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�� ��Consistency

In this section, we prove uniform consistency of θ̂n.

Let Θ ≡ B0 ×A be the parameter space for θ, where

• B0 ⊂ Rd is the known compact containing β0 and

• A is the collection of all monotone increasing functions

A : [0, τ ] 7→ [0,∞]

with A(0) = 0.
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The following is the main result of this section:

THEOREM 1. Under the given conditions, θ̂n
as∗→ θ0.

Proof. Define θ̃n = (β0, Ãn), where

Ãn ≡
∫ (·)

0
[PW (s; θ0)]−1PndN(s).
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Note that

Ln(θ̂n)− Ln(θ̃n) =

∫ τ

0
log

PW (s; θ0)

PnW (s; θ̂n)
PndN(s)

+(β̂n − β0)′Pn
∫ τ

0
ZdN(s)

−Pn
[

(1 + δ) log

(
1 + eβ̂

′
nZÂn(U)

1 + eβ
′
0ZÃn(U)

)]
. (1)
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By Lemma 1 below,

(Pn − P )W (t; θ̂n)
as∗→ 0.

Combining this with Lemma 15.5 yields that

lim inf
n→∞

inf
t∈[0,τ ]

PnW (t; θ̂n) > 0

and that the lim supn→∞ of the total variation of

t 7→
[
PW (t; θ̂n)

]−1

is <∞ with inner probability one.
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Since the class
{∫ t

0
g(s)dN(s) : t ∈ [0, τ ], g ∈ D[0, τ ], the total variation of g ≤M

}

is Donsker for every M <∞, we now have
∫ τ

0
log

PW (s; θ0)

PnW (s; θ̂n)
PndN(s)−

∫ τ

0
log

PW (s; θ0)

PW (s; θ̂n)
dQ0(s)

as∗→ 0.

(2)
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Combining Lemma 15.5 with the fact that
{

(1 + δ) log
(

1 + eβ
′ZA(U)

)
: θ ∈ Θ, A(τ) ≤M

}

is Glivenko-Cantelli for each M <∞ yields

(Pn − P )

[
(1 + δ) log

(
1 + eβ̂

′
nZÂn(U)

1 + eβ
′
0ZA0(U)

)]
as∗→ 0. (3)
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Now combining results (2) and (3) with (1), we obtain that

Ln(θ̂n)− Ln(θ̃n)−
∫ τ

0
log

PW (s; θ0)

PW (s; θ̂n)
dQ0(s)− (β̂n − β0)′P [Zδ]

+P

[
(1 + δ) log

(
1 + eβ̂

′
nZÂn(U)

1 + eβ
′
0ZA0(U)

)]
(4)

as∗→ 0.
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Now select a fixed sequence X1,X2, . . . for which the previous

convergence results hold, and note that such sequences occur with inner

probability one.

Reapplying (15.2) yields

lim sup
n→∞

sup
s,t∈[0,τ ]

|Ân(s)− Ân(t)|
|Pn(N(s)−N(t))| <∞.

Thus there exists a subsequence {nk} along which both

‖Ânk − Ã‖∞ → 0

and β̂nk → β̃, for some θ̃ = (β̃, Ã), where Ã is both continuous and

bounded.
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Combining this with (4), we obtain

0 ≤ Lnk(θ̂nk)− Lnk(θ̃n)→ P0 log

[
dPθ̃
dP0

]
≤ 0,

where

• Pθ is the probability measure of a single observation on the specified

model at parameter value θ and

• P0 ≡ Pθ0 .
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Since the “model is identifiable” (see Exercise 15.6.2), we obtain that

θ̂n → θ0 uniformly.

Since the sequence X1,X2, . . . was an arbitrary representative from a

set with inner probability one, we obtain that θ̂n → θ0 almost surely.

Since Ân is a piecewise constant function with jumps ∆Ân only at

observed failure times t1, . . . , tmn , θ̂n is a continuous function of a

maximum taken over mn + d real variables.
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This structure implies that

sup
t∈[0,τ ]

|Ân(t)−A0(t)|

is a measurable random variable, and hence the uniform distance between

θ̂n and θ0 is also measurable.

Thus the almost sure convergence can be strengthened to the desired

outer almost sure convergence.2
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LEMMA 1. The class of functions {W (t; θ) : t ∈ [0, τ ], θ ∈ Θ} is

P -Donsker.

