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�� ��Example: A Change-Point Model

For this model, we observe i.i.d. realizations of X = (Y,Z), where

Y = α1{Z ≤ ζ}+ β1{Z > ζ}+ ε,

• Z and ε are independent

• with ε continuous, Eε = 0 and σ2 ≡ Eε2 <∞,

• γ ≡ (α, β) ∈ R2

• and ζ is known to lie in a bounded interval [a, b].
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The unknown parameters can be collectedas θ = (γ, ζ), and the

subscript zero will be used to denote the true parameter values.

We make the very important assumptions

• α0 6= β0

• Z has a strictly bounded and positive density f over [a, b] with

pr(Z < a) > 0 and pr(Z > b) > 0.
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Our goal is to estimate θ through least squares.

This is the same as maximizing Mn(θ) = Pnmθ, where

mθ(x) ≡ − (y − α1{z ≤ ζ} − β1{z > ζ})2 .

Let θ̂n be maximizers of Mn(θ), where

θ̂n ≡ (γ̂n, ζ̂n)

and

γ̂n ≡ (α̂n, β̂n).
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Since we are not assuming that γ is bounded, we first need to prove the

existence of γ̂n, i.e., we need to prove that

‖γ̂n‖ = OP (1).

We then need to provide consistency of all parameters and then establish

the rates of convergence for the parameters.

Finally, we need to obtain the joint limiting distribution of the parameter

estimates.
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�� ��Existence

Note that the covariate Z and parameter ζ can be partitioned into four

mutually exclusive sets:

• {Z ≤ ζ ∧ ζ0},

• {ζ < Z ≤ ζ0},

• {ζ0 < Z ≤ ζ} and

• {Z > ζ ∨ ζ0}.
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Since also

1{Z < a} ≤ 1{Z ≤ ζ ∧ ζ0}
and

1{Z > b} ≤ 1{Z > ζ ∨ ζ0}
by assumption, we obtain

−Pnε2 = Mn(θ0)

≤ Mn(θ̂n)

≤ −Pn
[
(ε− α̂n + α0)21{Z < a}+ (ε− β̂n + β0)21{Z > b}

]
.
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By decomposing the squares, we now have

(α̂n − α0)2Pn[1{Z < a}] + (β̂n − β0)2Pn[1{Z > b}]
≤ Pn[ε21{a ≤ z ≤ b}]

+2|α̂n − α0|Pn[ε1{Z < a}]
+2|β̂n − β0|Pn[ε1{Z > b}]

≤ Op(1) + oP (1)‖γ̂n − γ0‖.
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Since

pr(Z < a) ∧ pr(Z > b) > 0,

the above now implies that

‖γ̂n − γ0‖2 = OP (1 + ‖γ̂n − γ0‖)

and hence that

‖γ̂n − γ0‖ = OP (1).

Thus all the parameters are bounded in probability and therefore exist.
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�� ��Consistency

Our approach to establishing consistency will be to utilize the argmax

theorem (Theorem 14.1).

We first need to establish that Mn ; M in `∞(K) for all compact

K ⊂ H ≡ R2 × [a, b], where M(θ) ≡ Pmθ .
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We then need to show that θ 7→M(θ) is upper semicontinuous with a

unique maximum at θ0.

We already know from the previous paragraph that θ̂n is asymptotically

tight (i.e., ‖θ̂n‖ = OP (1)).

The argmax theorem will then yield that θ̂n ; θ0 as desired.
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Fix a compact K ⊂ H .

We now verify that FK ≡ {mθ : θ ∈ K} is Glivenko-Cantelli.

Note that

mθ(X) = −(ε− α+ α0)21{Z ≤ ζ ∧ ζ0}
−(ε− β + α0)21{ζ < Z ≤ ζ0}
−(ε− α+ β0)21{ζ0 < Z ≤ ζ}
−(ε− β + β0)21{Z > ζ ∨ ζ0}.
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It is not difficult to verify that

{(ε− α+ α0)2 : θ ∈ K}

and

1{Z ≤ ζ ∧ ζ0 : θ ∈ K}
are separately Glivenko-Cantelli classes.

