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�� ��Integration, Continued

Recall, for given functions A ∈ D[a, b] and B ∈ BVM [a, b] and domain

DM ≡ D[a, b]×BVM [a, b], the maps φ : DM 7→ R and

ψ : DM 7→ D[a, b] defined by

φ(A,B) =

∫

(a,b]
A(s)dB(s) and ψ(A,B)(t) =

∫

(a,t]
A(s)dB(s).

(1)

Also recall the following lemma which we introduced last time:
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LEMMA 1. For each fixed M <∞, the maps φ : DM 7→ R and

ψ : DM 7→ D[a, b] defined in (1)are Hadamard differentiable at each

(A,B) ∈ DM with
∫

(a,b] |dA| <∞.

The derivatives are given by

φ′A,B(α, β) =

∫

(a,b]
Adβ +

∫

(a,b]
αdB, and

ψ′A,B(α, β)(t) =

∫

(a,t]
Adβ +

∫

(a,t]
αdB.
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Note that in the above lemma we define
∫

(a,t]
Adβ = A(t)β(t)−A(a)β(a)−

∫

(a,t]
β(s−)dA(s)

so that the integral is well defined even when β does not have bounded

variation.

We now look at a statistical applications of Lemma 1 to the two-sample

Wilcoxon rank sum statistic.

Let X1, . . . ,Xm and Y1, . . . , Yn be independent samples from

distributions F and G on the reals.
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If Fm andGn are the respective empirical distribution functions, the

Wilcoxon rank sum statistic for comparing F and G has the form

T1 = m

∫

R
(mFm(x) + nGn(x))dFm(x).

If we temporarily assume that F and G are continuous, then

T1 = mn

∫

R
Gn(x)dFm(x) +m2

∫

R
Fm(x)dFm(x)

= mn

∫

R
Gn(x)dFm(x) +

m2 +m

2

≡ mnT2 +
m2 +m

2
,

where T2 is the Mann-Whitney statistic.

5



Empirical Processes: Lecture 16 Spring, 2010

When F or G have atoms, the relationship between the Wilcoxon and

Mann-Whitney statistics is more complex.

We will now study the asymptotic properties of the Mann-Whitney version

of the rank sum statistic, T2.

For arbitrary F and G, T2 = φ(Gn,Fm), where φ is as defined in

Lemma 1.

Note that F , G, Fm andGn all have total variation ≤ 1.
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Thus Lemma 1 applies, and we obtain that the Hadamard derivative of φ

at (A,B) = (G,F ) is the map

φ′G,F (α, β) =

∫

R
Gdβ +

∫

R
αdF,

which is continuous and linear over α, β ∈ D[−∞,∞].

If we assume that m/(m+ n)→ λ ∈ [0, 1], as m ∧ n→∞, then

√
mn

m+ n


 Gn −G
Fm − F


;




√
λB1(G)

√
1− λB2(F )


 ,

where B1 and B2 are independent standard Brownian bridges.
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HenceGG(·) ≡ B1(G(·)) andGF (·) ≡ B2(F (·)) both live in

D[−∞,∞].

Now Theorem 2.8 yields
√

mn

m+ n
T2 ;

√
λ

∫

R
GdGF +

√
1− λ

∫

R
GFdG,

as m ∧ n→∞.
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When F = G and F is continuous, this limiting distribution is mean zero

normal with variance 1/12.

The delta method bootstrap, Theorem 12.1, is also applicable and can be

used to obtain an estimate of the limiting distribution under more general

hypotheses on F and G.
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We now consider a second integration example which involves the

Nelson-Aalen estimator under right censoring.

In the right censored survival data setting, an observation consists of the

pair (X, δ), where X = T ∧ C is the minimum of a failure time T and

censoring time C , and δ = 1{T ≤ C}.
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T and C are assumed to be independent.

