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�� ��Consequences of Non-Regularity

Let Tn be asymptotically linear for ψ(P ), with influence function ψ̌P .

If Tn is not regular, there exists a function g̃ ∈ ṖP such that for each

a ∈ R, there exists and a sequence of contiguous, one-dimensional

submodels Pn, for which

√
n(Tn(h)− ψ(Pn)(h))

Pn
; Gψ̌P (h) + aP g̃2. (1)
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This means that Tn has a serious defect.

Specifically, we see from (1) that for any M <∞ and ε > 0, we can alter

a to generate a one-dimensional submodel {Pn} for which

pr
(∥∥√n(Tn − ψ(Pn))

∥∥
H > M

)
> 1− ε.

Thus the estimator Tn has arbitrarily poor performance for certain

submodels which are represented by ṖP .
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Hence regularity is not just a mathematically convenient definition, but it

reflects, even in infinite-dimensional settings, a certain intuitive

reasonableness about Tn.

This does not mean that nonregular estimators are never useful, because

they can be, especially when the parameter ψ(P ) is not
√
n-consistent.

Nevertheless, regular estimators are very appealing when they are

available.
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The next result assures us that Hadamard differentiable functions of

efficient estimators are also asymptotically efficient:

THEOREM 1. Assume that ψ : P 7→ B is differentiable at P relative to the

tangent space ṖP—with derivative ψ̇P g, for every g ∈ ṖP , and efficient

influence function ψ̃P—and takes its values in a subset Bφ.

Suppose also that φ : Bφ ⊂ B 7→ E is Hadamard differentiable at ψ(P )

tangentially to

B0 ≡ lin ψ̇P (ṖP ).

5



Empirical Processes: Lecture 24 Spring, 2010

Then φ ◦ ψ : P 7→ E is also differentiable at P relative to ṖP .

If Tn is a sequence of estimators with values in Bφ that is efficient at P for

estimating ψ(P ), then φ(Tn) is efficient at P for estimating φ ◦ ψ(P ).
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The following very useful theorem completely characterizes efficient

estimators of Euclidean parameters:

THEOREM 2. Let Tn be an estimator for a parameter ψ : P 7→ Rk ,

where ψ is differentiable at P relative to the tangent space ṖP with

k-variate efficient influence function ψ̃P ∈ L0
2(P ).

Then the following are equivalent:

(i) Tn is efficient at P relative to ṖP , and thus the limiting distribution of√
n(Tn − ψ(P )) is mean zero normal with covariance P [ψ̃P ψ̃

′
P ].

(ii) Tn is asymptotically linear with influence function ψ̃P .
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The next theorem we present endeavors to extends the above

characterization of efficient estimators to more general parameter spaces

of the form `∞(H):

THEOREM 3. Let Tn be an estimator for a parameter ψ : P 7→ `∞(H),

where ψ is differentiable at P relative to the tangent space ṖP with

efficient influence function ψ̃P : H 7→ L0
2(P ).

Let F ≡ {ψ̃P (h) : h ∈ H}.

Then the following are equivalent:

(a) Tn is efficient at P relative to ṖP and at least one of the following

holds:
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(i) Tn is asymptotically linear.

(ii) F is P -Donsker for some version of ψ̃P .

(b) For some version of ψ̃P , Tn is asymptotically linear with influence

function ψ̃P and F is P -Donsker.

(c) Tn is regular and asymptotically linear with influence function ψ̌P

such that {ψ̌P (h) : h ∈ H} is P -Donsker and ψ̌P (h) ∈ ṖP for all

h ∈ H.
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The theorem gives us several properties of efficient estimators that can be

useful for a number of things, including establishing efficiency.

In particular, conclusion (c) tells us that a simple method for establishing

efficiency of Tn requires only that

• Tn be asymptotically linear

• with an influence function that is contained in a Donsker class

• for which the individual components ψ̌P (h) are contained in the

tangent space for all h ∈ H.
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The theorem also tells us that if Tn is efficient, only one of (i) or (ii) in (a) is

required and the other will follow.