Thus the product of the two class is also Glivenko-Cantelli by

Corollary 9.27 since the product of the two envelopes is integrable.
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Similar arguments reveal that the remaining components of the sum are

also Glivenko-Cantelli, and reapplication of Corollary 9.27 yields that FK
itself is Glivenko-Cantelli.

Thus Mn ; M in `∞(K) for all compact K .

We now establish upper semicontinuity of θ 7→M(θ) and uniqueness of

the maximum.
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Using the decomposition of the sets for (Z, ζ) used in the Existence

paragraph above, we have

M(θ) = −prε2 − (α− α0)2pr(Z ≤ ζ ∧ ζ0)

−(β − α0)2pr(ζ < Z ≤ ζ0)

−(α− β0)2pr(ζ0 < Z ≤ ζ)
−(β − β0)2pr(Z > ζ ∨ ζ0)

≤ −prε2

= M(θ0).
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Because Z has a bounded density on [a, b], we obtain that M is

continuous.

It is also clear that M has a unique maximum at θ0 because the density of

Z is bounded below and α0 6= β0 (see Exercise 14.6.5).

Now the conditions of the argmax theorem are met, and the desired

consistency follows.
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�� ��Rate of Convergence

We will utilize Corollary 14.5 to obtain the convergence rates via the

discrepancy function

d̃(θ, θ0) ≡ ‖γ − γ0‖+
√
|ζ − ζ0|.

Note that this is not a norm since it does not satisfy the triangle inequality.

Nevertheless, d̃(θ, θ0)→ 0 if and only if ‖θ − θ0‖ → 0.
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Moreover, from the Consistency paragraph above, we have that

M(θ)−M(θ0) = −P{Z ≤ ζ ∧ ζ0}(α− α0)2

−P{Z > ζ ∨ ζ0}(β − β0)2

−P{ζ < Z ≤ ζ0}}(β − α0)2

−P{ζ0 < Z ≤ ζ}(α− β0)2

≤ −P{Z < a}(α− α0)2

−P{Z > b}(β − β0)2

−k1(1− o(1))|ζ − ζ0|
≤ −(k1 ∧ δ1 − o(1))d̃2(θ, θ0),
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where

• the first inequality follows from the fact that the product of the density

of Z and (α0 − β0)2 is bounded below by some k1 > 0, and

• the second inequality follows from both pr(Z < a) and pr(Z > b)

being bounded below by some δ1 > 0.

Thus

M(θ)−M(θ0) . −d̃2(θ, θ0)

for all ‖θ − θ0‖ small enough, as desired.

Consider now the class of functions

Mδ ≡ {mθ −mθ0 : d̃(θ, θ0) < δ}.
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Using previous calculations, we have

mθ −mθ0 = 2(α− α0)ε1{Z ≤ ζ ∧ ζ0}+ 2(β − β0)ε1{Z > ζ ∨ ζ0}
+2(β − α0)ε1{ζ < Z ≤ ζ0}+ 2(α− β0)ε1{ζ0 < Z ≤ ζ}
−(α− α0)21{Z ≤ ζ ∧ ζ0} − (β − β0)21{Z > ζ ∨ ζ0}
−(β − α0)21{ζ < Z ≤ ζ0} − (α− β0)21{ζ0 < Z ≤ ζ}

≡ A1(θ) +A2(θ) +B1(θ) +B2(θ)

−C1(θ)− C2(θ)−D1(θ)−D2(θ). (1)
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Consider first A1.

Since {1{Z ≤ t} : t ∈ [a, b]} is a VC class, it is easy to compute that

E∗ sup
d̃(θ,θ0)<δ

|GnA1(θ)| . δ,

as a consequence of Lemma 8.17.

Note: statements for fixed n are considered true if they hold for all n large

enough.
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Similar calculations apply to A2.

Similar calculations also apply to C1 and C2, except that the upper

bounds will be. δ2 instead of. δ.

Now we consider B1.
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An envelope for the class

F = {B1(θ) : d̃(θ, θ0) < δ}

is

F = 2(|β0 − α0|+ δ)|ε|1{ζ0 − δ2 < Z ≤ ζ0}.

