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�� ��Tangent Sets

For a statistical model {P ∈ P} on a sample space X , a

one-dimensional model {Pt} is a smooth submodel at P if P0 = P ,

{Pt : t ∈ Nε ≡ (−ε, ε)} ⊂ P

for some ε > 0, and the following holds for some measurable “tangent”

function g : X 7→ R:∫ [
(dPt(x))1/2 − (dP (x))1/2

t
− 1

2
g(x)(dP (x))1/2

]2
→ 0, (1)

as t→ 0.
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In the previous slide, P is usually the true but unknown distribution of the

data.

Note that Lemma 11.11 forces the g in (1) to be contained in L0
2(P ).
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A tangent set Q̇P ⊂ L0
2(P ) represents a submodelQ ⊂ P at P if the

following hold:

(i) For every smooth one-dimensional submodel {Pt} for which

P0 = P and {Pt : t ∈ Nε} ⊂ Q for some ε > 0, (2)

and for which (1) holds for some g ∈ L0
2(P ), we have g ∈ Q̇P ; and

(ii) For every g ∈ Q̇P , there exists a smooth one-dimensional submodel

{Pt} such that (2) and (1) both hold.
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An appropriate question to ask at this point is why the focus on

one-dimensional submodels?

The basic reason is that score functions for finite dimensional submodels

can be represented by tangent sets corresponding to one-dimensional

submodels.

To see this, let

Q ≡ {Pθ : θ ∈ Θ} ⊂ P,

where Θ ⊂ Rk.
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Let θ0 ∈ Θ be the true value of the parameter, i.e. P = Pθ0 . Suppose

that the members Pθ ofQ all have densities pθ dominated by a measure

µ, and that

˙̀
θ0 ≡

∂

∂θ
log pθ

∣∣∣∣
θ=θ0

,

where ˙̀
θ0 ∈ L0

2(P ), P‖ ˙̀
θ − ˙̀

θ0‖2 → 0 as θ → θ0, and the meaning

of the extension of L0
2(P ) to vectors of random variables is obvious.
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The tangent set

Q̇P ≡ {h′ ˙̀θ0 : h ∈ Rk}

contains all the information in the score ˙̀
θ0 , and, moreover, it is not hard to

verify that Q̇P representsQ.

Thus one-dimensional submodels are sufficient to represent all

finite-dimensional submodels.
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Moreover, since semiparametric efficiency is assessed by examining the

information for the worst finite-dimensional submodel, one-dimensional

submodels are sufficient for semiparametric models in general, including

models with infinite-dimensional parameters.

Now if {Pt : t ∈ Nε} and g ∈ ṖP satisfy (1), then for any a ≥ 0,

everything will also hold when ε is replaced by ε/a and g is replaced by

ag.
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Thus we can usually assume, without a significant loss in generality, that a

tangent set ṖP is a cone, i.e., a set that is closed under multiplication by

nonnegative scalars.

We will also frequently find it useful to replace a tangent set with its closed

linear span, or to simply assume that the tangent set is closed under limits

of linear combinations, in which case it becomes a tangent space.
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For an arbitrary model parameter ψ : P 7→ D, consider the fairly general

setting where D is a Banach space B.

In this case, ψ is differentiable at P relative to the tangent set ṖP if, for

every smooth one-dimensional submodel {Pt} with tangent g ∈ ṖP ,

dψ(Pt
dt

∣∣∣∣
t=0

= ψ̇P (g)

for some bounded linear operator ψ̇P : ṖP 7→ B.
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When ṖP is a linear space, it is a subspace of the Hilbert space L0
2(P )

and some additional results follow.

To begin with, the Riesz representation theorem yields that for every

b∗ ∈ B∗,
b∗ψ̇P (g) = P

[
ψ̃P (b∗)g

]
for some operator ψ̃P : B∗ 7→ lin ṖP .
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Note also that for any g ∈ ṖP and b∗ ∈ B∗, we also have

b∗ψ̇P (g) = 〈g, ψ̇∗P (b∗)〉,

where 〈·, ·〉 is the inner product on L0
2(P ) and ψ̇∗P is the adjoint of ψ̇P .
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Thus the operator ψ̃P is precisely ψ̇∗P .

