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�� ��Score Functions and Estimating Equations

A parameter ψ(P ) of particular interest is the parametric component θ of

a semiparametric model

{Pθ,η : θ ∈ Θ, η ∈ H},

where Θ is an open subset of Rk and H is an arbitrary set that may be

infinite dimensional.

Tangent sets can be used to develop an efficient estimator for

ψ(Pθ,η) = θ through the formation of an efficient score function.
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In this setting, we consider submodels of the form {Pθ+ta,ηt , t ∈ Nε}
that are differentiable in quadratic mean with score function

∂ log dPθ+ta,ηt
∂t

∣∣∣∣
t=0

= a′ ˙̀θ,η + g,

where

• a ∈ Rk ,

• ˙̀
θ,η : X 7→ Rk is the ordinary score for θ when η is fixed,

• and where g : X 7→ R is an element of a tangent set Ṗ(η)
Pθ,η

for the

submodel

Pθ = {Pθ,η : η ∈ H}
(holding θ fixed).
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This tangent set is the tangent set for η and should be rich enough to

reflect all parametric submodels of Pθ .

The tangent set for the full model is

ṖPθ,η =
{
a′ ˙̀θ,η + g : a ∈ Rk, g ∈ Ṗ(η)

Pθ,η

}
.
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While ψ(Pθ+ta,ηt) = θ + ta is clearly differentiable with respect to t, we

also require that there there exists a function ψ̃θ,η : X 7→ Rk such that

∂ψ(Pθ+ta,ηt)

∂t

∣∣∣∣
t=0

= a = P
[
ψ̃θ,η

(
˙̀′
θ,ηa+ g

)]
, (1)

for all a ∈ Rk and all g ∈ Ṗ(η)
Pθ,η

.

After setting a = 0, we see that such a function must be uncorrelated with

all of the elements of Ṗ(η)
Pθ,η

.
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Define Πθ,η to be the orthogonal projection onto the closed linear span of

Ṗ(η)
Pθ,η

in L0
2(Pθ,η).

The efficient score function for θ is

˜̀
θ,η = ˙̀

θ,η −Πθ,η
˙̀
θ,η,

while the efficient information matrix for θ is

Ĩθ,η = P
[
˜̀
θ,η

˜̀′
θ,η

]
.
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Provided that Ĩθ,η is nonsingular, the function

ψ̃θ,η = Ĩ−1
θ,η

˜̀
θ,η

satisfies (1) for all a ∈ Rk and all g ∈ Ṗ(η)
Pθ,η

.

Thus the functional (parameter) ψ(Pθ,η) = θ is differentiable at Pθ,η

relative to the tangent set ṖPθ,η , with efficient influence function ψ̃θ,η .

7



Empirical Processes: Lecture 25 Spring, 2010

Recall that the search for an efficient estimator of θ is over if one can find

an estimator Tn satisfying

√
n(Tn − θ) =

√
nPnψ̃θ,η + oP (1).

Note that

Ĩθ,η = Iθ,η − P
[
Πθ,η

˙̀
θ,η

(
Πθ,η

˙̀
θ,η

)′]
,

where

Iθ,η = P
[

˙̀
θ,η

˙̀′
θ,η

]
.
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An intuitive justification for the form of the efficient score is that some

information for estimating θ is lost due to a lack of knowledge about η.

The amount subtracted off of the efficient score, Πθ,η
˙̀
θ,η , is the minimum

possible amount for regular estimators when η is unknown.
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Consider again the semiparametric regression model:

Y = β′Z + e,

where

• E[e|Z] = 0 and E[e2|Z] ≤ K <∞ almost surely,

• and where we observe (Y,Z),

• with the joint density η of (e, Z) satisfying
∫
R eη(e, Z)de = 0

almost surely.
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Assume η has partial derivative with respect to the first argument, η̇1,

satisfying
η̇1

η
∈ L2(Pβ,η),

and hence
η̇1

η
∈ L0

2(Pβ,η),

where Pβ,η is the joint distribution of (Y,Z).

The Euclidean parameter of interest in this semiparametric model is

θ = β.
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The score for β, assuming η is known, is

˙̀
β,η = −Z(η̇1/η)(Y − β′Z,Z),

where we use the shorthand (f/g)(u, v) = f(u, v)/g(u, v) for ratios

of functions.

One can show that the tangent set Ṗ(η)
Pβ,η

for η is the subset of L0
2(Pβ,η)

which consists of all functions g(e, Z) ∈ L0
2(Pβ,η) which satisfy

E[eg(e, Z)|Z] =

∫
R eg(e, Z)η(e, Z)de∫

R η(e, Z)de
= 0,

almost surely.
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One can also show that this set is the orthocomplement in L0
2(Pβ,η) of all

functions of the form ef(Z), where f satisfies Pβ,ηf
2(Z) <∞.

