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�� ��Projections

Geometrically, the projection of an object T onto a space S is the element

Ŝ ∈ S that is “closest” to T , provided such an element exists.

In the semiparametric inference context,

• the object is usually a random variable and

• the spaces of interest for projection are usually sets of

square-integrable random variables.
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The following theorem gives a simple method for identifying the projection

in this setting:

Theorem 17.1 Let S be a linear space of real random variables with finite

second moments.

Then Ŝ is the projection of T onto S if and only if

(i) Ŝ ∈ S and

(ii) E(T − Ŝ)S = 0 for all S ∈ S .
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If S1 and S2 are both projections, then S1 = S2 almost surely.

If S contains the constants, then ET = EŜ and

cov(T − Ŝ, S) = 0

for all S ∈ S .
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Proof. First assume (i) and (ii) hold.

Then, for any S ∈ S , we have

E(T − S)2 = E(T − Ŝ)2 + 2E(T − Ŝ)(Ŝ − S) + E(Ŝ − S)2. (1)

But Conditions (i) and (ii) force the middle term to be zero, and thus

E(T − S)2 ≥ E(T − Ŝ)2 with strict inequality whenever

E(Ŝ − S)2 > 0.

Thus Ŝ is the almost surely unique projection of T onto S .
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Conversely, assume that Ŝ is a projection and note that for any α ∈ R
and any S ∈ S ,

E(T − Ŝ − αS)2 − E(T − Ŝ)2 = −2αE(T − Ŝ)S + α2ES2.

Since Ŝ is a projection, the left side is strictly nonnegative for every α.

But the parabola

α 7→ α2ES2 − 2αE(T − Ŝ)S

is nonnegative for all α and S only if E(T − Ŝ)S = 0 for all S.
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Thus (ii) holds, and (i) is part of the definition of a projection and so holds

automatically.

The uniqueness follows from application of (1) to both S1 and S2, forcing

E(S1 − S2)2 = 0.

If the constants are in S , then Condition (ii) implies that E(T − Ŝ)c = 0

for c = 1, and the theorem follows.2
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Note that the theorem does not imply that a projection always exists.

In fact, if the set S is open in the L2(P ) norm, then the infimum of

E(T − S)2 over S ∈ S is not achieved.

A sufficient condition for existence, then, is that S be closed in the L2(P )

norm, but often existence can be established directly: we will discuss this

more later.
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A very useful example of a projection is a conditional expectation.

For X and Y real random variables on a probability space,

g0(y) ≡ E(X|Y = y) is the conditional expectation of X given Y = y.

If we let G be the space of all measurable functions g of Y such that

Eg2(Y ) <∞, then it is easy to verify that

E(X − g0(Y ))g(Y ) = 0, for every g ∈ G.
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Thus, provided Eg20(Y ) <∞, E(X|Y = y) is the projection of X onto

the linear space G.

By Theorem 17.1, the conditional expectation is almost surely unique.

We will utilize conditional expectations frequently for calculating projections

needed in semiparametric inference settings.
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�� ��Hilbert Spaces

A Hilbert space is essentially an abstract generalization of a

finite-dimensional Euclidean space.

This abstraction is a special case of a Banach space and, like a Banach

space, is often infinite-dimensional.

To be precise, a Hilbert space is a Banach space with an inner product.
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An inner product on a Banach space D with norm ‖ · ‖ is a function

〈·, ·〉 : D× D 7→ R

such that, for all α, β ∈ R and x, y, z ∈ D, the following hold:

(i) 〈x, x〉 = ‖x‖2,

(ii) 〈x, y〉 = 〈y, x〉, and

(iii) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉.

A semi-inner product arises when ‖ · ‖ is a semi-norm.
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It is also possible to generate a norm beginning with an inner product.

Let D be a linear space with semi-inner product 〈·, ·〉 (not necessarily with

a norm), i.e., 〈·, ·〉 satisfies Conditions (ii)–(iii) above and also satisfies

〈x, x〉 ≥ 0.

