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�� ��Z-Estimators

Recall from Section 2.2.5 that Z-estimators are approximate zeros of

data-dependent functions.

These data-dependent functions, denoted Ψn, are maps between a

possibly infinite dimensional normed parameter space Θ and a normed

space L, where the respective norms are ‖ · ‖ and ‖ · ‖L.

The Ψn are frequently called estimating equations.
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A quantity θ̂n ∈ Θ is a Z-estimator if

‖Ψn(θ̂n)‖L P→ 0.

In this chapter, we extend and prove the results of Section 2.2.5.

As part of this, we extend the Z-estimator master theorem,

Theorem 10.16, to the infinite dimensional case, divided into two parts:

consistency and weak convergence.
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We first discuss consistency and present a Z-estimator master theorem for

consistency.

We then discuss weak convergence and examine closely the special case

of Z-estimators which are empirical measures of Donsker classes.

We then use this structure to develop a Z-estimator master theorem for

weak convergence.
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Both master theorems, the one for consistency and the one for weak

convergence, will include results for the bootstrap.

Finally, we demonstrate how Z-estimators can be viewed as Hadamard

differentiable functionals of the involved estimating equations and how this

structure enables use of a modified delta method to obtain very general

results for Z-estimators.
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Recall from Section 2.2.5 that the Kaplan-Meier estimator is an important

and instructive example of a Z-estimator.

A more sophisticated example, which will be presented later in the case

studies of Chapter 15, is the nonparametric maximum likelihood estimator

for the proportional odds survival model.
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�� ��Consistency

The main consistency result we have already presented in Theorem 2.10

of Section 2.2.5, and the proof of this theorem was given as an exercise

(Exercise 2.4.2).

We will now extend this result to the bootstrapped Z-estimator.
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First, we restate the identifiability condition of Theorem 2.10:

The map Ψ : Θ 7→ L is identifiable at θ0 ∈ Θ if

‖Ψ(θn)‖L → 0 implies ‖θn − θ0‖ → 0 for any {θn} ∈ Θ. (1)
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Note that there are alternative identifiability conditions that will also work,

including the stronger condition that both Ψ(θ0) = 0 and Ψ : Θ 7→ L be

one-to-one.

Nevertheless, Condition (1) seems to be the most efficient for our

purposes.
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In what follows, we will use the bootstrap-weighted empirical process P◦n
to denote either the nonparametric bootstrapped empirical process (with

multinomial weights) or the multiplier bootstrapped empirical process

defined by

f 7→ P◦nf = n−1
n∑

i=1

(ξi/ξ̄)f(Xi),

where ξ1, . . . , ξn are i.i.d. positive weights with 0 < µ = Eξ1 <∞ and

ξ̄ = n−1
n∑

i=1

ξi.

Note that this is a special case of the weighted bootstrap introduced in

Theorem 10.13 but with the addition of ξ̄ in the denominator.
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We leave it as an exercise (Exercise 13.4.1) to verify that the conclusions

of Theorem 10.13 are not affected by this addition.

Let

Xn ≡ {X1, . . . ,Xn}
as given in Theorem 10.13.

The following is the main result of this section:
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THEOREM 1. (Master Z-estimator theorem for consistency) Let

θ 7→ Ψ(θ) = Pψθ,

θ 7→ Ψn(θ) = Pnψθ

and

θ 7→ Ψ◦n(θ) = P◦nψθ,

where Ψ satisfies (1) and the class {ψθ : θ ∈ Θ} is P -Glivenko-Cantelli.

Then, provided

‖Ψn(θ̂n)‖L = oP (1)

and

pr
(
‖Ψ◦n(θ̂◦n)‖L > η

∣∣∣Xn
)

= oP (1) for every η > 0, (2)
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we have both

‖θ̂n − θ0‖ = oP (1)

and

pr
(
‖θ̂◦n − θ0‖ > η

∣∣∣Xn
)

= oP (1)

for every η > 0.

Note in (2) the absence of an outer probability on the left side.