This means that

˜̀
β,η = (I −Πβ,η) ˙̀

β,η

is the projection in L0
2(Pβ,η) of−Z(η̇1/η)(e, Z) onto

{ef(Z) : Pβ,ηf
2(Z) <∞}, where I is the identity.
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Thus

˜̀
β,η(Y,Z) =

−Ze
∫
R η̇1(e, Z)ede

Pβ,η[e2|Z]

= − Ze(−1)

Pβ,η[e2|Z]
=
Z(Y − β′Z)

Pβ,η[e2|Z]
,

where

• the second-to-last step follows from the identity

∫

R
η̇1(e, Z)ede =

∂
∫
R η(te, Z)de

∂t

∣∣∣∣
t=1

,

• and the last step follows since e = Y − β′Z .
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When the function z 7→ Pβ,η[e
2|Z = z] is non-constant in z,

• ˜̀
β,η(Y,Z) is not proportional to Z(Y − β′Z),

• and the usual least-squares estimator β̂ will not be efficient.

This is discussed in greater detail in Chapter 4.
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Two very useful tools for computing efficient scores are score and

information operators.

Returning to the generic semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H},
sometimes it is easier to represent an element g in the tangent set for η,

Ṗ(η)
Pθ,η

, as Bθ,ηb, where

• b is an element of another setHη and

• Bθ,η is an operator satisfying

Ṗ(η)
Pθ,η

= {Bθ,ηb : b ∈ Hη}.
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Such an operator is a score operator.

The information operator is:

B∗θ,ηBθ,η : Hη 7→ linHη.

If B∗θ,ηBθ,η has an inverse, then it can be shown that the efficient score

for θ has the form

˜̀
θ,η =

(
I −Bθ,η

[
B∗θ,ηBθ,η

]−1
B∗θ,η

)
˙̀
θ,η.
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To illustrate these methods, consider again the Cox model for

right-censored data.

Recall in this setting that we observe a sample of n realizations of

X = (V, d, Z), where

• V = T ∧ C ,

• d = 1{V = T},

• Z ∈ Rk is a covariate vector,

• T is a failure time, and

• C is a censoring time.
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We also assume

• that T and C are independent given Z ,

• that T given Z has integrated hazard function eβ
′ZΛ(t),

• for β in an open subset B ⊂ Rk

• and Λ is continuous and monotone increasing with Λ(0) = 0,

• and that the censoring distribution does not depend on β or Λ (i.e.,

censoring is uninformative).
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Recall also the counting and at-risk processes N(t) = 1{V ≤ t}d and

Y (t) = 1{V ≥ t}, and let

M(t) = N(t)−
∫ t

0
Y (s)eβ

′ZdΛ(s).

For some 0 < τ <∞ with P{C ≥ τ} > 0, let H be the set of all Λ’s

satisfying our criteria with Λ(τ) <∞.

Now the set of models P is indexed by β ∈ B and Λ ∈ H .
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We let Pβ,Λ be the distribution of (V, d, Z) corresponding to the given

parameters.

The likelihood for a single observation is thus proportional to

pβ,Λ(X) =
[
eβ
′Zλ(V )

]d
exp

[
−eβ′ZΛ(V )

]
,

where λ is the derivative of Λ.
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Now let L2(Λ) be the set of measurable functions b : [0, τ ] 7→ R with
∫ τ

0
b2(s)dΛ(s) <∞.

Note that if b ∈ L2(Λ) is bounded, then

Λt(s) =

∫ s

0
etb(u)dΛ(u) ∈ H

for all t.
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The score function
∂ log pβ+ta,Λt(X)

∂t

∣∣∣∣
t=0

is thus ∫ τ

0

[
a′Z + b(s)

]
dM(s),

for any a ∈ Rk.
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The score function for β is therefore

˙̀
β,Λ(X) = ZM(τ),

while the score function for Λ is
∫ τ

0
b(s)dM(s).

In fact, one can show that there exists one-dimensional submodels Λt

such that log pβ+ta,Λt is differentiable with score

a′ ˙̀β,Λ(X) +

∫ τ

0
b(s)dM(s),

for any b ∈ L2(Λ) and a ∈ Rk.
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The operator

Bβ,Λ : L2(Λ) 7→ L0
2(Pβ,Λ),

given by

Bβ,Λ(b) =

∫ τ

0
b(s)dM(s),

is the score operator which generates the tangent set for Λ,

Ṗ(Λ)
Pβ,Λ
≡ {Bβ,Λb : b ∈ L2(Λ)} .