Then ‖x‖ ≡ 〈x, x〉1/2, for all x ∈ D, defines a semi-norm.
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This is verified in the following theorem:

Theorem 17.2 Let 〈·, ·〉 be a semi-inner product on D, with

‖x‖ ≡ 〈x, x〉1/2 for all x ∈ D.

Then, for all α ∈ R and all x, y ∈ D,

(a) 〈x, y〉 ≤ ‖x‖ ‖y‖,

(b) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, and

(c) ‖αx‖ = |α| × ‖x‖.

Moreover, if 〈·, ·〉 is also an inner product, then ‖x‖ = 0 if and only if

x = 0.
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Part (a) in Theorem 17.2 is also known as the Cauchy-Schwartz inequality.

Two elements x, y in a Hilbert space H with inner product 〈·, ·〉 are

orthogonal if 〈x, y〉 = 0, denoted x⊥y.
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For any set C ⊂ H and any x ∈ H, x is orthogonal to C if x⊥y for every

y ∈ C , denoted x⊥C .

The two subsets C1, C2 ⊂ H are orthogonal if x⊥y for every x ∈ C1

and y ∈ C2, denoted C1⊥C2.

For any C1 ⊂ H, the orthocomplement of C1, denoted C⊥1 , is the set

{x ∈ H : x⊥C1}.
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Let the subspace H ⊂ H be linear and closed.

By Theorem 17.1, we have for any x ∈ H that there exists an element

y ∈ H that satisfies ‖x− y‖ ≤ ‖x− z‖ for any z ∈ H , and such that

〈x− y, z〉 = 0 for all z ∈ H .

Let Π denote an operator that performs this projection, i.e., let Πx ≡ y,

where y is the projection of x onto H .
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The “projection” operator Π : H 7→ H has several important properties:

Theorem 17.3 Let H be a closed, linear subspace of H, and let

Π : H 7→ H be the projection operator onto H .

Then

(i) Π is continuous and linear,

(ii) ‖Πx‖ ≤ ‖x‖ for all x ∈ H,

(iii) Π2 ≡ Π Π = Π, and

(iv) N(Π) = H⊥ and R(Π) = H .
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Proof. Let x, y ∈ H and α, β ∈ R.

If z ∈ H , then

〈[αx+ βy]− [αΠx+ βΠy], z〉 = α〈x−Πx, z〉+ β〈y −Πy, z〉

= 0.

Now by the uniqueness of projections (Theorem 17.1), we now have that

Π(αx+ βy) = αΠx+ βΠy.

This yields linearity of Π.
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If we can establish (ii), (i) will follow.

Since 〈x−Πx,Πx〉 = 0, for any x ∈ H, we have

‖x‖2 = ‖x−Πx‖2 + ‖Πx‖2 ≥ ‖Πx‖2,

and (ii) (and hence also (i)) follows.

For any y ∈ H , Πy = y.

Thus for any x ∈ H, Π(Πx) = Πx, and (iii) follows.
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Now let x ∈ N(Π).

Then x = x−Πx ∈ H⊥.

Conversely, for any x ∈ H⊥, Πx = 0 by definition, and thus x ∈ N(Π).

Hence N(Π) = H⊥.
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Now it is trivial to verify that R(Π) ⊂ H by the definitions.

Moreover, for any x ∈ H , Πx = x, and thus H ⊂ R(Π).

This implies (iv).2
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One other point we note is that for any projection Π onto a closed linear

subspace H ⊂ H, I −Π, where I is the identity, is also a projection onto

the closed linear subspace H⊥.

A key example of a Hilbert space H is H = L2(P ) with inner product

〈f, g〉 =
∫
fgdP .
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A closed, linear subspace of interest to us is L0
2(P ) ⊂ L2(P ) which

consists of all mean zero functions in L2(P ).