It is not hard to verify that

logN[](η‖F‖P,2,F , L2(P )) . log(1/η) (2)

(see Exercise 14.6.6).
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Now Theorem 11.2 yields that

E∗ sup
d̃(θ,θ0)<δ

|GnB1(θ)| = E∗‖Gn‖F × ‖F‖P,2 . δ2.

Similar calculations apply also to B2, D1 and D2.
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Combining all of these results with the fact that O(δ2) = O(δ), we obtain

E∗‖Gn‖Mδ
. δ.

Now when δ 7→ φ(δ) = δ, φ(δ)/δα is decreasing for any α ∈ (1, 2).

Thus the conditions of Corollary 14.5 are satisfied with φ(δ) = δ.
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Since r2
nφ(1/rn) = rn, we obtain that

√
nd̃(θ̂n, θ0) = OP (1).

By the form of d̃, this now implies that

√
n‖γ̂n − γ0‖ = OP (1)

and

n|ζ̂n − ζ0| = OP (1).
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�� ��Weak Convergence

We utilize a minor modification of the argmax theorem and the rate result

above to obtain that

ĥn ≡ (
√
n(γ̂n − γ0), n(ζ̂n − ζ0))

≡
(

(ĥ1, ĥ2), ĥ3

)

;

(
(h̃1, h̃2), h̃3

)

≡ h̃,
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where

• the three components of h̃ are mutually independent,

• h̃1 and h̃2 are mean zero Gaussians

• with respective variances

σ2

P (Z ≤ ζ0)
and

σ2

P (Z > ζ0)
,

• and h̃3 is the smallest argmax of Q(h3) for a certain, two-sided

Poisson process.

We establish both finite-dimensional convergence and also tightness, but

we omit the details.
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Case Study: The Proportional Odds Model
Under Right Censoring

In the right-censored regression set-up, we observe X = (U, δ, Z),

where

• U = T ∧ C ,

• δ = 1{U = T},

• Z ∈ Rd is a covariate vector,

• T is a failure time of interest,

• and C is a right censoring time.

We assume that C and T are independent given Z .
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The proportional odds regression model stipulates that the survival

function of T given Z has the form

SZ(t) =
(

1 + eβ
′ZA(t)

)−1
, (3)

where t 7→ A(t) is nondecreasing on [0, τ ], with A(0) = 0 and τ <∞
being the upper limit of the censoring distribution, i.e., we assume that

pr(C > τ) = 0.
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We also assume

• that pr(C = τ) > 0,

• that var[Z] is positive definite, and

• that the distribution of Z and C are uninformative of SZ .

Let the true parameter values be denoted β0 and A0.

We make the additional assumptions that the support of Z is compact and

that β0 lies in a known compact⊂ Rd.
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Murphy, Rossini and van der Vaart (1997) develop asymptotic theory for

maximum likelihood estimation of this model under general conditions for

A0 which permit ties in the failure time distribution.

To simplify the exposition, we will make stronger assumptions on A0 in

order to facilitate arguments similar to those used in Lee (2000) and

Kosorok, Lee and Fine (2004).

Specifically, we assume that A0 has a derivative a0 that satisfies

0 < inf
t∈[0,τ ]

a0(t) ≤ sup
t∈[0,τ ]

a0(t) <∞.
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Let FZ ≡ 1− SZ .

For distinct covariate values Z1 and Z2, we can deduce from (3) that

FZ1(t)SZ2(t)

FZ2(t)SZ1(t)
=
eβ
′Z1

eβ′Z2
,

which justifies the “proportional odds” designation.

A motivation for this model is that in some settings it can be easier to

justify on scientific grounds than other common alternatives such as the

proportional hazards or accelerated failure time models (Murphy, Rossini

and van der Vaart, 1997).

Define the composite model parameter θ ≡ (β,A).
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In the following sections,

• we derive the nonparametric maximum likelihood estimator (NPMLE)

θ̂n,

• prove its existence,

• establish consistency,

• obtain weak convergence, and

• verify bootstrap validity for all model parameters.

Certain score and information operators will be needed for the weak

convergence component, and these will be introduced just before we

establish weak convergence but after we have proven consistency.

34



Empirical Processes: Lecture 20 Spring, 2010

While β is assumed to lie in a known compact set, we make no such

restrictions on A for estimation.