Proof. It is fairly easy to verify that

F1 ≡
{

(1 + δ)eβ
′ZY (t) : t ∈ [0, τ ], β ∈ B0

}

is a bounded P -Donsker class.
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If we can also verify that

F2 ≡
{(

1 + eβ
′ZA(U)

)−1
: θ ∈ Θ

}

is P -Donsker, then we are done since the product of two bounded

Donsker classes is also Donsker.

To this end, let φ : R2 7→ R be defined by

φ(x, y) =
1− y

1− y + exy
,

and note that φ is Lipschitz continuous on sets of the form

[−k, k]× [0, 1], with a finite Lipschitz constant depending only on k, for

all k <∞ (see Exercise 15.6.3).
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Note also that

F2 =

{
φ

(
β′Z,

A(U)

1 +A(U)

)
: θ ∈ Θ

}
.

Clearly,

{β′Z : β ∈ B0}
is Donsker with range contained in [−k0, k0] for some k0 <∞ by the

given conditions.
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Moreover,

{A(U)(1 +A(U))−1 : A ∈ A}
is a subset of all monotone, increasing functions with range [0, 1] and

thus, by Theorem 9.24, is Donsker.

Hence, by Theorem 9.31, F2 is P -Donsker, and the desired conclusions

follow.2
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�� ��Score and Information Operators

Because we have an infinite dimensional parameter A, we need to take

care with score and information operator calculations.

The overall idea is that we need these operators in order to utilize the

general Z-estimator convergence theorem (Theorem 2.11) in the next

section to establish asymptotic normality of
√
n(θ̂n − θ0) and obtain

bootstrap validity.
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To facilitate the development of these operators, letH denote the space of

elements h = (h1, h2) with h1 ∈ Rd and h2 ∈ D[0, τ ] of bounded

variation.

We supplyH with the norm

‖h‖H ≡ ‖h1‖+ ‖h2‖v,

where ‖ · ‖ is the Euclidean norm and ‖ · ‖v is the total variation norm.

Define

Hp ≡ {h ∈ H : ‖h‖H ≤ p},
where the inequality is strict when p =∞.
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The parameter θ can now be viewed as an element of `∞(Hp) if we

define

θ(h) ≡ h′1β +

∫ τ

0
h2(s)dA(s), h ∈ Hp, θ ∈ Θ.

Note thatH1 is sufficiently rich to be able to extract out all components of

θ.

19



Empirical Processes: Lecture 21 Spring, 2010

For example,

h̃ = (h1, 0) = ((0, 1, 0, . . .)′, 0)

extracts out the second component of β, i.e., β2 = θ(h̃), while

h̃∗,u = (0, 1{(·) ≤ u})

extracts out A(u), i.e., A(u) = θ(h̃∗,u).

As a result, the parameter space Θ becomes a subset of `∞(Hp) with

norm

‖θ‖(p) ≡ sup
h∈Hp

|θ(h)|.
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We can study weak convergence in the uniform topology of θ̂n via this

functional representation of the parameter space since, for all 1 ≤ p <∞
and every θ ∈ Θ,

‖θ‖∞ ≤ ‖θ‖(p) ≤ 4p‖θ‖∞

(see Exercise 15.6.4).

We now calculate the score operator which will become the Z-estimating

equation to which we will apply the Z-estimator convergence theorem.
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Consider the one-dimensional submodel defined by the map

t 7→ θt ≡ θ + t(h1,

∫ (·)

0
h2(s)dA(s)), h ∈ Hp.

The score operator has the form

V τ
n (θ)(h) ≡ ∂

∂t
Ln(θt)

∣∣∣∣
t=0

= V τ
n,1(θ)(h1) + V τ

n,2(θ)(h2),

where

V τ
n,1(θ)(h1) ≡ Pn

{
h′1ZN(τ)− (1 + δ)

[
h′1Ze

β′ZA(U ∧ τ)

1 + eβ′ZA(U ∧ τ)

]}
,

and V τ
n,2(θ)(h2) is defined by replacing h1 with h2 in (15.10).
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As mentioned earlier, we will need to utilize the dependence on τ at a later

point.