Let F be the distribution function for T , and define the integrated baseline

hazard for F to be

Λ(t) =

∫ t

0

dF (s)

S(s−)
,

where S ≡ 1− F is the survival function.
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The Nelson-Aalen estimator for Λ, based on the i.i.d. sample

(X1, δ1), . . . , (Xn, δn), is

Λ̂n(t) ≡
∫

[0,t]

dN̂n(s)

Ŷn(s)
,

where

N̂n(t) ≡ n−1
n∑

i=1

δi1{Xi ≤ t}

and

Ŷn(t) ≡ n−1
n∑

i=1

1{Xi ≥ t}.
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It is easy to verify that the classes {δ1{X ≤ t}, t ≥ 0} and

{1{X ≥ t} : t ≥ 0} are both Donsker and hence that

√
n


 N̂n −N0

Ŷn − Y0


 ;


 G1

G2


 , (2)

where

• N0(t) ≡ P (T ≤ t, C ≥ T ),

• Y0(t) ≡ P (X ≥ t),

• andG1 andG2 are tight Gaussian processes

• with respective covariances N0(s ∧ t)−N0(s)N0(t) and

Y0(s ∨ t)− Y0(s)Y0(t)

• and with cross-covariance

1{s ≥ t} [N0(s)−N0(t−)]−N0(s)Y0(t).
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Note that while we have already seen this survival set-up several times

(eg., Sections 2.2.5 and 4.2.2), we are choosing to use slightly different

notation than previously used to emphasize certain features of the

underlying empirical processes.

The Nelson-Aalen estimator depends on the pair (N̂n, Ŷn) through the

two maps

(A,B) 7→
(
A,

1

B

)
7→
∫

[0,t]

1

B
dA.
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From Section 12.1.1, Lemma 1, and the chain rule (Lemma 6.19), it is

easy to see that this composition map is Hadamard differentiable on a

domain of the type

{(A,B) :

∫

[0,τ ]
|dA(t)| ≤M, inf

t∈[0,τ ]
|B(t)| ≥ ε}

for a given M <∞ and ε > 0, at every point (A,B) such that 1/B has

bounded variation.
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Note that the interval of integration we are using, [0, τ ], is left-closed

rather than left-open as in the definition of ψ given in (1).

However, if we pick some η > 0, then in fact integrals over [0, t], for any

t > 0, of functions which have zero variation over (−∞, 0) are

unchanged if we replace the interval of integration with (−η, t].

Thus we will still be able to utilize Lemma 1 in our current set-up.

In this case, the point (A,B) of interest is A = N0 and B = Y0.
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Thus if t is restricted to the interval [0, τ ], where τ satisfied Y0(τ) > 0,

then it is easy to see that the pair (N̂n, Ŷn) is contained in the given

domain with probability tending to 1 as n→∞.

The derivative of the composition map is given by

(α, β) 7→
(
α,
−β
Y 2

0

)
7→
∫

[0,t]

dα

Y0
−
∫

[0,t]

βdN0

Y 2
0

.

Thus from (2), we obtain via Theorem 2.8 that

√
n(Λ̂n − Λ) ;

∫

[0,(·)]

dG1

Y0
−
∫

[0,(·)]

G2dN0

Y 2
0

. (3)
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The Gaussian process on the right side of (3) is equal to
∫

[0,(·)]

dM
Y0

,

where

M(t) ≡ G1(t)−
∫

[0,t]
G2dΛ

can be shown to be a Gaussian martingale with independent increments

and covariance ∫

[0,s∧t]
(1−∆Λ)dΛ,

where ∆A(t) ≡ A(t)−A(t−) is the mass at t of a signed-measure A.
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This means that the Gaussian process on the right side of (3) is also a

Gaussian martingale with independent increments but with covariance
∫

[0,s∧t]
(1−∆Λ)

dΛ

Y0
.
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A useful discussion of continuous time martingales arising in right

censored survival data can be found in Fleming and Harrington (1991).

The delta method bootstrap, Theorem 12.1, is also applicable here and

can be used to obtain an estimate of the limiting distribution.
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However, when Λ is continuous over [0, τ ], the independent increments

structure implies that the limiting distribution is time-transformed Brownian

motion.

More precisely, the limiting process can be expressed asW(v(t)), where

W is standard Brownian motion on [0,∞) and

v(t) ≡
∫

(0,t]

dΛ

Y0
.