Hence the NPMLE Ân might be unbounded: for this reason, we need to

verify that Ân(τ) = OP (1) and thus θ̂n “exists.”
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�
�

�
Nonparametric Maximum Likelihood Estima-

tion

The likelihood for a sample of n i.i.d. observations

(U1, δ1, Z1), . . . , (Un, δn, Zn) is

`n(θ) = Pn
{
δ(log a(U) + β′Z)− (1 + δ) log

(
1 + eβ

′ZA(U)
)}

,

where a is the derivative of A.

As discussed in Murphy (1994), maximizing `n over A for fixed β results

in an maximizer that is piecewise constant with jumps at the observed

failure times and thus does not have a continuous density.
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To address this issue, Murphy (1994) and Parner (1998) suggest replacing

a(u) in `n with n∆A(u), the jump size of A at u, which modified

“empirical log-likelihood” we will denote Ln(θ).

We will show later that when A0 is continuous, the step sizes of the

maximizer over A of Ln will go to zero as n→∞.
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The procedure we will use to estimate θ is to maximize the profile

log-likelihood

pLn(β) ≡ sup
A
Ln(β,A)

to obtain θ̂n.

The associated maximizer over A we will denote Ân.

In other words, Ân = Âβ̂n , where

Âβ ≡ arg max
A

Ln(β,A).
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We also define

θ̂β ≡ (β, Âβ).

Obviously θ̂n ≡ θ̂β̂n is just the joint maximizer of Ln(θ).

To characterize Âβ , consider one-dimensional submodels for A defined

by the map

t 7→ At ≡
∫ (·)

0
(1 + th1(s))dA(s),

where h1 is an arbitrary total variation bounded cadlag function on [0, τ ].
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The derivative of Ln(θ,At) with respect to t evaluated at t = 0 is the

score function for A, V τ
n,2(θ)(h1)

≡ Pn

{∫ τ

0
h1(s)dN(s)− (1 + δ)

[
eβ
′Z
∫ U∧τ

0 h1(s)dA(s)

1 + eβ′ZA(U ∧ τ)

]}
,

(4)

where the subscript “2” denotes that this is the score of the second

parameter A.
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The dependence on τ will prove useful in later sections, but, for now, it can

be ignored since P (U ≤ τ) = 1 by assumption.

Choose h1(u) = 1{u ≤ t}, insert into (4), and equate the result to zero

to obtain

PnN(t) = Pn

{
(1 + δ)eβ

′Z
∫ t

0 Y (s)dÂβ(s)

1 + eβ′ZÂβ(U)

}
, (5)

where N(t) ≡ δ1{U ≤ t} and Y (t) ≡ 1{U ≥ t} are the usual

counting and at-risk processes for right-censored survival data.
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Next define

W (t; θ) ≡ (1 + δ)eβ
′ZY (t)

1 + eβ′ZA(U)

and solve (5) to obtain

Âβ(t) =

∫ t

0

{
PnW (s; θ̂β)

}−1
PndN(s). (6)

Thus Âβ can be characterized as a stationary point of (6).

This structure will prove useful in later developments and can also be used

to calculate θ̂n from data.
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One approach to accomplishing this is to

• first use (6) to facilitate calculating pLn(β) so that β̂n can be

determined via a simple search algorithm

• and then take Ân to be the solution of (6) corresponding to β = β̂n.

In the case of multiple solutions, we take the one corresponding to the

maximizer of A 7→ Ln(β̂n, A).
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�� ��Existence

While we are assuming that β lies in a known, compact⊂ Rd, we are not

setting boundedness restrictions on A.

Fortunately, such restrictions are not necessary, as can be seen in the

following lemma, which is the contribution of this section:

LEMMA 1. Under the given conditions,

lim sup
n→∞

Ân(τ) <∞

with inner probability one.

44



Empirical Processes: Lecture 20 Spring, 2010

Proof. Note that

‖PnN −Q0‖∞ as∗→ 0 and sup
u≥0
|(Pn − P )1{U ≤ u}| as∗→ 0, (7)

where Q0 ≡ PN .

