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[Tangent Sets ]

For a statistical model { P € P} on a sample space X, a

one-dimensional model { P, } is a smooth submodel at P if Py = P,
{P,:te N.=(—€,¢)} CP

for some € > 0, and the following holds for some measurable “tangent”
function g : X — R:

/

ast — 0.

(dPy(x))'/? — (dP(z))'? 1 1/2
t




Empirical Processes: Lecture 23 Spring, 2012

In the previous slide, P is usually the true but unknown distribution of the

data.

Note that Lemma 11.11 forces the g in (1) to be contained in L) (P).
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Atangent set Op C LY(P) represents a submodel Q C P at P if the

following hold:
(i) For every smooth one-dimensional submodel { P;} for which
Py=P and {P;:t€ N} C Qforsomee >0, (2

and for which (1) holds for some g € LI(P), we have g € Qp; and

(i) Forevery g © Qp, there exists a smooth one-dimensional submodel
{ P;} such that (2) and (1) both hold.
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An appropriate question to ask at this point is why the focus on

one-dimensional submodels?

The basic reason is that score functions for finite dimensional submodels
can be represented by tangent sets corresponding to one-dimensional

submodels.

To see this, let

Q={F:0c0} CP,

where © C R,
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Let g € O be the true value of the parameter, i.e. P = F,. Suppose
that the members Py of Q all have densities pg dominated by a measure

W, and that

: 0
Vg, = — 1
6o BY: 0g Po o—or ’

where fg, € LY(P), P||tg — {g,||> — 0as 6 — 6, and the meaning

of the extension of Lg(P) to vectors of random variables is obvious.
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The tangent set
Op = {h'lg, : h € R*}
contains all the information in the score égo, and, moreover, it is not hard to

verify that Op represents Q.

Thus one-dimensional submodels are sufficient to represent all

finite-dimensional submodels.
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Moreover, since semiparametric efficiency is assessed by examining the
information for the worst finite-dimensional submodel, one-dimensional
submodels are sufficient for semiparametric models in general, including

models with infinite-dimensional parameters.

Nowif {P; :t € N} and g € Pp satisfy (1), then for any a > 0,

everything will also hold when € is replaced by €/a and g is replaced by

ag.
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Thus we can usually assume, without a significant loss in generality, that a
tangent set 7jp is a cone, i.e., a set that is closed under multiplication by

nonnegative scalars.

We will also frequently find it useful to replace a tangent set with its closed
linear span, or to simply assume that the tangent set is closed under limits

of linear combinations, in which case it becomes a tangent space.
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For an arbitrary model parameter 1) : P +— I, consider the fairly general

setting where [ is a Banach space BB.

In this case, 1 is differentiable at P relative to the tangent set 7jp if, for

every smooth one-dimensional submodel { P;} with tangent g € Pp,

dip (P,

T =Yp(9)

for some bounded linear operator @bp . Pp — B.

10
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When 7jp is a linear space, it is a subspace of the Hilbert space Lg(P)

and some additional results follow.

To begin with, the Riesz representation theorem yields that for every
b* € B,
b*¢p(g) = P [wp(b*)g}

for some operator ¥ p : B* — lin Pp.

11
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Note also that for any g € Pp and b* € B*, we also have
b*yYp(g9) = (9,¥p(b7)),

where (-, -) is the inner product on LY(P) and 1% is the adjoint of 1) p.

12
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Thus the operator zﬁp is precisely w}

In this case, 1; p is the efficient influence function.

13
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(Regularity |

The estimator 1, is regular at P relative to 7jp if for every smooth

one-dimensional submodel { P;} C P and every sequence t,, with
t, = (n—1/2),

V(T — (P,) 3 Z,

for some tight Borel random element Z, where P, = F; .

14
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An estimator sequence {1}, } for a parameter 1 ( P) is asymptotically

linear if there exists an influence function 1@ p . X — B such that

V(T — $(P)) — VnPypihp — 0.

There are a number of ways to establish regularity, but when B = £°°(H),
for some set H, and I, is asymptotically linear, the conditions for

regularity can be expressed as properties of the influence function.

15
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Fortunately, we only need to consider the influence function as evaluated
for the subset of linear functionals B’ C B* that are coordinate

projections.

These projections are defined for each h € H as

16
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Theorem 18.1 Assume
o T, and)(P) arein {>**(H),

e 1 s differentiable at P relative to the tangent space 75p with efficient

influence function
¢P :H — L(Z)(P )7
and

o T), is asymptotically linear for1y( P), with influence function |'p.

17
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Foreach h € H, let1)%(h) be the projection of yp(h) onto Pp. TFAE:

(i) Theclass F = {¢p(h) : h € H} is P-Donsker and
lﬁfa(h) = TZP(h) almost surely for all h € H.

(i) I3, is regular at P.

18
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We now present a way of verifying an efficient influence function:
Proposition 18.2 Assume 1) : P + (°°(H) is differentiable at P relative

to the linear tangent set P p, with bounded linear derivative

’gbp : 7jp > KOO(IH)

Thenp : H +— LY(P) is an efficient influence function if and only if the
following both hold:

(i) Yp(h) is in the closed linear span of Pp for all h € H, and

(i) ¥p(g)(h) = Plpp(h)g) forallh € H and g € Pp.