As discussed in Chapter 7 of Fleming and Harrington (1991), this fact can

be used to compute asymptotically exact simultaneous confidence bands

for Λ.
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Proof of Lemma 1. For sequences tn → 0, αn → α, and βn → β,

define An ≡ A+ tnαn and Bn ≡ B + tnβn.

Since we require that (An, Bn) ∈ DM , we know that the total variation of

Bn is bounded by M .

Consider first the derivative of ψ, and note that
∫

(a,t]AndBn −
∫

(a,t]AdB

tn
− ψ′A,B(αn, βn) =

∫

(a,t]
αd(Bn −B) +

∫

(a,t]
(αn − α)d(Bn −B). (4)
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Since it is easy to verify that the map

(α, β) 7→ ψ′A,B(α, β)

is continuous and linear, the desired Hadamard differentiability of ψ will

follow provided the right side of (4) goes to zero.

To begin with, the second term on the right side goes to zero uniformly

over t ∈ (a, b], since both Bn and B have total variation bounded by M .
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Now, for the first term on the right side of (4), fix ε > 0.

Since α is cadlag, there exists a partition a = t0 < t1 < · · · < tm = b

such that α varies less than ε over each interval [ti−1, ti), 1 ≤ i ≤ m,

and m <∞.

Now define the function α̃ to be equal to α(ti−1) over the interval

[ti−1, ti), 1 ≤ i ≤ m, with α̃(b) = α(b).
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Thus
∥∥∥∥∥

∫

(a,t]
αd(Bn −B)

∥∥∥∥∥
∞

≤
∥∥∥∥∥

∫

(a,t]
(α− α̃)d(Bn −B)

∥∥∥∥∥
∞

+

∥∥∥∥∥

∫

(a,t]
α̃d(Bn −B)

∥∥∥∥∥
∞

≤ ‖α− α̃‖∞2M +

m∑

i=1

|α(ti−1)| × |(Bn −B)(ti)− (Bn −B)(ti−1)|

+|α(b)| × |(Bn −B)(b)|
≤ ε2M + (2m+ 1)‖Bn −B‖∞‖α‖∞
→ ε2M,

as n→∞.
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Since ε was arbitrary, we have that the first term on the right side of (4)

goes to zero, as n→∞, and the desired Hadamard differentiability of ψ

follows.

Now the desired Hadamard differentiability of φ follows

• from the trivial but useful Lemma 2 below,

• by taking the extraction map f : D[a, b] 7→ R defined by

f(x) = x(b),

• noting that φ = f(ψ),

• and then applying the chain rule for Hadamard derivatives

(Lemma 6.19).2
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LEMMA 2. Let T be a set and fix T0 ⊂ T .

Define the extraction map f : `∞(T ) 7→ `∞(T0) as

f(x) = {x(t) : t ∈ T0}.

Then f is Hadamard differentiable at all x ∈ `∞(T ) with derivative

f ′x(h) = {h(t) : t ∈ T0}.
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Proof. Let tn be any real sequence with tn → 0, and let {hn} ∈ `∞(T )

be any sequence converging to h ∈ `∞(T ).

The desired conclusion follows after noting that

t−1
n [f(x+ tnhn)− f(x)] = {hn(t) : t ∈ T0}

→ {h(t) : t ∈ T0},

as n→∞.2
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For a function A ∈ D(0, b], let Ac(t) ≡ A(t)−∑0<s≤t ∆A(s),

where ∆A is as defined in the previous section, be the continuous part of

A.

We define the product integral to be the map A 7→ φ(A), where

φ(A)(t) ≡
∏

0<s≤t
(1 + dA(s)) = exp(Ac(t))

∏

0<s≤t
(1 + ∆A(s)).

The first product is merely notation, but it is motivated by the mathematical

definition of the product integral:
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φ(A)(t) = lim
maxi |ti−ti−1|→0

∏

i

{1 + [A(ti)−A(ti−1)]} ,

where the limit is over partitions 0 = t0 < t1 < · · · tm = t with

maximum separation decreasing to zero.

