σ)] and

Λ−1
0 (t) = τ for all t ∈ [Λ0(τ),M ].

We take φ : [0,M ] 7→ [0,M ] to be any fixed function

• with φ(u) = u on [Λ0(σ),Λ0(τ)]

• such that u 7→ φ(u)/u is Lipschitz

• and φ(u) ≤ c(u ∧ (M − u)) for all u ∈ [0,M ] and some c <∞
depending only on (β0,Λ0).
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Our conditions on the model ensure that such a function exists.

The function Λt(β,Λ) is essentially Λ plus a perturbation in the least

favorable direction, h0, but its definition is somewhat complicated in order

to ensure that Λt(β,Λ) really defines a cumulative hazard function within

our parameter space, at least for all t that is sufficiently close to β.
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To see this, first note that by using h00 ◦ Λ−1
0 ◦ Λ, rather than h00, we

ensure that the perturbation that is added to Λ is Lipschitz-continuous with

respect to Λ.

Combining this with the Lipschitz-continuity of φ(u)/u, we obtain that for

any 0 ≤ v < u ≤M ,

Λt(β,Λ)(u)−Λt(β,Λ)(v) ≥ Λ(u)−Λ(v)−k0‖β−t‖(Λ(u)−Λ(v)),

for some universal constant 0 < k0 <∞.
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Since Λ(v) ≤M , we obtain that for all ‖t− β‖ small enough, Λt(β,Λ)

is non-decreasing.

The additional constraints on φ ensures that

0 ≤ Λt(β,Λ) < M

for all ‖t− β‖ small enough.
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Hence t 7→ Λt(β,Λ) satisfies both (2) and (3).

Additional details about the construction of the approximately

least-favorable submodel for this example can be found in Section 4.1 of

Murphy and van der Vaart (2000).
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�
�

�

Quadratic Expansion of the Profile Likeli-

hood

The main ideas of this section come from a very elegant paper by Murphy

and van der Vaart (2000) on profile likelihood.

The context is where we have maximum likelihood estimators (θ̂n, η̂n)

based on a i.i.d. sample X1, . . . ,Xn, where one is the finite-dimensional

parameter of primary interest (θ̂n) and the other is an infinite-dimensional

nuisance parameter (η̂n).
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The main result, given formally later as Theorem 1, is that under certain

regularity conditions, we have for any estimator θ̃n
P→ θ0, that

pLn(θ̃n) = pLn(θ0) + (θ̃n − θ0)′
n∑

i=1

˜̀
θ0,η0(Xi) (7)

−1

2
n(θ̃n − θ0)′Ĩθ0,η0(θ̃n − θ0)

+oP0(1 +
√
n‖θ̃n − θ0‖)2,

where Ĩθ0,η0 is the efficient Fisher information and P0 the probability

measure of X at the true parameter values.
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Suppose we can know that the maximum profile likelihood estimator is

consistent, i.e., that θ̂n = θ0 + oP0(1), and that Ĩθ0,η0 is positive definite.

Then if (7) also holds, we have that

‖√n(θ̂n − θ0)‖2 ≤ √
n(θ̂n − θ0)′

[
n−1/2

n∑

i=1

˜̀
θ0,η0(Xi)

]

+oP0(1 +
√
n‖θ̂n − θ0‖)2

= OP0(
√
n‖θ̂n − θ0‖) + oP0(1 +

√
n‖θ̂n − θ0‖)2,

since pLn(θ̂n)− pLn(θ0) ≥ 0.
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This now implies that

(1+
√
n‖θ̂n−θ0‖)2 = OP0(1+

√
n‖θ̂n−θ0‖)+oP0(1+

√
n‖θ̂n−θ0‖)2,

which yields that
√
n‖θ̂n − θ0‖ = OP0(1).
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Let K ⊂ Rk be a compact neighborhood of 0, and note that for any

sequence of possibly random points θn ∈ θ0 + n−1/2K , we have

θn = θ0 + oP0(1) and
√
n(θn − θ0) = OP0(1).