It can be shown that this tangent space spans all square-integrable score

functions for Λ generated by parametric submodels.
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The adjoint operator can be shown to be

B∗β,Λ : L2(Pβ,Λ) 7→ L2(Λ),

where

B∗β,Λ(g)(t) =
Pβ,Λ[g(X)dM(t)]

dΛ(t)
.

The information operator

B∗β,ΛBβ,Λ : L2(Λ) 7→ L2(Λ)
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is thus

B∗β,ΛBβ,Λ(b)(t) =
Pβ,Λ

[∫ τ
0 b(s)dM(s)dM(u)

]

dΛ(u)

= Pβ,Λ

[
Y (t)eβ

′Z
]
b(t),

using martingale methods.
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Since

B∗β,Λ
(

˙̀
β,Λ

)
(t) = Pβ,Λ

[
ZY (t)eβ

′Z
]
,

we have that the efficient score for β is

˜̀
β,Λ =

(
I −Bβ,Λ

[
B∗β,ΛBβ,Λ

]−1
B∗β,Λ

)
˙̀
β,Λ (2)

=

∫ τ

0



Z −

Pβ,Λ

[
ZY (t)eβ

′Z
]

Pβ,Λ [Y (t)eβ′Z ]



 dM(t).
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When

Ĩβ,Λ ≡ Pβ,Λ
[
˜̀
β,Λ

˜̀′
β,Λ

]

is positive definite, the resulting efficient influence function is

ψ̃β,Λ ≡ Ĩ−1
β,Λ

˜̀
β,Λ.
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Since the estimator β̂n obtained from maximizing the partial likelihood

L̃n(β) =

n∏

i=1

(
eβ
′Zi

∑n
j=1 1{Vj ≥ Vi}eβ′Zj

)di
(3)

can be shown to satisfy

√
n(β̂n − β) =

√
nPnψ̃β,Λ + oP (1),

this estimator is efficient.
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Returning to our discussion of score and information operators, these

operators are also useful for generating scores for the entire model, not

just for the nuisance component.

With semiparametric models having score functions of the form

a′ ˙̀θ,η +Bθ,ηb,

for a ∈ Rk and b ∈ Hη , we can define a new operator

Aβ,η : {(a, b) : a ∈ Rk, b ∈ linHη} 7→ L0
2(Pθ,η)

where

Aβ,η(a, b) = a′ ˙̀θ,η +Bθ,ηb.
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More generally, we can define the score operator

Aη : linHη 7→ L2(Pη)

for the model {Pη : η ∈ H}, where

• H indexes the entire model

• and may include both parametric and nonparametric components,

• and where linHη indexes directions in H .

Let the parameter of interest be ψ(Pη) = χ(η) ∈ Rk.
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We assume there exists a linear operator

χ̇ : linHη 7→ Rk

such that, for every b ∈ linHη , there exists a one-dimensional submodel

{Pηt : ηt ∈ H, t ∈ Nε}

satisfying

∫ [
(dPηt)

1/2 − (dPη)
1/2

t
− 1

2
Aηb(dPη)

1/2

]2

→ 0,

as t ↓ 0, and
∂χ(ηt)

∂t

∣∣∣∣
t=0

= χ̇(b).
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We requireHη to be a Hilbert space with inner product 〈·, ·〉η .

The efficient influence function is the solution

ψ̃Pη ∈ R(Aη) ⊂ L0
2(Pη)

of

A∗ηψ̃Pη = χ̃η, (4)

where χ̃η ∈ Hη satisfies

〈χ̃η, b〉η = χ̇η(b)

for all b ∈ Hη .
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When A∗ηAη is invertible, then the solution to (4) can be written

ψ̃Pη = Aη
(
A∗ηAη

)−1
χ̃η.

In Chapter 4, we utilized this approach to derive efficient estimators for all

parameters of the Cox model.
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Returning to the semiparametric model setting, where

• P = {Pθ,η : θ ∈ Θ, η ∈ H},

• Θ is an open subset of Rk, and

• H is a set,

the efficient score can be used to derive estimating equations for

computing efficient estimators of θ.
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Recall that an estimating equation is a data dependent function

Ψn : Θ 7→ Rk for which an approximate zero yields a Z-estimator for θ.