This is because, as argued in the paragraph following Theorem 10.4, a

continuous, real valued map of either of these bootstrapped empirical

processes is measurable with respect to the random weights conditional

on the data.
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Note that we might have worked toward obtaining outer almost sure results

since we are making a strong Glivenko-Cantelli assumption for the class of

functions involved.

However, we only need convergence in probability for statistical

applications.

Notice also that we only assumed

‖Ψ◦n(θ̂◦n)‖

goes to zero conditionally rather than unconditionally as done in

Theorem 10.16.
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However, it seems to be easier to check the conditional version in practice.

Moreover, the unconditional version is actually stronger than the

conditional version, since

E∗pr
(
‖Ψ◦n(θ̂◦n)‖L > η

∣∣∣Xn
)
≤ P∗

(
‖Ψ◦n(θ̂◦n)‖L > η

)

by the version of Fubini’s theorem given as Theorem 6.14.

It is unclear how to extend this argument to the outer almost sure setting.
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This is another reason for restricting our attention to the convergence in

probability results.

Nevertheless, we still need the strong Glivenko-Cantelli assumption since

this enables the use of Theorems 10.13 and 10.15.

While the above approach will be helpful for some Z-estimators, many

Z-estimators are complex enough to require individually Tailored

approaches to establishing consistency.
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Later on, we will revisit the Kaplan-Meier estimator example of

Section 2.2.5 to which we can apply a generalization of Theorem 1,

Theorem 3, which includes weak convergence.

In contrast, the proportional odds model for right-censored survival data,

which will be presented in Chapter 15, requires a more individualized

approach to establishing consistency.
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�� ��Weak Convergence

Recall Theorem 2.11:

THEOREM 2. Assume that

• Ψ(θ0) = 0 for some θ0 in the interior of Θ,

• √nΨn(θ̂n)
P→ 0, and

• ‖θ̂n − θ0‖ P→ 0 for the random sequence {θ̂n} ∈ Θ.

Assume also that
√
n(Ψn −Ψ)(θ0) ; Z,
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for some tight random Z , and that
∥∥∥√n(Ψn(θ̂n)−Ψ(θ̂n))−√n(Ψn(θ0)−Ψ(θ0))

∥∥∥
L

1 +
√
n‖θ̂n − θ0‖

P→ 0. (3)

If θ 7→ Ψ(θ)is Fréchet-differentiable at θ0 with continuously-invertible

derivative Ψ̇θ0 , then

‖√nΨ̇θ0(θ̂n − θ0) +
√
n(Ψn −Ψ)(θ0)‖L P→ 0 (4)

and thus
√
n(θ̂n − θ0) ; −Ψ̇−1

θ0
(Z).
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An important thing to note is that no assumptions about the data being

i.i.d. are required.

Proof of Theorem 2. By the definitions of θ̂n and θ0,

√
n
(

Ψ(θ̂n)−Ψ(θ0)
)

= −√n
(

Ψn(θ̂n)−Ψ(θ̂n)
)

+ oP (1)

= −√n(Ψn −Ψ)(θ0) + oP (1 +
√
n‖θ̂n − θ0‖), (5)

by Assumption (3).

Note the error terms throughout this theorem are with respect to the norms

of the spaces, e.g. Θ or L, involved.
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Since Ψ̇θ0 is continuously invertible, we have by Part (i) of Lemma 6.16

that there exists a constant c > 0 such that

‖Ψ̇θ0(θ − θ0)‖ ≥ c‖θ − θ0‖

for all θ and θ0 in lin Θ.

Combining this with the differentiability of Ψ yields

‖Ψ(θ)−Ψ(θ0)‖ ≥ c‖θ − θ0‖+ o(‖θ − θ0‖).
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Combining this with (5), we obtain

√
n‖θ̂n − θ0‖(c+ oP (1)) ≤ OP (1) + oP (1 +

√
n‖θ̂n − θ0‖).

We now have that θ̂n is
√
n-consistent for θ0 with respect to ‖ · ‖.