Now we have that the NPMLE θ̂n can be characterized as a zero of the

map

θ 7→ Ψn(θ) = V τ
n (θ),

and thus θ̂n is a Z-estimator with the estimating equation residing in

`∞(H∞).
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The expectation of Ψn is Ψ ≡ PV τ , where V τ equals V τ
1 (i.e., V τ

n with

n = 1), with X1 replaced by a generic observation X .

Thus V τ also satisfies V τ
n = PnV τ .

The Gâteaux derivative of Ψ at any θ1 ∈ Θ exists and is obtained by

differentiating over the submodels t 7→ θ1 + tθ.
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This derivative is

Ψ̇θ1(h) ≡ ∂

∂t
Ψ(θ1 + tθ)

∣∣∣∣
t=0

= −θ(σθ1(h)),

where the operator σθ : H∞ 7→ H∞ can be shown to be

σθ(h) =


 σ11

θ σ12
θ

σ21
θ σ22

θ




 h1

h2




≡ P


 σ̂11

θ σ̂12
θ

σ̂21
θ σ̂22

θ




 h1

h2


 (5)

≡ Pσ̂θ(h),
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where

σ̂11
θ (h1) = ξ̂θA(U)ZZ ′h1

σ̂12
θ (h2) = ξ̂θZ

∫ τ

0
Y (s)h2(s)dA(s)

σ̂21
θ (h1)(s) = ξ̂θY (s)Z ′h1

σ̂22
θ (h2)(s) =

(1 + δ)eβ
′ZY (s)h2(s)

1 + eβ′ZA(U)

−ξ̂θeβ
′Z
∫ τ

0
Y (u)h2(u)dA(u)Y (s),

and

ξ̂θ ≡
(1 + δ)eβ

′Z

[1 + eβ′ZA(U)]
2 .
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We need to strengthen this Gâteaux differentiability of Ψ to Fréchet

differentiability, at least at θ = θ0.

This is accomplished in the following lemma:

LEMMA 2. Under the given assumptions, the operator θ 7→ Ψ(θ)(·),

viewed as a map from `∞(Hp) to `∞(Hp), is Fréchet differentiable for

each p <∞ at θ = θ0, with derivative

θ 7→ Ψ̇θ0(θ) ≡ −θ(σθ0(·)).
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Before giving the proof of this lemma, we note that we also need to verify

that Ψ̇θ0 is continuously invertible.

The following theorem establishes this plus a little more:
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THEOREM 2. Under the given conditions,

σθ0 : H∞ 7→ H∞

is continuously invertible and onto.

Moreover,

Ψ̇θ0 : lin Θ 7→ lin Θ

is also continuously invertible and onto, with inverse

θ 7→ Ψ̇−1
θ0

(θ) ≡ −θ(σ−1
θ0

),

where σ−1
θ0

is the inverse of σθ0 .

29



Empirical Processes: Lecture 21 Spring, 2010

The “onto” property is not needed for the Z-estimator convergence

theorem, but it will prove useful in Chapter 22 where we will revisit this

example and show that θ̂n is asymptotically efficient.

We conclude this section with the proofs of Lemma 2 and Theorem 2.
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Proof of Lemma 2. By the smoothness of θ 7→ σθ(·), we have

lim
t↓0

sup
θ:‖θ‖(p)≤1

sup
h∈Hp

∣∣∣∣
∫ τ

0
θ (σθ0+utθ(h)− σθ0(h)) du

∣∣∣∣ = 0.

Thus

sup
h∈Hp

|Ψ(θ0 + θ)(h)−Ψ(θ0)(h) + θ (σθ0(h))| = o
(
‖θ‖(p)

)

as ‖θ‖(p) → 0.2
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Proof of Theorem 2. From the explicit form of the operator σθ0 defined

above, we have that

σθ0 = σ1 + σ2,

where

σ1 ≡


 I 0

0 g0(·)


 ,

where I is the d× d identity matrix,

g0(s) = P

[
(1 + δ)eβ

′
0ZY (s)

1 + eβ
′
0ZA0(U)

]
,

and where

σ2 ≡ σθ0 − σ1.
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It is not hard to verify that σ2 is a compact operator, i.e., that the range of

h 7→ σ2(h) over the unit ball inH∞ lies within a compact set (see

Exercise 15.6.6).

Note that since 1/g0 has bounded total variation, we have for any

g = (g1, g2) ∈ H, that g = σ1(h), where

h =

(
g1,

g2(·)
g0(·)

)
∈ H.