The projection operator Π : L2(P ) 7→ L0
2(P ) is Πx = x− Px.
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To see this, note that Πx ∈ L0
2(P ) and

〈x−Πx, y〉 = 〈Px, y〉 = PxPy = 0 for all y ∈ L0
2(P ).

Thus by Theorem 17.1, Πx is the unique projection onto L0
2(P ).

It is also not hard to verify that I −Π is the projection onto the constants

(see Exercise 17.4.2).
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We close this section with a brief discussion of linear functionals on Hilbert

spaces.

Recall from Chapter 6 the definition of a linear operator and the fact that

the norm for a linear operator T : D 7→ E is

‖T‖ ≡ sup
x∈D:‖x‖≤1

‖Tx‖.

In the special case where E = R, a linear operator is called a linear

functional.
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A linear functional T , like a linear operator, is bounded when ‖T‖ <∞.

By Proposition 6.15, boundedness is equivalent to continuity in this setting.

We now present a very important result for bounded linear functionals in

Hilbert spaces.
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Theorem 17.5 (Riesz representation theorem) If L : H 7→ R is a

bounded linear functional on a Hilbert space, then there exists a unique

element h0 ∈ H such that L(h) = 〈h, h0〉 for all h ∈ H, and, moreover,

‖L‖ = ‖h0‖.
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�� ��More on Banach Spaces

As with Hilbert spaces, a linear functional on a Banach space is just a

linear operator with real range.

The dual space B∗ of a Banach space B is the set of all continuous, linear

functionals on B.
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By applying Proposition 6.15, it is clear that every b∗ ∈ B∗ satisfies

|b∗b| ≤ ‖b∗‖ ‖b‖ for every b ∈ B, where

‖b∗‖ ≡ sup
b∈B:‖b‖≤1

|b∗b| <∞.
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For the special case of a Hilbert space H, H∗ can identified with H by the

Reisz representation theorem.

This implies that there exists an isometry (a one-to-one map that

preserves norms) between H and H∗.

31



Empirical Processes: Lecture 22 Spring, 2012

To see this, choose h∗ ∈ H∗ and let h̃ ∈ H be the unique element that

satisfies 〈h, h̃〉 = h∗h for all h ∈ H.

Then

‖h∗‖ = sup
h∈H:‖h‖≤1

|〈h, h̃〉| ≤ ‖h̃‖

by the Cauchy-Schwartz inequality.

The desired conclusion follows since h∗ was arbitrary.
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We now return to the generality of Banach spaces.

For each continuous, linear operator between Banach spaces

A : B1 7→ B2, there exists an adjoint map (or just adjoint)

A∗ : B∗2 7→ B∗1 defined by

(A∗b∗2)b1 = b∗2Ab1

for all b1 ∈ B1 and b∗2 ∈ B∗2.

It is straightforward to verify that the resulting A∗ is linear.
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The following proposition tells us that A∗ is also continuous (by being

bounded):

Proposition 17.6 Let A : B1 7→ B2 be a bounded linear operator between

Banach spaces.

Then ‖A∗‖ = ‖A‖.
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Proof. Since also, for any b∗2 ∈ B∗2,

‖A∗b∗2‖ = sup
b1∈B1:‖b1‖≤1

|A∗b∗2b1|

= sup
b1∈B1:‖b1‖≤1

{∣∣∣∣b∗2( Ab1
‖Ab1‖

)∣∣∣∣ ‖Ab1‖}
≤ ‖b∗2‖ ‖A‖,

we have ‖A∗‖ ≤ ‖A‖.

Thus ‖A∗‖ is a continuous, linear operator.
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Now let A∗∗ : B∗∗1 7→ B∗∗2 be the adjoint of A∗ with respect to the double

duals (duals of the duals) of B1 and B2.