Thus

sup
u∈K
|pLn(θ0 + u/

√
n)− pLn(θ0)−Mn(u)| = oP0(1),

where

u 7→Mn(u) ≡ u′Zn − (1/2)u′Ĩθ0,η0u

and

Zn ≡
√
nPn ˜̀

θ0,η0(X).
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Since Zn ; Z , where

Z ∼ Nk(0, Ĩθ0,η0),

and since K was arbitrary, we have by the argmax theorem

(Theorem 14.1) that

√
n(θ̂n − θ0) ; Ĩ−1

θ0,η0
Z,

which implies that θ̂n is efficient, and thus, by Theorem 18.7, we also have

√
n(θ̂n − θ0) =

√
nPnĨ−1

θ0,η0
˜̀
θ0,η0(X) + oP0(1). (8)
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These arguments can easily be strengthened to imply the following simple

corollary:

COROLLARY 1. Let the estimator θ̌n be consistent for θ0 and satisfy

pLn(θ̌n) ≥ pLn(θ̂n)− oP0(1).

Then, provided Ĩθ0,η0 is positive definite and (7) holds, θ̌n is efficient.
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Combining (7) and Corollary 1, we obtain the following:

COROLLARY 2. Let θ̌n = θ0 + oP0(1) and satisfy

pLn(θ̌n) ≥ pLn(θ̂n)− oP0(1).

Then, provided Ĩθ0,η0 is positive definite and (7) holds, we have for any

random sequence θ̃n = θ0 + oP0(1),

pLn(θ̃n) = pLn(θ̌n)− 1

2
n(θ̃n − θ̌n)′Ĩθ0,η0(θ̃n − θ̌n) (9)

+oP0(1 +
√
n‖θ̃n − θ0‖)2.
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The following two additional corollaries provide methods of using this

quadratic expansion to conduct inference for θ0:

COROLLARY 3. Assume the conditions of Corollary 1 hold for θ̌n.

Then, under the null hypothesis H0 : θ = θ0,

2(pLn(θ̌n)− pLn(θ0)) ; χ2(k),

where χ2(k) is a chi-squared random variable with k degrees of freedom.
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COROLLARY 4. Assume the conditions of Corollary 1 hold for θ̌n.

Then for any vector sequence vn
P→ v ∈ Rk and any scalar sequence

hn
P→ 0 such that (

√
nhn)−1 = OP (1), where the convergence is

under P = P0, we have

−2
pLn(θ̌n + hnvn)− pLn(θ̌n)

nh2
n

P→ v′Ĩθ0,η0v.
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Corollary 3 can be used for hypothesis testing and confidence region

construction for θ0, while Corollary 4 can be used to obtain consistent,

numerical estimates of Ĩθ0,η0 .

The purpose of the remainder of this section is to present and verify

reasonable regularity conditions for (7) to hold.
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To begin with, we will need an approximately least-favorable submodel

t 7→ ηt(θ, η) that satisfies Conditions (2) and (3).

Define

῭(t, θ, η) ≡
(
∂

∂t

)
˙̀(t, θ, η)

and

η̂θ ≡ arg max
η

Ln(θ, η).
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Assume that for any possibly random sequence θ̃n
P→ θ0, we have

η̂θ̃n
P→ η and (10)

P0
˙̀(θ0, θ̃n, η̂θ̃n) = oP0(‖θ̃n − θ0‖+ n−1/2). (11)
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We are now ready to present the main theorem:

THEOREM 1. Assume the following:

• Conditions (2), (3), (10) and (11) are satisfied;

• the functions

(t, θ, η) 7→ ˙̀(t, θ, η)(X)

and

(t, θ, η) 7→ ῭(t, θ, η)(X)

are continuous at (θ0, θ0, η0) for P0-almost every X ;

• for some neighborhood V of (θ0, θ0, η0), the class of functions

F1 ≡ { ˙̀(t, θ, η) : (t, θ, η) ∈ V }

is P0-Donsker with square-integrable envelope function; and
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• the class of functions

F2 ≡ {῭(t, θ, η) : (t, θ, η) ∈ V }

is P0-Glivenko-Cantelli and bounded in L1(P0).

Then (7) holds.
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We can readily verify the conditions of this theorem for several models:

• the Cox model for right censored data;

• the Cox model for current status data;

• the proportional odds model under right-censoring;

• the partly-linear logistic regression model;

• a case-control model with a missing covariate;

• a shared gamma-frailty model under right-censoring;

• an interesting semiparametric mixture model.

Some of these examples are in the book and some are in Murphy and van

der Vaart (2000).
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