This means, for example, that if Tn is efficient and F is not P -Donsker for

any version of ψ̃P , then Tn must not be asymptotically linear.
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Also note that the requirement that F is P -Donsker collapses to requiring

that ‖ψ̃P ‖P,2 <∞ whenH is finite, and we are therefore in the setting

of Theorem 2.

However, such a requirement is not needed in the statement of Theorem 2

since ‖ψ̃P ‖P,2 <∞ automatically follows from the required

differentiability of ψ when ψ ∈ Rk .

This follows since the Riesz representation theorem assures us that ψ̃P is

in the closed linear span of ṖP which is a subset of L2(P ).
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The following somewhat deep theorem is useful in applications and tells us

that pointwise efficiency implies uniform efficiency under weak

convergence.

THEOREM 4. Let Tn be an estimator for a parameter ψ : P 7→ `∞(H),

where ψ is differentiable at P relative to the tangent space ṖP with

efficient influence function ψ̃P : H 7→ L0
2(P ).

The following are equivalent:

(a) Tn is efficient for ψ(P ).

(b) Tn(h) is efficient for ψ(P )(h), for every h ∈ H, and√
n(Tn − ψ(P )) is asymptotically tight under P .
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The proof of this theorem makes use of the following deep lemma:

LEMMA 1. Suppose that ψ : P 7→ D is differentiable at P relative to the

tangent space ṖP and that d′Tn is asymptotically efficient at P for

estimating d′ψ(P ) for every d′ in a subset D′ ⊂ D∗ which satisfies

‖d‖ ≤ c sup
d′∈D′, ‖d′‖≤1

|d′(d)|, (2)

for some constant c <∞.

Then Tn is asymptotically efficient at P provided
√
n(Tn − ψ(P )) is

asymptotically tight under P .
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Proof of Theorem 4:

• That (a) implies (b) is obvious.

• Now assume (b), and let D = `∞(H) and D′ be the set of all

coordinate projections d 7→ d∗hd ≡ d(h) for every h ∈ H.

• Since the uniform norm on `∞(H) is trivially equal to supd′∈D′ |d′d|
and all d′ ∈ D′ satisfying ‖d′‖ = 1, Condition (2) is easily satisfied.

• Since
√
n(Tn − ψ(P )) is asymptotically tight by assumption, all of

the conditions of Lemma 1 are satisfied.

• Hence Tn is efficient, and the desired conclusions follow.2
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We close this section with an interesting corollary of Lemma 1 that

provides a remarkably simple connection between marginal and joint

efficiency on product spaces:

THEOREM 5. Suppose that ψj : P 7→ Dj is differentiable at P relative to

the tangent space ṖP , and suppose that Tn,j is asymptotically efficient at

P for estimating ψj(P ), for j = 1, 2.

Then (Tn,1, Tn,2) is asymptotically efficient at P for estimating

(ψ1(P ), ψ2(P )).
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Proof:

• Let D′ be the set of all maps (d1, d2) 7→ d∗jdj for d∗j ∈ Dj and j

equal to either 1 or 2.

• Note that by the Hahn-Banach theorem (see Corollary 6.7 of Conway,

1990), ‖dj‖ = sup{|d∗jdj | : ‖d∗j‖ = 1, d∗j ∈ D∗j}.

• Thus the product norm ‖(d1, d2)‖ = ‖d1‖ ∨ ‖d2‖ satisfies

Condition (2) of Lemma 1 with c = 1.

• Hence the desired conclusion follows.2
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Thus marginal efficiency implies joint efficiency even though marginal

weak convergence does not imply joint weak convergence!

This is not quite so surprising as it may appear at first.

Consider the finite-dimensional setting where ψj(P ) ∈ R for j = 1, 2.
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If Tn,j is efficient for ψj(P ), for each j = 1, 2, then Theorem 2 tells us

that (Tn,1, Tn,2) is asymptotically linear with influence function

(ψ̃1,P , ψ̃2,P ).

Thus the limiting joint distribution will in fact be the optimal bivariate

Gaussian distribution.