Thus σ1 is onto.
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It is also true that

‖g0(·)h2(·)‖H ≥
(

inf
s∈[0,τ ]

|g0(s)|
)
‖h2‖H ≥ c0‖h2‖H,

and thus σ1 is both continuously invertible and onto.

If we can also verify that σθ0 is one-to-one, we then have by Lemma 6.17

that

σθ0 = σ1 + σ2

is both continuously invertible and onto.
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We will now verify that σθ0 is one-to-one by showing that for any

h ∈ H∞, σθ0(h) = 0 implies that h = 0.

Fix an h ∈ H∞ for which σθ0(h) = 0, and define the one-dimensional

submodel

t 7→ θ0t = (β0t, A0t) ≡ (β0, A0) + t

(
h1,

∫ (·)

0
h2(s)dA(s)

)
.
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Note that σθ0(h) = 0 implies

P

{
− ∂2

(∂t)2
`n(θ0t)

∣∣∣∣
t=0

}
= P [V τ (θ0)(h)]2 = 0, (6)

where we are using the original form of the likelihood `n instead of the

modified form Ln because the submodels A0t are differentiable for all t

small enough.

It can be verified that V u(θ0)(h) is a continuous time martingale over

u ∈ [0, τ ] (here is where we need the dependency of V τ on τ ).
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The basic idea is that V u(θ0)(h) can be reexpressed as

∫ u

0

(
λ̇θ0(s)

λθ0(s)

)
(
h′1Z + h2(s)

)
dM(s),

where

λ̇θ0 ≡
∂

∂t
λθ0t

∣∣∣∣
t=0

, λθ(u) ≡ eβ
′Za0(u)

1 + eβ′ZA(u)
,

and where

M(u) = N(u)−
∫ u

0
Y (s)λθ0(s)ds

is a martingale since λθ0 is the correct hazard function for the failure time

T given Z .
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Thus

P [V τ (θ0)(h)]2 = P [V u(τ)(θ0)(h)]2+P [V τ (θ0)(h)−V u(θ0)(h)]2

for all u ∈ [0, τ ], and hence P [V u(θ0)(h)]2 = 0 for all u ∈ [0, τ ].

Thus V u(θ0)(h) = 0 almost surely, for all u ∈ [0, τ ].
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Hence, if we assume that the failure time T is censored at some

U ∈ (0, τ ], we have almost surely that

eβ
′
0Z
∫ u

0 (h′1Z + h2(s))Y (s)dA0(s)

1 +
∫ u

0 e
β′0ZY (s)dA0(s)

= 0,

for all u ∈ [0, τ ].

Hence ∫ u

0
(h′1Z + h2(s))Y (s)dA0(s) = 0

almost surely for all u ∈ [0, τ ].

Taking the derivative with respect to u yields that h′1Z + h2(u) = 0

almost surely for all u ∈ [0, τ ].
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This of course forces h = 0 since var[Z] is positive definite.

Thus σθ0 is one-to-one since h was an arbitrary choice satisfying

σθ0(h) = 0.

Hence σθ0 is continuously invertible and onto, and the first result of the

theorem is proved.
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We now prove the second result of the theorem.

Note that since

σθ0 : H∞ 7→ H∞
is continuously invertible and onto, for each p > 0, there is a q > 0 such

that

σ−1
θ0

(Hq) ⊂ Hp.
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Fix p > 0, and note that

inf
θ∈lin Θ

‖θ(σσ0(·))‖(p)
‖θ(·)‖(p)

≥ inf
θ∈lin Θ




suph∈σ−1
θ0

(H(q))
|θ(σ−1

θ0
(h))|

‖θ‖(p)




= inf
θ∈Θ

‖θ‖(q)
‖θ‖(p)

≥ q

2p
.

(See Exercise 15.6.4 to verify the last inequality.)
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Thus

‖θ(σθ0)‖(p) ≥ cp‖θ‖(p),
for all θ ∈ lin Θ, where cp > 0 depends only on p.

Lemma 6.16, Part (i), now implies that θ 7→ θ(σθ0) is continuously

invertible.
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For any θ1 ∈ lin Θ, we have θ2(σθ0) = θ1, where

θ2 = θ1(σ−1
θ0

) ∈ lin Θ.

Thus θ 7→ θ(σθ0) is also onto.