Let X1,X2, . . . be a fixed data sequence satisfying (7).

Note that, without loss of generality, all data sequences will satisfy this

since the probability of such a sequence is 1 by definition of outer-almost

sure convergence.
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Under this set-up, we can treat the maximum likelihood estimators as a

sequence of fixed quantities.

By the assumed compactness of the parameter space for β, there exists a

subsequence of {n} for which β̂n converges to a bounded vector β∗
along that subsequence.

Now choose a further subsequence {nk} for which both

β̂nk → β∗ ∈ Rd

and

Ânk(τ)→∞.
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We will now work towards a contradiction.

Let θn ≡ (β0,PnN), and note that, by definition of the NPMLE,

0 ≤ Lnk(θ̂n)− Lnk(θn)

≤ O(1) +

∫ τ

0
log(n∆Ank(s))PnkdN(s)

−Pnk
[
(1 + δ) log(1 + Ânk(U))

]
. (8)
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Let {u0, u1, . . . , uM} be a partition of [0, τ ] for some finite M , with

0 = u0 < u1 < · · · < uM = τ,

which we will specify in more detail shortly, and define

N j(s) ≡ N(s)1{U ∈ [uj−1, uj ]}

for 1 ≤ j ≤M .

Now by Jensen’s inequality,
∫ τ

0
log(nk∆Ânk)PnkdN

j(s)

≤ PnkN
j(τ) log

(∫ uj
0 n∆Ânk(s)dPnN j(s)

PnkN j(τ)

)

≤ O(1) + log(Ânk(uj))Pnkδ1{U ∈ [uj−1, uj ]}.
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Thus the right-side of (8) is dominated by

O(1) +

M−1∑

j=1

log Ânk(uj)

×Pnk (δ1{U ∈ [uj−1, uj ]} − (1 + δ)1{U ∈ [uj , uj+1]})
+ log Ânk(τ)Pnk (δ1{U ∈ [uM−1,∞]} − (1 + δ)1{U ∈ [τ,∞]}) .

(9)

Without loss of generality, assume Q0(τ) > 0.
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Because of the assumptions, we can choose u0, u1, . . . , uM with

M <∞ such that for some η > 0,

P ((1 + δ)1{U ∈ [τ,∞]}) ≥ η + P (δ1{U ∈ [uM−1,∞]})

and

P ((1 + δ)1{U ∈ [uj , uj+1]}) ≥ η + P (δ1{U1[uj−1, uj ]}) ,

for all 1 ≤ j ≤M − 1.

Hence

(9) ≤ −(η + o(1)) log Ânk(τ)→ −∞,
as k →∞, which yields the desired contradiction.

Thus the lemma follows since the data sequence was arbitrary.2
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�� ��Consistency

In this section, we prove uniform consistency of θ̂n.

Let Θ ≡ B0 ×A be the parameter space for θ, where

• B0 ⊂ Rd is the known compact containing β0 and

• A is the collection of all monotone increasing functions

A : [0, τ ] 7→ [0,∞]

with A(0) = 0.
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The following is the main result of this section:

THEOREM 1. Under the given conditions, θ̂n
as∗→ θ0.

Proof. Define θ̃n = (β0, Ãn), where

Ãn ≡
∫ (·)

0
[PW (s; θ0)]−1PndN(s).
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Note that

Ln(θ̂n)− Ln(θ̃n) =

∫ τ

0
log

PW (s; θ0)

PnW (s; θ̂n)
PndN(s)

+(β̂n − β0)′Pn
∫ τ

0
ZdN(s)

−Pn
[

(1 + δ) log

(
1 + eβ̂

′
nZÂn(U)

1 + eβ
′
0ZÃn(U)

)]
.(10)
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By Lemma 2 below,

(Pn − P )W (t; θ̂n)
as∗→ 0.

Combining this with Lemma 15.5 yields that

lim inf
n→∞

inf
t∈[0,τ ]

PnW (t; θ̂n) > 0

and that the lim supn→∞ of the total variation of

t 7→
[
PW (t; θ̂n)

]−1

is <∞ with inner probability one.
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Since the class
{∫ t

0
g(s)dN(s) : t ∈ [0, τ ], g ∈ D[0, τ ], the total variation of g ≤M

}

is Donsker for every M <∞, we now have
∫ τ

0
log

PW (s; θ0)

PnW (s; θ̂n)
PndN(s)−

∫ τ

0
log

PW (s; θ0)

PW (s; θ̂n)
dQ0(s)

as∗→ 0.