The above theorem can be viewed as an infinite-dimensional

generalization of this finite-dimensional phenomenon.
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�� ��Optimality of Tests

In this section, we study testing of the null hypothesis

H0 : ψ(P ) ≤ 0 (3)

versus the alternative H1 : ψ(P ) > 0 for a one-dimensional parameter

ψ(P ).

The basic conclusion we will endeavor to show is that a test based on an

asymptotically optimal estimator for ψ(P ) will, in a meaningful way, be

asymptotically optimal.
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Note that null hypotheses of the form H01 : ψ(P ) ≤ ψ0 can trivially be

rewritten in the form given in (3) by replacing P 7→ ψ(P ) with

P 7→ ψ(P )− ψ0.

For dimensions higher than one, coming up with a satisfactory criteria for

optimality of tests is difficult and we will not pursue the higher dimensional

setting here.
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For a given model P and measure P on the boundary of the null

hypothesis where ψ(P ) = 0, we are interested in studying the “local

asymptotic power” in a neighborhood of P .

These neighborhoods are of size 1/
√
n and are the appropriate

magnitude when considering sample size computation for
√
n consistent

parameter estimates.
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Consider for example the univariate normal setting where the data are i.i.d.

N(µ, σ2).

A natural choice of test for H0 : µ ≤ 0 versus H1 : µ > 0 is the

indicator of whether

Tn =
√
n
x̄

sn
> z1−α,

where

• x̄ and sn are the sample mean and standard deviation from an i.i.d.

sample X1, . . . ,Xn,

• zq is the qth quantile of a standard normal, and

• α is the chosen size of this one-sided test.
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For any µ > 0, Tn diverges to infinity with probability 1.

However, if µ = k/
√
n for some finite k, then Tn ; N(k, 1).

Thus we can derive non-trivial power functions only for shrinking

“contiguous alternatives” in a 1/
√
n neighborhood of zero.
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In this case, since ψ̃P = X and the corresponding one-dimensional

submodel {Pt} must satisfy

∂ψ(Pt)

∂t

∣∣∣∣
t=1

= k,

we know that the score function g corresponding to {Pt} must be

g(X) = kX/σ.

Hence, in this example, we can easily express the local alternative

sequence in terms of the score function rather than k.
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Thus it makes sense in general to study the performance of tests under

contiguous alternatives defined by one-dimensional submodels

corresponding to score functions.

Accordingly, for a given element g of a tangent set ṖP , let t 7→ Pt,g be a

one-dimensional submodel which is differentiable in quadratic mean at P

with score function g along which ψ is differentiable, i.e.,

ψ(Pt,g)− ψ(P )

t
→ P [ψ̃P g],

as t ↓ 0.
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For each such g for which P [ψ̃P g] > 0, we can see that when

ψ(P ) = 0, the submodel {Pt,g} belongs to H1 : ψ(P ) > 0 for all

sufficiently small t > 0.

We will therefore consider power over contiguous alternatives of the form

{Ph/√n,g} for h > 0.
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Before continuing, we need to define a power function.

For a subsetQ ⊂ P containing P , a power function π : Q 7→ [0, 1] at

level α is a function on probability measures that satisfies π(Q) ≤ α for

all Q ∈ Q for which ψ(Q) ≤ 0.
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We say that a sequence of power function {πn} has asymptotic level α if

lim supn→∞ πn(Q) ≤ α for every Q ∈ Q : ψ(Q) ≤ 0.

The power function for a level α hypothesis test of H0 is the probability of

rejecting H0 under Q.

Hence statements about power functions can be viewed as statements

about hypothesis tests.
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Here is our main result:

THEOREM 6. Let ψ : P 7→ R be differentiable at P relative to the tangent

space ṖP with efficient influence function ψ̃P , and suppose ψ(P ) = 0.

Then, for every sequence of power functions P 7→ πn(P ) of asymptotic

level α tests for H0 : ψ(P ) ≤ 0, and for every g ∈ ṖP with

P [ψ̃P g] > 0 and every h > 0,

lim sup
n→∞

πn(Ph/
√
n,g) ≤ 1− Φ


z1−α − h

P [ψ̃P g]√
P [ψ̃2

P ]


 .
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This is a minor modification of Theorem 25.44 in Section 25.6 of van der

Vaart (1998) and the proof is given therein.