Hence

θ 7→ Ψ̇θ0(θ) = −θ(σθ0)

is both continuously invertible and onto, and the theorem is proved.2
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�� ��Weak Convergence and Bootstrap Validity

Our approach to establishing weak convergence will be through verifying

the conditions of Theorem 2.11 via the Donsker class result of

Lemma 13.3.

After establishing weak convergence, we will use a similar technical

approach, but with some important differences, to obtain validity of a

simple weighted bootstrap procedure.
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Recall that

Ψn(θ)(h) = PnV τ (θ)(h),

and note that V τ (θ)(h) can be expressed as

V τ (θ)(h) =

∫ τ

0
(h′1Z+h2(s))dN(s)−

∫ τ

0
(h′1Z+h2(s))W (s; θ)dA(s).

We now show that for any 0 < ε <∞,

Gε ≡ {V τ (θ)(h) : θ ∈ Θε, h ∈ H1},

where

Θε ≡ {θ ∈ Θ : ‖θ − θ0‖(1) ≤ ε}
is P -Donsker.
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First, Lemma 1 above tells us that {W (t; θ) : t ∈ [0, τ ], θ ∈ Θ} is

Donsker.

Second, it is easily seen that the class

{h′1Z + h2(t) : t ∈ [0, τ ], h ∈ H1}

is also Donsker.

Since the product of bounded Donsker classes is also Donsker, we have

that

{ft,θ(h) ≡ (h′1Z + h2(t))W (t; θ) : t ∈ [0, τ ], θ ∈ Θε, h ∈ H1}

is Donsker.
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Third, consider the map

φ : `∞([0, τ ]×Θε ×H1) 7→ `∞(Θε ×H1 ×Aε)

defined by

φ(f·,θ(h)) ≡
∫ τ

0
fs,θ(h)dÃ(s),

for Ã ranging over

Aε ≡ {A ∈ A : sup
t∈[0,τ ]

|A(t)−A0(t)| ≤ ε}.
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Note that for any θ1, θ2 ∈ Θε and h, h̃ ∈ H1,
∣∣∣φ(f·,θ1(h))− φ(f·,θ2(h̃))

∣∣∣ ≤ sup
t∈[0,τ ]

∣∣∣ft,θ1(h)− ft,θ2(h̃)
∣∣∣×(A0(τ)+ε).

Thus φ is continuous and linear, and hence the class

{φ(f·,θ(h)) : θ ∈ Θε, h ∈ H1}

is Donsker by Lemma 3 below.
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Thus also
{∫ τ

0
(h′1Z + h2(s))W (s; θ)dA(s) : θ ∈ Θε, h ∈ H1

}

is Donsker.

Since it not hard to verify that
{∫ τ

0
(h′1Z + h2(s))dN(s) : h ∈ H1

}

is also Donsker, we now have that Gε is indeed Donsker as desired.
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We now present the needed lemma and its proof before continuing:

LEMMA 3. Suppose F is Donsker and

φ : `∞(F) 7→ D

is continuous and linear.

Then φ(F) is Donsker.
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Proof. Observe that

Gnφ(F) = φ(GnF) ; φ(GF) = G(φ(F)),

where

• the first equality follows from linearity,

• the weak convergence follows from the continuous mapping theorem,

• the second equality follows from a reapplication of linearity, and

• the meaning of the “abuse in notation” is obvious.2
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We now have that both

{V τ (θ)(h)− V τ (θ0)(h) : θ ∈ Θε, h ∈ H1}

and

{V τ (θ0)(h) : h ∈ H1}
are also Donsker.

Thus
√
n(Ψn(θ0)−Ψ(θ0)) ; GV τ (θ0)

in `∞(H1).
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Moreover, since it is not hard to show (see Exercise 15.6.7) that

sup
h∈H1

P (V τ (θ)(h)− V τ (θ0)(h))2 → 0, as θ → θ0, (7)

Lemma 13.3 yields that

∥∥√n(Ψn(θ)−Ψ(θ))−√n(Ψn(θ0)−Ψ(θ0))
∥∥

(1)
= oP (1), as θ → θ0.
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Combining these results with Theorem 2, we have that all of the conditions

of Theorem 2.11 are satisfied, and thus
∥∥∥
√
nΨ̇θ0(θ̂n − θ0) +

√
n(Ψn(θ0)−Ψ(θ0))

∥∥∥
(1)

= oP (1) (8)

and
√
n(θ̂n − θ0) ; Z0 ≡ −Ψ̇−1

θ0
(GV τ (θ0))

in `∞(H1).
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We can observe from this result that Z0 is a tight, mean zero Gaussian

process with covariance

P [Z0(h)Z0(h̃)] = P
[
V τ (θ0)(σ−1

θ0
(h))V τ (θ0)(σ−1

θ0
(h̃)
]
,

for any h, h̃ ∈ H1.