By the differentiability of Ψ, the left side of (5) can be replaced by

√
nΨ̇θ0(θ̂n − θ0) + oP (1 +

√
n‖θ̂n − θ0‖).
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This last error term is now oP (1) as also is the error term on the right side

of (5).

Now the result (4) follows.

Next the continuity of Ψ̇−1
θ0

and the continuous mapping theorem yield

√
n(θ̂n − θ0) ; −Ψ̇−1

θ0
(Z)

as desired.2

23



Empirical Processes: Lecture 17 Spring, 2010

The following lemma allows us to weaken the Fréchet differentiability

requirement to Hadamard differentiability when it is also known that√
n(θ̂n − θ0) is asymptotically tight:

LEMMA 1. Assume the conditions of Theorem 2 except that consistency of

θ̂n is strengthened to asymptotic tightness of
√
n(θ̂n − θ0) and the

Fréchet differentiability of Ψ is weakened to Hadamard differentiability at

θ0.

Then the results of Theorem 2 still hold.
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Proof. The asymptotic tightness of
√
n(θ̂n − θ0) enables (5) to imply

√
n
(

Ψ(θ̂n)−Ψ(θ0)
)

= −√n(Ψn −Ψ)(θ0) + oP (1).

The Hadamard differentiability of Ψ yields

√
n
(

Ψ(θ̂n)−Ψ(θ0)
)

=
√
nΨ̇θ0(θ̂n − θ0) + oP (1).

Combining, we now have
√
nΨ̇θ0(θ̂n − θ0) = −√n(Ψn −Ψ)(θ0) + oP (1),

and all of the results of the theorem follow.2
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�� ��Using Donsker Classes

We now consider the special case where the data involved are i.i.d., i.e.,

Ψn(θ)(h) = Pnψθ,h

and

Ψ(θ)(h) = Pψθ,h,

for measurable functions ψθ,h, where h ranges over an index setH.

The following lemma gives us reasonably verifiable sufficient conditions

for (3) to hold:
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LEMMA 2. Suppose the class of functions

{ψθ,h − ψθ0,h : ‖θ − θ0‖ < δ, h ∈ H} (6)

is P -Donsker for some δ > 0 and

sup
h∈H

P (ψθ,h − ψθ0,h)2 → 0, as θ → θ0. (7)

Then if θ̂n
P→ θ0,

sup
h∈H

∣∣∣Gnψθ̂n,h −Gnψθ0,h
∣∣∣ = oP (1).
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Before giving the proof of this lemma, we make the somewhat trivial

observation that the conclusion of this lemma implies (3).

Proof of Lemma 2. Let

Θδ ≡ {θ : ‖θ − θ0‖ < δ}

and define the extraction function

f : `∞(Θδ ×H)×Θδ 7→ `∞(H)

as f(z, θ)(h) ≡ z(θ, h), where z ∈ `∞(Θδ ×H).
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Note that f is continuous at every point (z, θ1) such that

sup
h∈H
|z(θ, h)− z(θ1, h)| → 0

as θ → θ1.

Define the stochastic process

Zn(θ, h) ≡ Gn(ψθ,h − ψθ0,h)

indexed by Θδ ×H.
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As assumed, the process Zn converges weakly in `∞(Θδ ×H) to a tight

Gaussian process Z0 with continuous sample paths with respect to the

metric ρ defined by

ρ2((θ1, h1), (θ2, h2)) = P (ψθ1,h1 − ψθ0,h1 − ψθ2,h2 + ψθ0,h2)2.

Since,

sup
h∈H

ρ((θ, h), (θ0, h))→ 0

by assumption, we have that f is continuous at almost all sample paths of

Z0.
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By Slutsky’s theorem (Theorem 7.15),

(Zn, θ̂n) ; (Z0, θ0).

