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�� ��M-Estimators

M-estimators are (approximate) maximizers (or minimizers) θ̂n of objective

functions θ 7→Mn(θ).

Examples include:

• maximum likelihood estimators

• least squares estimators

• least absolute deviation estimators
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Usually the objective funciton θ 7→Mn(θ) is an empirical (data

generated) process while θ 7→M(θ) is a limiting process of some kind.

Often,

θ 7→Mn(θ) = Pnmθ(X),

where {mθ(X) : θ ∈ Θ} is a class of measurable functions

X 7→ mθ(X) on the sample space X .

The Argmax theorem studies the limiting distribution of M-estimators

through the limiting behavior of the associated objective functions.
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�� ��The Argmax Theorem

Let Mn,M be stochastic processes indexed by a metric space H .

Assume

(A) The sample paths h 7→M(h) are upper semicontinuous and possess

a unique maximum at a (random) point ĥ, which as a random map in H is

tight.

(B) Mn ;M in `∞(K) for every compact K ⊂ H .

(C) The sequence ĥn is uniformly tight and satisfies

Mn(ĥn) ≥ suph∈HMn(h)− oP (1)

then ĥn ; ĥ in H .
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A sequence Xn is asymptotically tight if for every ε > 0, there is a

compact set K such that lim inf P∗(Xn ∈ Kδ) > 1− ε for every

δ > 0, where Kδ = {x : d(x,K) < δ}.

A sequence Xn is uniformly tight if for every ε > 0, there is a compact set

K such that P (Xn ∈ K) > 1− ε.

In Rp, Xn is asymptotically tight iff Xn is uniformly tight.
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�� ��Rate of Convergence

Let θ 7→M(θ) be twice differentiable at a point of unique maximum θ0.

Then ∂
∂θM(θ0) ≡ 0.

while ∂2

∂θ2
M(θ0) is negative definite.

Hence we can expect that

M(θ)−M(θ0) ≤ −cd2(θ, θ0)

for some c > 0 in a neighborhood of θ0.
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Sometimes we replace the metric function d by a function

d̃ : Θ×Θ 7→ [0,∞)

that satisfies d̃(θn, θ0)→ 0 whenever d(θn, θ0)→ 0.

This is useful, for example, when different parameters of the model have

different rates of convergence.
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The modulus of continuity of a stochastic process {X(t) : t ∈ T}
is defined by

mx(δ) ≡ sup
s,t∈T :d(s,t)≤δ

|X(s)−X(t)| .

An upper bound for the rate of convergence of an M-estimator can be

obtained from the modulus of continuity of Mn −M at θ0.
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Theorem 14.4: Rate of convergence

Let Mn be a sequence of stochastic processes indexed by a semimetric

space (Θ, d) and M : Θ 7→ R a deterministic function.

Assume that

(A) For every θ in a neighborhood of θ0, there exists a c1 > 0 such that

M(θ)−M(θ0) ≤ −c1d̃
2(θ, θ0),
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(B) For all n large enough and sufficiently small δ, the centered process

Mn −M satisfies

E∗ sup
d̃(θ,θ0)<δ

√
n |(Mn −M)(θ)− (Mn −M)(θ0)| ≤ c2φn(δ),

for c2 <∞ and functions φn such that δ 7→ φn(δ)/δα is decreasing for

some α < 2 not depending on n.
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(C) The sequence θ̂n converges in outer probability to θ0,

and satisfies

Mn(θ̂n) ≥ sup
θ∈Θ

Mn(θ)−OP (r−2
n )

for some sequence rn that satisfies

r2
nφn(r−1

n ) ≤ c3

√
n, for every n and some c3 <∞ .

Then

rnd̃(θ̂n, θ0) = OP (1) .
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�� ��Remark

The “modulus of continuity” of the empirical process gives an upper bound

on the rate.

When φ(δ) = δα then the rate is at least n1/(4−2α).

For φ(δ) = δ we get the
√
n rate.
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We assume for simplicity that θ̂n maximize Mn(θ) and that d̃ = d.

Our goal is to show that rnd(θ̂n, θ0) = OP (1). This is equivalent to

showing that for all n large enough P ∗(rnd(θ̂n, θ0) > 2K) < ε for

some constant K .

For each n, the parameter space (minus the point θ0) can be partitioned

into “peels”

Sj,n = {θ : 2j−1 < rnd(θ, θ0) ≤ 2j}
with j ranging over the integers.
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Fix η > 0 small enough such that

sup
θ:d(θ,θ0)<η

M(θ)−M(θ0) ≤ −c1d
2(θ, θ0) .

and such that for all δ < η

E∗ sup
d(θ,θ0)<δ

√
n |(Mn −M)(θ)− (Mn −M)(θ0)| ≤ c2φn(δ),

Such η exists by assumptions (A) and (B).
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Note that if rnd(θ̂n, θ0) > 2K for a given integer K , then θ̂n is in one of

the peels Sj,n, with j > K .