When Ψn(θ̃) has the form Pn ˆ̀̃
θ,n, where ˆ̀̃

θ,n(X|X1, . . . ,Xn) is a

function for the generic observation X which depends on the value of θ̃

and the sample data X1, . . . ,Xn, we have the following estimating

equation result:
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THEOREM 1. Suppose that the model {Pθ,η : θ ∈ Θ}, where Θ ⊂ Rk ,

is differentiable in quadratic mean with respect to θ at (θ, η) and let the

efficient information matrix Ĩθ,η be nonsingular.

Let θ̂n satisfy
√
nPn ˆ̀̂

θn,n
= oP (1) and be consistent for θ.

Also assume that ˆ̀̂
θn,n

is contained in a Pθ,η-Donsker class with

probability tending to 1 and that the following conditions hold:

Pθ̂n,η
ˆ̀̂
θn,n

= oP (n−1/2 + ‖θ̂n − θ‖), (5)

Pθ,η

∥∥∥ ˆ̀̂
θn,n
− ˜̀

θ,η

∥∥∥
2 P→ 0, Pθ̂n,η

∥∥∥ ˆ̀̂
θn,n

∥∥∥
2

= OP (1). (6)
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Then θ̂n is asymptotically efficient at (θ, η).
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Returning to the Cox model example, the profile likelihood score is the

partial likelihood score Ψn(β̃) = Pn ˆ̀
β̃,n, where

ˆ̀
β̃,n(X = (V, d, Z)|X1, . . . ,Xn)

=

∫ τ

0



Z −

Pn
[
ZY (t)eβ̃

′Z
]

Pn
[
Y (t)eβ̃′Z

]



 dMβ̃(t),

and

Mβ̃(t) = N(t)−
∫ t

0
Y (u)eβ̃

′ZdΛ(u).

We showed in Chapter 4 that all the conditions of Theorem 1 are satisfied

for the root of Ψn(β̃) = 0, β̂n, and thus the partial likelihood yields

efficient estimation of β.
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�� ��Maximum Likelihood Estimation

The most common approach to efficient estimation is based on

modifications of maximum likelihood estimation that lead to efficient

estimates.

These modifications, which we will call “likelihoods,” are generally not

really likelihoods (products of densities) because of complications resulting

from the presence of an infinite dimensional nuisance parameter.

Recall the setting of estimation of an unknown real density f(x) from an

i.i.d. sample X1, . . . ,Xn.
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The likelihood is
∏n
i=1 f(Xi), and the maximizer over all densities has

arbitrarily high peaks at the observations, with zero at the other values,

and is therefore not a density.

This problem can be fixed by using an empirical likelihood
∏n
i=1 pi, where

p1, . . . , pn are the masses assigned to the observations indexed by

i = 1, . . . , n and are constrained to satisfy
∑n

i=1 pi = 1.

This leads to the empirical distribution function estimator, which is known

to be fully efficient.
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Consider again the Cox model for right-censored data explored in the

previous section.

The density for a single observation X = (V, d, Z) is proportional to

[
eβ
′Zλ(V )

]d
exp

[
−eβ′ZΛ(V )

]
.

Maximizing the likelihood based on this density will result in the same

problem raised in the previous paragraph.
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A likelihood that works is the following, which assigns mass only at

observed failure times:

Ln(β,Λ) =
n∏

i=1

[
eβ
′Zi∆Λ(Vi)

]di
exp

[
−eβ′ZiΛ(Vi)

]
, (7)

where ∆Λ(t) is the jump size of Λ at t.

For each value of β, one can maximize or profile Ln(β,Λ) over the

“nuisance” parameter Λ to obtain the profile likelihood pLn(β), which for

the Cox model is exp [−∑n
i=1 di] times the partial likelihood (3).
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Let β̂ be the maximizer of pLn(β).

Then the maximizer Λ̂ of Ln(β̂,Λ) is the “Breslow estimator”

Λ̂(t) =

∫ t

0

PndN(s)

Pn
[
Y (s)eβ̂′Z

] .

We showed in Chapter 4 that β̂ and Λ̂ are both efficient.
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Another useful class of likelihood variants are penalized likelihoods.

Penalized likelihoods add a penalty term (or terms) in order to maintain an

appropriate level of smoothness for one or more of the nuisance

parameters.

This method was used in the partly linear logistic regression model

described in Chapter 1.

Other methods of generating likelihood variants that work are possible.
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The basic idea is that using the likelihood principle to guide estimation of

semiparametric models often leads to efficient estimators for the model

components which are
√
n consistent.

Because of the richness of this approach to estimation, one needs to verify

for each new situation that a likelihood-inspired estimator is consistent,

efficient and well-behaved for moderate sample sizes.