(11)
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Combining Lemma 15.5 with the fact that
{

(1 + δ) log
(

1 + eβ
′ZA(U)

)
: θ ∈ Θ, A(τ) ≤M

}

is Glivenko-Cantelli for each M <∞ yields

(Pn − P )

[
(1 + δ) log

(
1 + eβ̂

′
nZÂn(U)

1 + eβ
′
0ZA0(U)

)]
as∗→ 0. (12)
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Now combining results (11) and (12) with (10), we obtain that

Ln(θ̂n)− Ln(θ̃n)−
∫ τ

0
log

PW (s; θ0)

PW (s; θ̂n)
dQ0(s)− (β̂n − β0)′P [Zδ]

+P

[
(1 + δ) log

(
1 + eβ̂

′
nZÂn(U)

1 + eβ
′
0ZA0(U)

)]
(13)

as∗→ 0.
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Now select a fixed sequence X1,X2, . . . for which the previous

convergence results hold, and note that such sequences occur with inner

probability one.

Reapplying (15.2) yields

lim sup
n→∞

sup
s,t∈[0,τ ]

|Ân(s)− Ân(t)|
|Pn(N(s)−N(t))| <∞.

Thus there exists a subsequence {nk} along which both

‖Ânk − Ã‖∞ → 0

and β̂nk → β̃, for some θ̃ = (β̃, Ã), where Ã is both continuous and

bounded.
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Combining this with (13), we obtain

0 ≤ Lnk(θ̂nk)− Lnk(θ̃n)→ P0 log

[
dPθ̃
dP0

]
≤ 0,

where

• Pθ is the probability measure of a single observation on the specified

model at parameter value θ and

• P0 ≡ Pθ0 .
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Since the “model is identifiable” (see Exercise 15.6.2), we obtain that

θ̂n → θ0 uniformly.

Since the sequence X1,X2, . . . was an arbitrary representative from a

set with inner probability one, we obtain that θ̂n → θ0 almost surely.

Since Ân is a piecewise constant function with jumps ∆Ân only at

observed failure times t1, . . . , tmn , θ̂n is a continuous function of a

maximum taken over mn + d real variables.
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This structure implies that

sup
t∈[0,τ ]

|Ân(t)−A0(t)|

is a measurable random variable, and hence the uniform distance between

θ̂n and θ0 is also measurable.

Thus the almost sure convergence can be strengthened to the desired

outer almost sure convergence.2
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LEMMA 2. The class of functions {W (t; θ) : t ∈ [0, τ ], θ ∈ Θ} is

P -Donsker.

Proof. It is fairly easy to verify that

F1 ≡
{

(1 + δ)eβ
′ZY (t) : t ∈ [0, τ ], β ∈ B0

}

is a bounded P -Donsker class.
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If we can also verify that

F2 ≡
{(

1 + eβ
′ZA(U)

)−1
: θ ∈ Θ

}

is P -Donsker, then we are done since the product of two bounded

Donsker classes is also Donsker.

To this end, let φ : R2 7→ R be defined by

φ(x, y) =
1− y

1− y + exy
,

and note that φ is Lipschitz continuous on sets of the form

[−k, k]× [0, 1], with a finite Lipschitz constant depending only on k, for

all k <∞ (see Exercise 15.6.3).
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Note also that

F2 =

{
φ

(
β′Z,

A(U)

1 +A(U)

)
: θ ∈ Θ

}
.

Clearly,

{β′Z : β ∈ B0}
is Donsker with range contained in [−k0, k0] for some k0 <∞ by the

given conditions.
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Moreover,

{A(U)(1 +A(U))−1 : A ∈ A}
is a subset of all monotone, increasing functions with range [0, 1] and

thus, by Theorem 9.24, is Donsker.

Hence, by Theorem 9.31, F2 is P -Donsker, and the desired conclusions

follow.2
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