Thus

P ∗
(
rnd(θ̂n, θ0) > 2K

)
≤

∑
j≥K,2j≤ηrn

P ∗
(

sup
θ∈Sj,n

[Mn(θ)−Mn(θ0)] ≥ 0

)

+P ∗
(

2d(θ̂n, θ0) ≥ η
)
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By Assumption (A), for every θ ∈ Sn,j , such that 2j < ηrn,

M(θ)−M(θ0) ≤ −c1d
2(θ, θ0) ≤ −c122j−2r−2

n

By Assumption (B), Markov’s inequality, and the fact that

φn(cδ) ≤ cαφn(δ) for every c > 1,

P ∗
(

sup
θ∈Sj,n

|(Mn −M)(θ)− (Mn −M)(θ0)| ≥ c122j−2

r2
n

)

≤
c2φn

(
2j

rn

)
r2
n√

n(c122j−2)
≤ 2c2c32jα−2j+2

c1
.
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Summarizing

P ∗
(
rnd(θ̂n, θ0) > 2K

)
≤

∑
j≥K,2j≤ηrn

P ∗
(

sup
θ∈Sj,n

[Mn(θ)−Mn(θ0)] ≥ 0

)

+P ∗
(

2d(θ̂n, θ0) ≥ η
)

≤
∑
j>K

2c2c32jα−2j+2

c1
+ P ∗

(
2d(θ̂n, θ0) ≥ η

)
The first term is smaller than ε for all K large enough. The second term is

smaller than ε for all n large enough since θ̂n is consistent. This proves

that rnd(θ̂n, θ0) = OP (1)
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�� ��Regular Euclidean M-Estimators

Let mθ : X 7→ R where θ ∈ Θ ⊂ Rp.

Let Mn(θ) = Pnmθ and M(θ) = Pmθ.

Theorem 2.13

Assume

(A) θ0 maximizes M(θ) and M(θ) has a non-singular second derivative

matrix V .
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(B) There exist measurable functions Fδ : X 7→ R and ṁθ0 : X 7→ Rp

such that

|mθ1(x)−mθ2(x)| ≤ Fδ(x)‖θ1 − θ2‖,
P (mθ1 −mθ0 − ṁθ0‖θ1 − θ0‖)2 = o(‖θ1 − θ0‖2) ,

and PF 2
δ <∞, P‖mθ‖2 <∞ in some neighborhood Θ0 ⊂ Θ that

contains θ0.

(C) θ̂n
P→ θ0 and Mn(θ̂n) ≥ supθ∈ΘMn(θ)−OP (n−1)

Then
√
n(θ̂n − θ0) ; −V −1Z where Z is the limiting distribution of

Gnṁθ0 .
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�� ��Monotone Density Estimation

Let X1, . . . , Xn be a sample of size n from a Lebesgue density f on

[0,∞) that is known to be decreasing. Note that this means that F is

concave.

Fix t > 0. We assume that f is differentiable at t with derivative

−∞ < f ′(t) < 0.

The maximum likelihood estimator f̂n of f is the non-increasing step

function equal to the left derivative of F̂n, the least concave majorant of

the empirical distribution function Fn which is known as the Grenander

estimator (Grenander, 1956).
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Empirical Processes: Lecture 19 Spring, 2010
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�� ��Consistency

LEMMA 1. Marshall’s lemma

sup
t≥0
|F̂n(t)− F (t)| ≤ sup

t≥0
|Fn(t)− F (t)| .

The proof is an exercise.
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Fix 0 < δ < t. Note that

F̂n(t+ δ)− F̂n(t)

δ
≤ f̂n(t) ≤ F̂n(t)− F̂n(t− δ)

δ
.

By Marshall’s lemma,

F̂n(t+ δ)− F̂n(t)

δ

as∗→ F (t+ δ)− F (t)

δ

F̂n(t− δ)− F̂n(t)

δ

as∗→ F (t− δ)− F (t)

δ

By the assumptions on F and the arbitrariness of δ, we obtain

f̂n(t)
as∗→ f(t).
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�� ��Rate of Convergence

The inverse function representation

Define the stochastic process

ŝn(a) = arg max
s≥0
{Fn(s)− as}, for a > 0 .

The largest value is selected when multiple maximizers exist.

The function ŝn is a sort of inverse of the function f̂n in the sense that

f̂n(t) ≤ a if and only if ŝn(a) ≤ t for every t ≥ 0 and a > 0.
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Empirical Processes: Lecture 19 Spring, 2010

Figure 1: ŝn(a) = arg maxs≥0{Fn(s)− as}, for a > 0.
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Define

Mn(g) ≡ Fn(t+ g)− Fn(t)− f(t)g − xgn−1/3

M(g) ≡ F (t+ g)− F (t)− f(t)g .

By changing variable s 7→ t+ g in the dentition of ŝn combined with the

fact that the location of the maximum of a function does not change when

the function is shifted vertically we have

ŝn(f(t) + xn−1/3)− t ≡ arg max
{g>−t}

{Fn(t+ g)

−(f(t) + xn−1/3)(t+ g)}
= arg max

{g>−t}
Mn(g)
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Define ĝn = arg max{g>−t}Mn(g).