While there are some differences in notation, the substantive modification

is that

• van der Vaart requires the power functions to have level α for each n,

• whereas our version only require the levels to be asymptotically α.

This does not affect the proof, and we omit the details.
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An advantage of this modification is that

• it permits the use of approximate hypothesis tests,

• such as those which depend on the central limit theorem,

• whose level for fixed n may not be exactly α

• but whose asymptotic level is known to be α.
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An important consequence of Theorem 6 is that a test based on an

efficient estimator Tn of ψ(P ) can achieve the given optimality.

To see this, let S2
n be a consistent estimator of the limiting variance of√

n(Tn − ψ(P )), and let πn(Q) be the power function defined as the

probability that
√
nTn/Sn > z1−α under the model Q.

It is easy to see that this power function has asymptotic power α under the

null hypothesis.
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The following result shows that this procedure is asymptotically optimal:

LEMMA 2. Let ψ : P 7→ R be differentiable at P relative to the tangent

space ṖP with efficient influence function ψ̃P , and suppose ψ(P ) = 0.

Suppose the estimator Tn is asymptotically efficient at P , and, moreover,

that S2
n

P→ Pψ̃2
P .

Then, for every h ≥ 0 and g ∈ ṖP ,

lim sup
n→∞

πn(Ph/
√
n,g) = 1− Φ


z1−α − h

P [ψ̃P g]√
Pψ̃2

P


 .
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Proof: By Theorem 2 and Part (i) of Theorem 11.14, we have that

√
nTn
Sn

Pn
; Z + h

P [ψ̃P g]√
Pψ̃2

P

,

where Pn ≡ Ph/√n,g and Z has a standard normal distribution.

The desired result now follows.2
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Consider, for example, the Mann-Whitney test discussed in Section 12.2.2

for comparing two independent samples of respective sample sizes m and

n.

Let Fm andGn be the respective empirical distributions with

corresponding true distributions F and G which we assume to be

continuous.

The Mann-Whitney statistic is

Tn =

∫

R
Gn(s)dFm(s)− 1/2

which is consistent for ψ(P ) =
∫
RG(s)dF (s) − 1/2.

36



Empirical Processes: Lecture 24 Spring, 2010

We are interested in testing the null hypothesis H0 : ψ(P ) ≤ 0 versus

H1 : ψ(P ) > 0.

By Theorem 5, we know that (Fm,Gm) is jointly efficient for (F,G).

Moreover, by Lemma 12.3, we know that (F,G) 7→
∫
RG(s)dF (s) is

Hadamard differentiable.
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Thus Theorem 1 applies, and we obtain that
∫
RGn(s)dFn(s) is

asymptotically efficient for
∫
RG(s)dF (s).

Hence Lemma 2 also applies, and we obtain that Tn is optimal for testing

H0, provided it is suitably standardized.
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We know from the discussion in Section 12.2.2 that the asymptotic

variance of
√
nTn is 1/12.

Thus the test that rejects the null when
√

12nTn is greater than z1−α is

optimal.
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Another simple example is the sign test for symmetry about zero for a

sample of real random variables X1, . . . ,Xn with distribution F that is

continuous at zero.

The test statistic is

Tn =

∫

R
sign(x)dFn(x),

where Fn is the usual empirical distribution.
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Using arguments similar to those used in the previous paragraphs, it can

be shown that Tn is an asymptotically efficient estimator for

ψ(P ) =

∫

R
sign(x)dF (x) = pr(X > 0)− pr(X < 0).

Thus, by Lemma 2 above, the sign test is asymptotically optimal for testing

the null hypothesis H0 : pr(X > 0) ≤ pr(X < 0) versus the alternative

H1 : pr(X > 0) > pr(X < 0).
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These examples illustrates the general concept that

• if the parameter of interest is a smooth functional of the underlying

distribution functions,

• then the estimator obtained by substituting the true distributions with

the corresponding empirical distributions will be asymptotically optimal,

• provided we are not willing to make any parametrically restrictive

assumptions about the distributions.
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