We will also use the notation

φ(A)(s, t] =
∏

s<u≤t
(1 + dA(u)) ≡ φ(A)(t)

φ(A)(s)
,

for all 0 ≤ s < t.

The two terms on the left are defined by the far right term.
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Three alternative definitions, as solutions of two different Volterra integral

equations and as a “Peano series,” are given in Exercise 12.3.2.

The following lemma verifies that product integration is Hadamard

differentiable:

LEMMA 3. For fixed constants 0 < b,M <∞, the product integral map

φ : BVM [0, b] ⊂ D[0, b] 7→ D[0, b] is Hadamard differentiable with

derivative

φ′A(α)(t) =

∫

(0,t]
φ(A)(0, u)φ(A)(u, t]dα(u).

When α ∈ D[0, b] has unbounded variation, the above quantity is

well-defined by integration by parts.
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From the discussion of the Nelson-Aalen estimator Λ̂n in Section 12.2.2, it

is not hard to verify that in the right-censored survival analysis setting

S(t) = φ(−Λ)(t), where φ is the product integration map.

Moreover, it is easily verified that the Kaplan-Meier estimator Ŝn

discussed in Sections 2.2.5 and 4.3 satisfies

Ŝn(t) = φ(−Λ̂n)(t).

32



Empirical Processes: Lecture 16 Spring, 2010

We can now use Lemma 3 to derive the asymptotic limiting distribution of√
n(Ŝn − S).

As in Section 12.2.2, we will restrict our time domain to [0, τ ], where

P (X > τ) > 0.

Under these circumstances, there exists an M <∞, such that

Λ(τ) < M and Λ̂n(τ) < M with probability tending to 1 as n→∞.
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Now Lemma 3, combined with (3) and the discussion immediately

following, yields

√
n(Ŝn − S) ; −

∫

(0,(·)]
φ(−Λ)(0, u)φ(−Λ)(u, t]

dM
Y0

= −S(t)

∫

(0,(·)]

dM
(1−∆Λ)Y0

,

whereM is a Gaussian martingale with independent increments and

covariance ∫

(0,s∧t]
(1−∆Λ)dΛ/Y0.
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Thus
√
n(Ŝn − S)/S is asymptotically time-transformed Brownian

motionW(w(t)), whereW is standard Brownian motion on [0,∞) and

where

w(t) ≡
∫

(0,t]
[(1−∆Λ)Y0]−1dΛ.

Along the lines discussed in the Nelson-Aalen example of Section 12.2.2,

the form of the limiting distribution can be used to obtain asymptotically

exact simultaneous confidence bands for S.

The delta method bootstrap, Theorem 12.1, can also be used for inference

on S.
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A key element of the proof of Lemma 3, is the following lemma which

includes the important Duhamel equation for the difference between two

product integrals:

LEMMA 4. For A,B ∈ D(0, b], we have for all 0 ≤ s < t ≤ b the

following, where M is the sum of the total variation of A and B:

(i) (the Duhamel equation)

(φ(B)−φ(A))(s, t] =

∫

(s,t]
φ(A)(0, u)φ(B)(u, t](B−A)(du).

(ii) ‖φ(A)− φ(B)‖(s,t] ≤ eM (1 +M)2‖A−B‖(s,t].
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�� ��Inversion

Recall the derivation given in the paragraphs following Theorem 2.8 of the

Hadamard derivative of the inverse of a distribution function F .

Note that this derivation did not depend on F being a distribution function

per se.

In fact, the derivation will carry through unchanged if we replace the

distribution function F with any nondecreasing, cadlag function A

satisfying mild regularity conditions.
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For a non-decreasing function B ∈ D(−∞,∞), define the

left-continuous inverse

r 7→ B−1(r) ≡ inf{x : B(x) ≥ r}.

We will hereafter use the notation D̃[u, v] to denote all left-continuous

functions with right-hand limits (caglad) on [u, v] and D1[u, v] to denote

the restriction of all non-decreasing functions in D(−∞,∞) to the

interval [u, v].