In this case, ψ̃P is the efficient influence function.
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�� ��Regularity

The estimator Tn is regular at P relative to ṖP if for every smooth

one-dimensional submodel {Pt} ⊂ P and every sequence tn with

tn = O(n−1/2),
√
n(Tn − ψ(Ptn))

Pn
; Z,

for some tight Borel random element Z , where Pn ≡ Ptn .
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An estimator sequence {Tn} for a parameter ψ(P ) is asymptotically

linear if there exists an influence function ψ̌P : X 7→ B such that

√
n(Tn − ψ(P ))−

√
nPnψ̌P

P→ 0.

There are a number of ways to establish regularity, but when B = `∞(H),

for some setH, and Tn is asymptotically linear, the conditions for

regularity can be expressed as properties of the influence function.
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Fortunately, we only need to consider the influence function as evaluated

for the subset of linear functionals B′ ⊂ B∗ that are coordinate

projections.

These projections are defined for each h ∈ H as

ψ̇P (g)(h) = P [ψ̃P (h)g].
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Theorem 18.1 Assume

• Tn and ψ(P ) are in `∞(H),

• ψ is differentiable at P relative to the tangent space ṖP with efficient

influence function

ψ̃P : H 7→ L0
2(P ),

and

• Tn is asymptotically linear for ψ(P ), with influence function ψ̌P .

17



Empirical Processes: Lecture 23 Spring, 2012

For each h ∈ H, let ψ̌•P (h) be the projection of ψ̌P (h) onto ṖP . TFAE:

(i) The class F ≡ {ψ̌P (h) : h ∈ H} is P -Donsker and

ψ̌•P (h) = ψ̃P (h) almost surely for all h ∈ H.

(ii) Tn is regular at P .
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We now present a way of verifying an efficient influence function:

Proposition 18.2 Assume ψ : P 7→ `∞(H) is differentiable at P relative

to the linear tangent set ṖP , with bounded linear derivative

ψ̇P : ṖP 7→ `∞(H).

Then ψ̌P : H 7→ L0
2(P ) is an efficient influence function if and only if the

following both hold:

(i) ψ̌P (h) is in the closed linear span of ṖP for all h ∈ H, and

(ii) ψ̇P (g)(h) = P [ψ̌P (h)g] for all h ∈ H and g ∈ ṖP .
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This simple proposition is a primary ingredient in a “calculus” of

semiparametric efficient estimators.

A second important ingredient is making sure that ṖP is rich enough to

represent all smooth finite-dimensional submodels of P .
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�� ��Consequences of Non-Regularity

Let Tn be asymptotically linear for ψ(P ), with influence function ψ̌P .

If Tn is not regular, we know from the proof of Theorem 18.1 that there

exists a function g̃ ∈ ṖP such that P g̃2 > 0 and, for each a ∈ R, there

exists a sequence of contiguous, one-dimensional submodels Pn, for

which

√
n(Tn(h)− ψ(Pn)(h))

Pn
; Gψ̌P (h) + aP g̃2. (3)
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This means that Tn has a serious defect.

Specifically, we see from (3) that for any M <∞ and ε > 0, we can alter

a to generate a one-dimensional submodel {Pn} for which

pr
(∥∥√n(Tn − ψ(Pn))

∥∥
H > M

)
> 1− ε.

Thus the estimator Tn has arbitrarily poor performance for certain

submodels which are represented by ṖP .
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Hence regularity is not just a mathematically convenient definition, but it

reflects, even in infinite-dimensional settings, a certain intuitive

reasonableness about Tn.

This does not mean that nonregular estimators are never useful, because

they can be, especially when the parameter ψ(P ) is not
√
n-consistent.

Nevertheless, regular estimators are very appealing when they are

available.
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�� ��Efficiency

We now turn our attention to the question of efficiency in estimating

general Banach-valued parameters.

We first present general optimality results and characterize efficient

estimators in the special Banach space `∞(H).
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We then

• consider efficiency of Hadamard-differentiable functionals of efficient

parameters,

• show how to establish efficiency of estimators in `∞(H) from

efficiency of all one-dimensional components, and

• examine the related issue of efficiency in product spaces.
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The next two theorems, which characterize optimality in Banach spaces,

are the key results of this section.