The continuous mapping theorem (Theorem 7.7) now implies that

Zn(θ̂n) = f(Zn, θ̂n) ; f(Z0, θ0) = 0.2
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If, in addition to the assumptions of Lemma 2, we are willing to assume

{ψθ0,h : h ∈ H} (8)

is P -Donsker, then
√
n(Ψn −Ψ)(θ0) ; Z,

and all of the weak convergence assumptions of Theorem 2 are satisfied.
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Alternatively, we could just assume that

Fδ ≡ {ψθ,h : ‖θ − θ0‖ < δ, h ∈ H} (9)

is P -Donsker for some δ > 0, then both (6) and (8) are P -Donsker for

some δ > 0.

We are now well poised for a Z-estimator master theorem for weak

convergence.
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In this section, we augment the results of the previous section to achieve a

general Z-estimator master theorem that includes both weak convergence

and validity of the bootstrap.

Here we consider the two bootstrapped Z-estimators described in

Section 13.1, except that for the multiplier bootstrap we make the

additional requirements that 0 < τ 2 = var(ξ1) <∞ and ‖ξ1‖2,1 <∞.

We use
P
;◦

to denote either
P
;
ξ

or
P
;
W

depending on which bootstrap is

being used, and we let the constant k0 = τ/µ for the multiplier bootstrap

and k0 = 1 for the multinomial bootstrap.
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Here is the main result:

THEOREM 3. Assume Ψ(θ0) = 0 and the following hold:

(A) θ 7→ Ψ(θ) satisfies (1);

(B) The class {ψθ,h; θ ∈ Θ, h ∈ H} is P -Glivenko-Cantelli;

(C) The class Fδ in (9) is P -Donsker for some δ > 0;

(D) Condition (7) holds;

(E) ‖Ψn(θ̂n)‖L = oP (n−1/2) and

pr
(√

n‖Ψ◦n(θ̂◦n)‖L > η
∣∣∣ Xn

)
= oP (1) for every η > 0;

(F) θ 7→ Ψ(θ) is Fréchet-differentiable at θ0 with continuously invertible

derivative Ψ̇θ0 .
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Then
√
n(θ̂n − θ0) ; −Ψ̇−1

θ0
Z,

where Z ∈ `∞(H) is the tight, mean zero Gaussian limiting distribution

of
√
n(Ψn −Ψ)(θ0), and

√
n(θ̂◦n − θ̂n)

P
;◦
k0Z.
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About the conditions:

• Condition (A) is identifiability.

• Conditions (B) and (C) are consistency and asymptotic normality

conditions for the estimating equation.

• Condition (D) is an asymptotic equicontinuity condition for the

estimating equation at θ0.

• Condition (E) simply states that the estimators are approximate zeros

of the estimating equation.

• Condition (F) specifies the smoothness and invertibility requirements

of the derivative of Ψ.
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Except for the last half of Condition (E), all of the conditions are

requirements for asymptotic normality of
√
n(θ̂n − θ0).

What is perhaps surprising is how little additional assumptions are needed

to obtain bootstrap validity.

Only an assurance that the bootstrapped estimator is an approximate zero

of the bootstrapped estimating equation is required.

Thus bootstrap validity is almost an automatic consequence of asymptotic

normality.
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Before giving the proof of the theorem, we will present an example.

Recall the right-censored Kaplan-Meier estimator example of Section 2.2.5

which was shown to be a Z-estimator with a certain estimating equation

Ψn(θ) = Pnψθ(t), where

ψθ(t) = 1{U > t}+ (1− δ)1{U ≤ t}1{θ(U) > 0} θ(t)
θ(U)

− θ(t),

where

• the observed data U, δ is the right-censored survival time and

censoring indicator, respectively, and where

• we have replaced the survival function S with θ in the notation of

Section 2.2.5 to obtain greater consistency with the notation of the

current chapter.
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The limiting estimating function Ψ(θ) = Pψθ , given in (2.11), is

Ψ(θ)(t) = Pψθ,t

= θ0(t)L(t) +

∫ t

0

θ0(u)

θ(u)
dG(u)θ(t)− θ(t), (10)

where

• t and [0, τ ] play the roles of h andH and

• G is the censoring distribution function with L = 1−G.
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Thus, if we make the substitution

εn(t) =
θ0(t)

θn(t)
− 1,

Ψ(θn)(t)→ 0 uniformly over t ∈ [0, τ ] implies that

un(t) = εn(t)L(t) +

∫ t

0
εn(u)dG(u)→ 0

uniformly over the same interval.
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By solving this integral equation, we obtain

εn(t) = un(0) +

∫ t

0

dun(s)

L(s−)
,

which implies εn(t)→ 0 uniformly, since L(t−) ≥ L(τ−) > 0.