Note that for j = 1, 2, Bj ⊂ B∗∗j , since for any bj ∈ Bj , the map

bj : B∗j 7→ R defined by b∗j 7→ b∗jbj , is a bounded linear functional.
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By the definitions involved, we now have for any b1 ∈ B1 and b∗2 ∈ B∗2
that

(A∗∗b1)b
∗
2 = (A∗b∗2)b1 = b∗2Ab1,

and thus ‖A∗∗‖ ≤ ‖A∗‖ and the restriction of A∗∗ to B1, denoted

hereafter A∗∗1 , equals A.

Hence ‖A‖ = ‖A∗∗1 ‖ ≤ ‖A∗‖, and the desired result follows.2
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We can readily see that the adjoint of an operator A : H1 7→ H2 between

two Hilbert spaces, with respective inner products 〈·, ·〉1 and 〈·, ·〉2, is a

map A∗ : H2 7→ H1 satisfying

〈Ah1, h2〉2 = 〈h1, A∗h2〉1

for every h1 ∈ H1 and h2 ∈ H2.

Here we are using the isometry for Hilbert spaces described above.
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Now consider the adjoint of a restriction of a continuous linear operator

A : H1 7→ H2, A0 : H0,1 ⊂ H1 7→ H2, where H0,1 is a closed, linear

subspace of H1.

If Π : H1 7→ H0,1 is the projection onto the subspace, it is not hard to

verify that the adjoint of A0 is A∗0 ≡ Π ◦A∗ (see Exercise 17.4.3).
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Recall from Chapter 6 the notation B(D,E) denoting the collection of all

linear operators between normed spaces D and E.

From Lemma 6.16, we know that for a given T ∈ B(B1,B2), for Banach

spaces B1 and B2,R(T ) is not closed unless T is continuously invertible.
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We now give an illustrative counter-example.

Let B1 = B2 = L2(0, 1), and define T : L2(0, 1) 7→ L2(0, 1) by

Tx(u) ≡ ux(u).

Then ‖T‖ ≤ 1, and thus T ∈ B(L2(0, 1), L2(0, 1)).
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However, it is clear that

R(T ) =

{
y ∈ L2(0, 1) :

∫ 1

0
u−2y2(u)du <∞

}
.

Although R(T ) is dense in L2(0, 1) (see Exercise 17.4.3), the functions

y1(u) ≡ 1 and y2(u) ≡
√
u are clearly not in R(T ).

Thus R(T ) is not closed.
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This lack of closure of R(T ) arises from the simple fact that the inverse

operator T−1y(u) = u−1y(u) is not bounded over y ∈ L2(0, 1)

(consider y = 1, for example).

On the other hand, it is easy to verify that for any normed spaces D and E
and any T ∈ B(D,E), N(T ) is always closed as a direct consequence

of the continuity of T .
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Observe also that for any T ∈ B(B1,B2),

N(T ∗) = {b∗2 ∈ B∗2 : (T ∗b∗2)b1 = 0 for all b1 ∈ B1} (2)

= {b∗2 ∈ B∗2 : b∗2(Tb1) = 0 for all b1 ∈ B1}

= R(T )⊥,

where R(T )⊥ is an abuse of notation denoteing the linear functionals in

B∗2 that yield zero on R(T ).

For Hilbert spaces, the notation is valid because of the isometry between a

Hilbert space H and its dual H∗.
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The identity (2) has an interesting extension:

Theorem 17.7 For two Banach spaces B1 and B2 and for any

T ∈ B(B1,B2), R(T ) = B2 if and only if N(T ∗) = {0} and R(T ∗)

is closed.

If we specialize (2) to Hilbert spaces H1 and H2, we obtain trivially for any

A ∈ B(H1,H2) that R(A)⊥ = N(A∗).
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The following result for Hilbert spaces is also useful:

Theorem 17.9 For two Hilbert spaces H1 and H2 and any A ∈ B(H1,

H2), R(A) is closed if and only if R(A∗) is closed if and only if R(A∗A)

is closed.

Moreover, if R(A) is closed, then R(A∗) = R(A∗A) and

A(A∗A)−1A∗ : H2 7→ H2

is the projection onto R(A).

46