19
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This simple proposition is a primary ingredient in a “calculus” of

semiparametric efficient estimators.

A second important ingredient is making sure that 7jp is rich enough to

represent all smooth finite-dimensional submodels of P.

20
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(Consequences of Non-Regularity J

Let T, be asymptotically linear for 1)( P), with influence function Dp.

If I}, is not regular, we know from the proof of Theorem 18.1 that there
exists a function g € Pp such that PG > 0 and, for each a € R, there
exists a sequence of contiguous, one-dimensional submodels F,,, for

which

V(To(h) = (P)(R)) ~2 Gi¢p(h)+aPFP. ()

21
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This means that I}, has a serious defect.

Specifically, we see from (3) that for any M < oo and € > 0, we can alter

a to generate a one-dimensional submodel {Pn} for which

pr(HfT — (P, H,H>M)>1—€.

Thus the estimator 1}, has arbitrarily poor performance for certain

submodels which are represented by 7jp.

22
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Hence regularity is not just a mathematically convenient definition, but it
reflects, even in infinite-dimensional settings, a certain intuitive

reasonableness about 1,.

This does not mean that nonregular estimators are never useful, because

they can be, especially when the parameter 1)( P) is not 1/n-consistent.

Nevertheless, regular estimators are very appealing when they are

available.

23
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Efficiency |

We now turn our attention to the question of efficiency in estimating

general Banach-valued parameters.

We first present general optimality results and characterize efficient

estimators in the special Banach space £°°(H.).

24
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We then

e consider efficiency of Hadamard-differentiable functionals of efficient

parameters,

e show how to establish efficiency of estimators in £°° () from

efficiency of all one-dimensional components, and

e examine the related issue of efficiency in product spaces.

25
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The next two theorems, which characterize optimality in Banach spaces,

are the key results of this section.

For a Borel random element Y, let L(Y") denote the law of Y (as in

Section 7.1), and let * denote the convolution operation.

26
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Define a function u : B — [0, 00) to be subconvex if, for every b € B,
u(b) > 0 = u(0) and u(b) = u(—>b), and also, for every ¢ € R, the set
{b € B:u(b) <c}isconvex and closed.

A simple example of a subconvex function is the norm || - || for B.

27
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Here are the theorems:
Theorem 18.3 (Convolution theorem) Assume that 1 : P +— B is
differentiable at P relative to the tangent space 7jp, with efficient influence

function 15 pP.

Assume that I}, is regular at P relative to Pp, with Z being the tight weak
limit of \/n(T,, — ¥ (P)) under P.

28
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Then
L(Z) = L(Zy) * L(M),

where M is some Borel random element in B, and Z is a tight Gaussian

process in 1B with covariance

P((b120)(b3%0)] = P | (57)dp(b5)

for all by, b5 € B*.

29
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Theorem 18.4 Assume the conditions of Theorem 18.3 hold and that

u : B — [0, 00) is subconvex.

Then
lim sup E,u (\/ﬁ(Tn — ¢(P))) > Eu(Zp),

n—oo

where Z is as defined in Theorem 18.3.

30
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The previous two theorems characterize optimality of regular estimators in
terms of the limiting process Z, which is a tight, mean zero Gaussian

process with covariance obtained from the efficient influence function.

This can be viewed as an asymptotic generalization of the Cramér-Rao

lower bound.

We say that an estimator 1, is efficient if it is regular and the limiting
distribution of /n (T3, — (P)) is Zy, i.e., T}, achieves the optimal lower

bound.

31
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The following proposition assures us that £ is fully characterized by the
distributions of b* Z for b* ranging over all of B*:

Proposition 18.5 Let X,, be an asymptotically tight sequence in a Banach
space B and assume b* X,, ~» b* X for every b* € B* and some tight,

Gaussian process X in B.

Then X,, ~ X.

32
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Proof. Let
B ={b" € B*: |[p*]| <1}
and
B = (>°(B}).
Note that
(B, ] -11) < (B, ]l - ll;)
by letting x(b*) = b*x for every b* € B* and all x € B and recognizing
that
|z = sup |b"z| = [|z||s;
b* €B

by the Hahn-Banach theorem.

33
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Thus weak convergence of X, in B will imply weak convergence in B by

Lemma 7.8.

Since we already know that X, is asymptotically tight in IE% we are done if

we can show that all finite-dimensional distributions of X, converge.

34
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Accordingly, let
15,00, € B]

be arbitrary and note that for any (o, ..., a,) € R™,
m
Y X, (b)) = b* X,
j=1

for

5* = Z()éjb; c B*.
j=1

Since we know that b* X,, ~» b* X, we now have that
m m
D abiX, ~ ) abiX.

35
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Thus
(Xn(b7), - s X (b))~ (X(B7), .., X ()"

since (a1, ...,a;) € R™ was arbitrary and X is Gaussian.

Since 07, . . ., b}, and m were also arbitrary, we have the result that all
finite-dimensional distributions of .X,, converge, and the desired

conclusion now follows.]
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