Thus ‖θn − θ0‖∞ → 0, implying the desired identifiability, and hence

Condition (A) of the theorem are satisfied.
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Exercise 2.4.3 verifies that Ψ(θ) is Fréchet differentiable with derivative

Ψ̇θ0 defined in (2.16).

Exercise 2.4.4 verifies that Ψ̇θ0 is continuously invertible with inverse Ψ̇−1
θ0

given explicitly in (2.17).

Thus Condition (F) of the theorem is also established.
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In the paragraphs in Section 2.2.5 after the presentation of Theorem 2.1,

the class

{ψθ(t) : θ ∈ Θ, t ∈ [0, τ ]},
where Θ is the class of all survival functions t 7→ θ(t) with θ(0) = 0 and

with t restricted to [0, τ ], was shown to be Donsker.

Note that in this setting,H = [0, τ ].

Thus Conditions (B) and (C) of the theorem hold.
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It is also quite easy to verify directly that

sup
t∈[0,τ ]

P [ψθ(t)− ψθ0(t)]2 → 0,

as ‖θ − θ0‖∞ → 0, and thus Condition (D) of the theorem is satisfied.

If θ̂n is the Kaplan-Meier estimator, then

‖Ψn(θ̂n)(t)‖∞ = 0

almost surely.
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If the bootstrapped version is

θ̂◦n(t) ≡
∏

j:T̃j≤t


1−

nP◦n
[
δ1{U = T̃j}

]

nP◦n1{U ≥ T̃j}


 ,

where T̃1, . . . , T̃mn are the observed failure times in the sample, then

also

‖Ψ◦n(θ̂◦n)‖∞ = 0

almost surely.

Thus Condition (E) of the theorem is satisfied, and hence all of the

conditions of theorem are satisfied.
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Thus we obtain consistency, weak convergence, and bootstrap

consistency for the Kaplan-Meier estimator all at once.

As mentioned at the end of Section 13.1, a master result such as this will

not apply to all Z-estimator settings.

Many interesting and important Z-estimators require an individualized

approach to obtaining consistency, such as the Z-estimator for the

proportional odds model for right-censored data which we examine in

Chapter 15.
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Proof of Theorem 3. The consistency of θ̂n and weak convergence of√
n(θ̂n − θ0) follow from Theorems 1 and 2 and Lemma 2.

Theorem 1 also yields that there exists a decreasing sequence

0 < ηn ↓ 0 such that

pr
(
‖θ̂◦n − θ0‖ > ηn

∣∣∣Xn
)

= oP (1).

Now we can use the same arguments used in the proof of Lemma 2, in

combination with Theorem 2.6, to obtain that
√
n(Ψ◦n −Ψ)(θ̂◦n)−√n(Ψ◦n −Ψ)(θ0) = En,

where pr(En > η|Xn) = oP (1) for all η > 0.
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Combining this with arguments used in the proof of Theorem 2, we can

deduce that

√
n(θ̂◦n − θ0) = −Ψ̇−1

θ0

√
n(Ψ◦n −Ψ)(θ0) +E′n,

where pr(E′n > η|Xn) = oP (1) for all η > 0.

Combining this with the conclusion of Theorem 2, we obtain

√
n(θ̂◦n − θ̂n) = −Ψ̇−1

θ0

√
n(Ψ◦n −Ψn)(θ0) + E′′n,

where pr(E′′n > η|Xn) = oP (1) for all η > 0.

The final conclusion now follows from reapplication of Theorem 2.6.2
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