Here is a precise statement of the general Hadamard differentiation result

for non-decreasing functions:
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LEMMA 5. Let−∞ < p ≤ q <∞, and let the non-decreasing function

A ∈ D(−∞,∞) be continuously differentiable on the interval

[u, v] ≡ [A−1(p)− ε, A−1(q) + ε],

for some ε > 0, with derivative A′ being strictly positive and bounded over

[u, v].

Then the inverse map B 7→ B−1 as a map

D1[u, v] ⊂ D[u, v] 7→ D̃[p, q]

is Hadamard differentiable at A tangentially to C[u, v], with derivative

α 7→ −(α/A′) ◦ A−1.
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We now restrict ourselves to the setting where A is a distribution function

which we will now denote by F .

The following lemma provides two results similar to Lemma 5 but which

utilize knowledge about the support of the distribution function F .

Let D2[u, v] be the subset of distribution functions in D1[u, v] with

support only on [u,∞), and let D3[u, v] be the subset of distribution

functions in D2[u, v] which have support only on [u, v].
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LEMMA 6. Let F be a distribution function; we have the following:

(i) Let F ∈ D2[u,∞), for finite u, and let q ∈ (0, 1). Assume F is

continuously differentiable on the interval

[u, v] = [u, F−1(q) + ε],

for some ε > 0, with derivative f being strictly positive and bounded

over [u, v].

Then the inverse map G 7→ G−1 as a map

D2[u, v] ⊂ D[u, v] 7→ D̃(0, q]

is Hadamard differentiable at F tangentially to C[u, v].
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(ii) Let F ∈ D3[u, v], for [u, v] compact, and assume that F is

continuously differentiable on [u, v] with derivative f strictly positive

and bounded over [u, v].

Then the inverse map G 7→ G−1 as a map

D3[u, v] ⊂ D[u, v] 7→ D̃(0, 1)

is Hadamard differentiable at F tangentially to C[u, v].

In either case, the derivative is the map α 7→ −(α/f) ◦ F−1.
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As discussed in Section 2.2.4, an important application of these results is

to estimation and inference for the quantile function p 7→ F−1(p) based

on the usual empirical distribution function for i.i.d. data.

Lemma 6 is useful when some information is available on the support of

F , since it allows the range of p to extend as far as possible.
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These results are applicable to other estimators of the distribution function

F besides the usual empirical distribution, provided the standardized

estimators converge to a tight limiting process over the necessary

intervals.

Several examples of such estimators including

• the Kaplan-Meier estimator,

• the self-consistent estimator of Chang (1990) for doubly-censored

data,

• and certain estimators from dependent data

are mentioned in Kosorok (1999).
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We now apply Lemma 6 to the construction of quantile processes based

on the Kaplan-Meier estimator discussed in Section 12.2.3 above.

Since it is known that the support of a survival function is on [0,∞), we

can utilize Part (i) of this lemma.

Define the Kaplan-Meier quantile process

{ξ̂(p) ≡ F̂−1
n (p), 0 < p ≤ q},

where F̂n = 1− Ŝn, Ŝn is the Kaplan-Meier estimator, and where

0 < q < F (τ) for τ as defined in the previous section.
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Assume that F is continuously differentiable on [0, τ ] with density f

bounded below by zero and finite.

Combining the results of the previous section with Part (i) of Lemma 6 and

Theorem 2.8, we obtain

√
n(ξ̂ − ξ)(·) ;

S(ξ(·))
f(ξ(·))

∫

(0,ξ(·)]

dM
(1−∆Λ)Y0

,

in D̃(0, q], where ξ(p) ≡ ξp andM is the Gaussian martingale

described in the previous section.
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Thus
√
n(ξ̂ − ξ)f(ξ)/S(ξ) is asymptotically time-transformed Brownian

motion with time-transform w(ξ), where w is as defined in the previous

section, over the interval (0, q].

As described in Kosorok (1999), one can construct kernel estimators for

f—which can be shown to be uniformly consistent—to facilitate inference.

An alternative approach is the bootstrap which can be shown to be valid in

this setting based on Theorem 12.1.
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