Verifying efficiency usually entails demonstrating that the estimator

satisfies the efficient score equation described in the previous section.
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�� ��Approximately Least-Favorable Submodels

One of the key challenges in this setting is to ensure that the efficient score

is a derivative of the chosen log likelihood along some submodel.

Something helpful in this setting are approximately least-favorable

submodels.

48



Empirical Processes: Lecture 25 Spring, 2010

The basic idea is to find a function ηt(θ, η) such that

• η0(θ, η) = η, for all θ ∈ Θ and η ∈ H , where ηt(θ, η) ∈ H for all t

small enough, and such that

• κ̃θ0,η0 = ˜̀
θ0,η0 , where

κ̃θ,η(x) =
∂lθ+t,ηt(θ,η)(x)

∂t

∣∣∣∣
t=0

,

lθ,η(x) is the log-likelihood for the observed value x at the parameters

(θ, η), and where (θ0, η0) are the true parameter values.

Note that we require κ̃θ,η = ˜̀
θ,η only when (θ, η) = (θ0, η0).
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If (θ̂n, η̂n) is the maximum likelihood estimator, i.e., the maximizer of

Pnlθ,η , then the function

t 7→ Pnlθ̂n+t,ηt(θ̂n,η̂n)

is maximal at t = 0, and thus (θ̂n, η̂n) is a zero of Pnκ̃θ̃,η̃ .

Now if θ̂n and

ˆ̀̃
θ,n = κ̃θ̃,η̂n

satisfy the conditions of Theorem 1 at (θ, η) = (θ0, η0), then the

maximum likelihood estimator θ̂n is asymptotically efficient at (θ0, η0).
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Consider now the maximum likelihood estimator θ̂n based on maximizing

the joint empirical log-likelihood

Ln(θ, η) ≡ nPnl(θ, η),

where l(·, ·) is the log-likelihood for a single observation.

For now, η will be regarded as a nuisance parameter, and thus we can

restrict our attention to the profile log-likelihood

θ 7→ pLn(θ) ≡ sup
η
Ln(θ, η).

Note that Ln is a sum and not an average, since we multiplied the

empirical measure by n.
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While the solution of an efficient score equation need not be a maximum

likelihood estimator, it is also possible that the maximum likelihood

estimator in a semiparametric model may not be expressible as the zero of

an efficient score equation.

This possibility occurs because the efficient score is a projection, and, as

such, there is no assurance that this projection is the derivative of the

log-likelihood along a submodel.

This is the main issue that motivates approximately least-favorable

submodels.
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An approximately least-favorable submodel approximates the true

least-favorable submodel to a useful level of accuracy that facilitates

analysis of semiparametric estimators.

We will now describe this process in generality: the specifics will depend

on the situation.

As mentioned previously, we first need a general map from the

neighborhood of θ into the parameter set for η, which map we will denote

by t 7→ ηt(θ, η), for t ∈ Rk .
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We require that

ηt(θ, η) ∈ Ĥ, for all ‖t− θ‖ small enough, and (8)

ηθ(θ, η) = η for any (θ, η) ∈ Θ× Ĥ,

where Ĥ is a suitable enlargement of H that includes all estimators that

satisfy the constraints of the estimation process.

Now define the map

`(t, θ, η) ≡ l(t, ηt(θ, η)).
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We will require several things of `(·, ·, ·), at various point in our

discussion, that will result in further restrictions on ηt(θ, η).

Define

˙̀(t, θ, η) ≡ ∂

∂t)
`(t, θ, η),

and let

ˆ̀
θ,n ≡ ˙̀(θ, θ, η̂n).

Clearly, Pn ˆ̀̂
θn,n

= 0, and thus θ̂n is efficient for θ0, provided ˆ̀
θ,n

satisfies the conditions of Theorem 1.
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The reason it is necessary to check this even for maximum likelihood

estimators is that, as mentioned previously, η̂n is often on the boundary (or

even a little bit outside of) the parameter space.

Recall again the Cox model setting for right censored data.
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In this case, η is the baseline integrated hazard function which is usually

assumed to be continuous.

However, η̂n is the Breslow estimator, which is a right-continuous step

function with jumps at observed failure times and is therefore not in the

parameter space.

Thus direct differentiation of the log-likelihood at the maximum likelihood

estimator will not yield an efficient score equation.
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We will also require that

˙̀(θ0, θ0, η0) = ˜̀
θ0,η0 . (9)

Note that we are only insisting that this identity holds at the true parameter

values.

This approximately least-favorable submodel structure is very useful for

developing methods of inference for θ.
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