For a Borel random element Y , let L(Y ) denote the law of Y (as in

Section 7.1), and let ∗ denote the convolution operation.
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Define a function u : B 7→ [0,∞) to be subconvex if, for every b ∈ B,

u(b) ≥ 0 = u(0) and u(b) = u(−b), and also, for every c ∈ R, the set

{b ∈ B : u(b) ≤ c} is convex and closed.

A simple example of a subconvex function is the norm ‖ · ‖ for B.

27



Empirical Processes: Lecture 23 Spring, 2012

Here are the theorems:

Theorem 18.3 (Convolution theorem) Assume that ψ : P 7→ B is

differentiable at P relative to the tangent space ṖP , with efficient influence

function ψ̃P .

Assume that Tn is regular at P relative to ṖP , with Z being the tight weak

limit of
√
n(Tn − ψ(P )) under P .
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Then

L(Z) = L(Z0) ∗ L(M),

where M is some Borel random element in B, and Z0 is a tight Gaussian

process in B with covariance

P [(b∗1Z0)(b
∗
2Z0)] = P

[
ψ̃P (b∗1)ψ̃P (b∗2)

]
for all b∗1, b

∗
2 ∈ B∗.
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Theorem 18.4 Assume the conditions of Theorem 18.3 hold and that

u : B 7→ [0,∞) is subconvex.

Then

lim sup
n→∞

E∗u
(√
n(Tn − ψ(P ))

)
≥ Eu(Z0),

where Z0 is as defined in Theorem 18.3.
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The previous two theorems characterize optimality of regular estimators in

terms of the limiting process Z0, which is a tight, mean zero Gaussian

process with covariance obtained from the efficient influence function.

This can be viewed as an asymptotic generalization of the Cramér-Rao

lower bound.

We say that an estimator Tn is efficient if it is regular and the limiting

distribution of
√
n(Tn − ψ(P )) is Z0, i.e., Tn achieves the optimal lower

bound.
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The following proposition assures us that Z0 is fully characterized by the

distributions of b∗Z0 for b∗ ranging over all of B∗:

Proposition 18.5 Let Xn be an asymptotically tight sequence in a Banach

space B and assume b∗Xn ; b∗X for every b∗ ∈ B∗ and some tight,

Gaussian process X in B.

Then Xn ; X .
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Proof. Let

B∗1 ≡ {b∗ ∈ B∗ : ‖b∗‖ ≤ 1}

and

B̃ ≡ `∞(B∗1).

Note that

(B, ‖ · ‖) ⊂ (B̃, ‖ · ‖B∗
1
)

by letting x(b∗) ≡ b∗x for every b∗ ∈ B∗ and all x ∈ B and recognizing

that

‖x‖ = sup
b∗∈B∗

1

|b∗x| = ‖x‖B∗
1

by the Hahn-Banach theorem.
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Thus weak convergence of Xn in B̃ will imply weak convergence in B by

Lemma 7.8.

Since we already know that Xn is asymptotically tight in B̃, we are done if

we can show that all finite-dimensional distributions of Xn converge.

34



Empirical Processes: Lecture 23 Spring, 2012

Accordingly, let

b∗1, . . . , b
∗
m ∈ B∗1

be arbitrary and note that for any (α1, . . . , αm) ∈ Rm,

m∑
j=1

αjXn(b∗j ) = b̃∗Xn

for

b̃∗ ≡
m∑
j=1

αjb
∗
j ∈ B∗.

Since we know that b̃∗Xn ; b̃∗X , we now have that

m∑
j=1

αjb
∗
jXn ;

m∑
j=1

αjb
∗
jX.
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Thus

(Xn(b∗1), . . . , Xn(b∗m))T ; (X(b∗1), . . . , X(b∗m))T

since (α1, . . . , αj) ∈ Rm was arbitrary and X is Gaussian.

Since b∗1, . . . , b
∗
m and m were also arbitrary, we have the result that all

finite-dimensional distributions of Xn converge, and the desired

conclusion now follows.2
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