As pointed out earlier, this is in fact uniform convergence since any

component of θ can be extracted via θ(h) for some h ∈ H1.
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Now we will establish validity of a weighted bootstrap procedure for

inference.

Let w1, . . . , wn be positive, i.i.d., and independent of the data

X1, . . . ,Xn, with

• 0 < µ ≡ Pw1 <∞,

• 0 < σ2 ≡ var(w1) <∞, and

• ‖w1‖2,1 <∞.
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Define the weighted bootstrapped empirical process

P̃n ≡ n−1
n∑

i=1

(wi/w̄)∆Xi ,

where w̄ ≡ n−1
∑n

i=1wi and ∆Xi is the empirical measure for the

observation Xi.

This particular bootstrap was introduced in Section 2.2.3.

Let L̃n(θ) be Ln(θ) but with Pn replaced by P̃n, and let Ψ̃n be Ψn but

with Pn replaced by P̃n.
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Define θ̃n to be the maximizer of θ 7→ L̃n(θ).

The idea is, after conditioning on the data sample X1, . . . ,Xn, to

compute θ̃n for many replications of the weights w1, . . . , wn to form

confidence intervals for θ0.

We want to show that

√
n(µ/σ)(θ̃n − θ̂n)

P
;
w
Z0. (9)
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We first study the unconditional properties of θ̃n.

Note that for maximizing θ 7→ L̃n(θ) and for zeroing θ 7→ Ψ̃n, we can

temporarily drop the w̄ factor since neither the maximizer nor zero of a

function is modified when multiplied by a positive constant.
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Let w be a generic version of w1, and note that if a class of functions F is

Glivenko-Cantelli, then so also is the class of functions w · F via

Theorem 10.13.

Likewise, if the class F is Donsker, then so is w · F via the multiplier

central limit theorem, Theorem 10.1.
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Also, Pwf = µPf , trivially.

What this means, is that the arguments in Sections 15.3.2 and 15.3.3 can

all be replicated for θ̃n with only trivial modifications.

This means that θ̃n
as∗→ θ0.
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Now, reinstate the w̄ everywhere, and note by Corollary 10.3, we can

verify that both

√
n(Ψ̃−Ψ)(θ0) ; (σ/µ)G1V

τ (θ0) +G2V
τ (θ0),

whereG1 andG2 are independent Brownian bridge random measures,

and
∥∥∥
√
n(Ψ̃n(θ̃n)−Ψ(θ̃n))−√n(Ψ̃n(θ0)−Ψ(θ0))

∥∥∥
(1)

= oP (1).
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Thus reapplication of Theorem 2.11 yields that
∥∥∥
√
nΨ̇θ0(θ̃n − θ0) +

√
n(Ψ̃n −Ψ)(θ0)

∥∥∥
(1)

= oP (1).

Combining this with (8), we obtain
∥∥∥
√
nΨ̇θ0(θ̃n − θ̂n) +

√
n(Ψ̃n −Ψn)(θ0)

∥∥∥
(1)

= oP (1).
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Now, using

• the linearity of Ψ̇θ0 ,

• the continuity of Ψ̇−1
θ0

, and

• the bootstrap central limit theorem, Theorem 2.6,

we have the desired result that

√
n(µ/σ)(θ̃n − θ̂n)

P
;
w
Z0.

Thus the proposed weighted bootstrap is valid.
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We also note that it is not clear how to verify the validity of the usual

nonparametric bootstrap, although its validity probably does hold.

The key to the relative simplicity of the theory for the proposed weighted

bootstrap is that Glivenko-Cantelli and Donsker properties of function

classes are not altered after multiplying by independent random weights

satisfying the given moment conditions.
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We also note that the weighted bootstrap is computationally simple, and

thus it is quite practical to generate a reasonably large number of

replications of θ̃n to form confidence intervals.

This is demonstrated numerically in Kosorok, Lee and Fine (2004).
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