Our goal is to show that the conditions of Theorem 14.4 hold for ĝn with

rate of n1/3 where

θ = g , θ0 = 0 , d(θ, θ0) = |θ − θ0| .

Note that by the existence of the derivative for f at t we have

M(g) = F (t+ g)− F (t)− f(t)g =
1

2
f ′(t)g2 + o(g2)

Since by assumption f ′(t) < 0, Assumption (A), namely,

M(θ)−M(θ0) ≤ −c1d
2(θ, θ0), holds.
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Recall that Assumption (B) of Theorem 14.4 states:

For all n large enough and sufficiently small δ, the centered process

Mn −M satisfies

E∗ sup
d(θ,θ0)<δ

√
n |(Mn −M)(θ)− (Mn −M)(θ0)| ≤ c2φn(δ),

for c2 <∞ and functions φn such that δ 7→ φn(δ)/δα is decreasing for

some α < 2 not depending on n.
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Recall

Mn(g) ≡ Fn(t+ g)− Fn(t)− f(t)g − xgn−1/3

M(g) ≡ F (t+ g)− F (t)− f(t)g .

and thus Mn(0) = M(0) = 0.
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Hence

E∗ sup
|g|<δ

√
n |Mn(g)−M(g)|

≤ E∗ sup
|g|<δ
|Gn(1{X ≤ t+ g} − 1{X ≤ t})|

+O(
√
nδn−1/3)

. φn(δ) ≡ δ1/2 +
√
nδn−1/3.

Clearly

φn(δ)

δα
=
δ1/2 +

√
nδn−1/3

δα

is decreasing for α = 3/2 < 2.
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Assumption (C) of Theorem 14.4:

The sequence θ̂n converges in outer probability to θ0,

and satisfies

Mn(θ̂n) ≥ sup
θ∈Θ

Mn(θ)−OP (r−2
n )

for some sequence rn that satisfies

r2
nφn(r−1

n ) ≤ c3

√
n, for every n and some c3 <∞ .
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• M(g) = F (t+ g)− F (t)− f(t)g is continuous and has a unique

maximum at g = 0.

• Mn(g) ;M(g) uniformly on compacts.

• Mn(ĝn) = supgMn(g).

Thus by the argmax theorem ĝn ; 0.

Choose rn = n1/3. Then

r2
nφn(r−1

n ) = n2/3φn(n−1/3) = n1/2 + n1/6n−1/3 = O(n1/2)

Thus Assumption (C) holds.

Hence n1/3ĝn = OP (1).
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�� ��Weak Convergence

Denote ĥn = n1/3ĝn = n1/3 arg max{g>−t}Mn(g).

Rewriting, and multiplying by n2/3, we have n2/3Mn(n−1/3h)

= n2/3(Pn − P )
(

1{X ≤ t+ hn−1/3} − 1{X ≤ t}
)

+n2/3
[
F (t+ hn−1/3)− F (t)− f(t)hn−1/3

]
− xh .

It can be shown that

n2/3Mn(n−1/3h) ; H(h) ≡
√
f(t)Z(h) +

1

2
f ′(t)h2 − xh,

where Z is a two-sided Brownian motion.
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We use the argmax theorem to prove that

arg max{n2/3Mn(n−1/3h) = ĥn ; ĥ = arg max H.

We need to show

• H is continuous and has a unique maximum.

• n2/3Mn(n−1/3h)
P→ H(h) uniformly on compacts.

• Mn(n−1/3ĥn) = suphMn(n−1/3h).
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Using the rescaling attributes of Brownian motion, we have

arg max H =

∣∣∣∣ 4f(t)

[f ′(t)]2

∣∣∣∣1/3 arg max
h
{Z(h)− h2}+

x

f ′(t)
.

Simple algebra yields

P

(∣∣∣∣ 4f(t)

[f ′(t)]2

∣∣∣∣1/3 arg max
h
{Z(h)− h2}+

x

f ′(t)
≤ 0

)

= P

(∣∣4f ′(t)f(t)
∣∣1/3 arg max

h

{
Z(h− h2

}
≤ x

)
,
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By the inverse function representation we have

P (n1/3(f̂n(t)− f(t)) ≤ x)

= P (f̂n(t) ≤ f(t) + xn−1/3)

= P (ŝn(f(t) + xn−1/3) < t)

= P (arg max
h
{Mn(n−1/3h)} ≤ 0)

= P (ĥn ≤ 0)

→ P (ĥ ≤ 0)

= P

(∣∣4f ′(t)f(t)
∣∣1/3 arg max

h

{
Z(h)− h2

}
≤ x

)
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Summarizing:

n1/3(f̂n(t)− f(t)) ; |4f ′(t)f(t)|1/3C,

where the random variable C ≡ arg maxh{Z(h)− h2} has Chernoff’s

distribution.
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