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Empirical Processes: Lecture 15 Spring, 2010�� ��Bootstrap Central Limit Theorems

Recall that the multinomial bootstrap is obtained by resampling from the

data X1, . . . ,Xn, with replacement, n times to obtain a bootstrapped

sample X∗1 , . . . ,X
∗
n.

The empirical measure P̂∗n of the bootstrapped sample has the same

distribution—given the data—as the measure

P̂n ≡ n−1
n∑

i=1

WniδXi ,

where Wn ≡ (Wn1, . . . ,Wnn) is a multinomial(n, n−1, . . . , n−1)

deviate independent of the data.
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As in Section 2.2.3, let

P̂n ≡ n−1
n∑

i=1

WniδXi

and

Ĝn ≡
√
n(P̂n − Pn).
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Also recall the definitions

P̃n ≡ n−1
n∑

i=1

(ξ/ξ̄)δXi

and

G̃n ≡
√
n(µ/τ)(P̃n − Pn),

where the weights ξ1, . . . , ξn are

• i.i.d. nonnegative,

• independent of X1, . . . ,Xn,

• with mean 0 < µ <∞ and variance 0 < τ 2 <∞,

• and with ‖ξ‖2,1 <∞.
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When ξ̄ = 0, we define P̃n to be zero.

Note that the weights ξ1, . . . , ξn in this section

• must have µ subtracted from them

• and then divided by τ

before they satisfy the criteria of the multiplier weights in the previous

section.
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THEOREM 1. The following are equivalent:

(i) F is P -Donsker.

(ii) Ĝn
P
;
W
G in `∞(F) and the sequence Ĝn is asymptotically

measurable.

(iii) G̃n
P
;
ξ
G in `∞(F) and the sequence G̃n is asymptotically

measurable.
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THEOREM 2. The following are equivalent:

(i) F is P -Donsker and P ∗
[
supf∈F (f(X)− Pf)2

]
<∞.

(ii) Ĝn
as∗
;
W
G in `∞(F).

(iii) G̃n
as∗
;
ξ
G in `∞(F).
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Continuous Mapping Results for the Boot-
strap

We now assume a more general set-up, where

• X̂n is a bootstrapped process in a Banach space (D, ‖ · ‖)

• and is composed of the sample data Xn ≡ (X1, . . . ,Xn)

• and a random weight vector Mn ∈ Rn independent of Xn.

We do not require that X1, . . . ,Xn be i.i.d.
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In this section, we obtain two major continuous mapping results.

The first major result, Proposition 1, is a simple continuous mapping

results for the very special case of Lipschitz continuous maps.

It is applicable to both the in-probability or outer-almost-sure versions of

bootstrap consistency.
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An interesting special case is the map g(x) = ‖x‖.

In this case, the proposition validates the use of the bootstrap to construct

asymptotically uniformly valid confidence bands for {Pf : f ∈ F}
whenever Pf is estimated by Pnf and F is P -Donsker.

Now assume that X̂n
P
;
M
X and that the distribution of ‖X‖ is continuous.

The next lemma reveals that pr(‖X̂n‖ ≤ t|Xn) converges uniformly to

P (‖X‖ ≤ t), in probability.
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LEMMA 1. Let {Fn} and F be distribution functions on Rk, and let

S ⊂ [R ∪ {−∞,∞}]k be the set of all continuity points of F .

Then the following are equivalent:

(i) supt∈A |Fn(t)− F (t)| → 0 for all closed A ⊂ S .

(ii) suph∈BL1(Rk)

∣∣∫
Rk h(dFn − dF )

∣∣→ 0.
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The relatively straightforward proof is saved as Exercise 10.5.3.

A parallel outer almost sure result holds when X̂n
as∗
;
M
X .

The second major result, Theorem 3, is a considerably deeper result for

general continuous maps applied to bootstraps which are consistent in

probability.
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Because of this generality, we must require certain measurability

conditions on the map Mn 7→ X̂n.

Fortunately, these measurability conditions are easily satisfied when either

X̂n = Ĝn or X̂n = G̃n.

It appears that other continuous mapping results for bootstrapped

empirical processes hold, such as for bootstraps which are outer almost

surely consistent, but such results seem to be very challenging to verify.
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PROPOSITION 1. Let D and E be Banach spaces, X a tight random

variable on D, and g : D 7→ E Lipschitz continuous.

We have the following:

(i) If X̂n
P
;
M
X , then g(X̂n)

P
;
M
g(X).

(ii) If X̂n
as∗
;
M
X , then g(X̂n)

as∗
;
M
g(X).
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Proof. Let c0 <∞ be the Lipschitz constant for g, and, without loss of

generality, assume c0 ≥ 1.

Note that for any h ∈ BL1(E), the map x 7→ h(g(x)) is an element of

c0BL1(D).

Thus

sup
h∈BL1(E)

∣∣∣EMh(g(X̂n))− Eh(g(X))
∣∣∣ ≤ sup

h∈c0BL1(D)

∣∣∣EMh(X̂n)− Eh(X)
∣∣∣

= c0 sup
h∈BL1(D)

∣∣∣EMh(X̂n)− Eh(X)
∣∣∣ ,

and the desired result follows by the respective definitions of
P
;
M

and
as∗
;
M

.2
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THEOREM 3. Let g : D 7→ E be continuous at all points in D0 ⊂ D,

where D and E are Banach spaces and D0 is closed.

Assume that Mn 7→ h(X̂n) is measurable for every h ∈ Cb(D) outer

almost surely.

Then if X̂n
P
;
M
X in D, where X is tight and P∗(X ∈ D0) = 1,

g(X̂n)
P
;
M
g(X).
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�� ��The Bootstrap for Glivenko-Cantelli Classes

We now present several results for the bootstrap applied to

Glivenko-Cantelli classes.

The primary use of these results is to assist verification of consistency of

bootstrapped estimators.

The following corollary applies to a class of weighted bootstraps that

includes the Bayesian bootstrap mentioned earlier:
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COROLLARY 1. Let F be a class of measurable functions, and let ξ1, . . . ,

ξn be i.i.d. nonconstant, nonnegative random variables with 0 < Eξ <∞
and independent of X1, . . . ,Xn.

Let

P̃n ≡ n−1
n∑

i=1

(ξi/ξ̄)δXi ,

where we set P̃n = 0 when ξ̄ = 0.

Then the following are equivalent:

(i) F is strong Glivenko-Cantelli.

(ii) ‖P̃n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F <∞.
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(iii) Eξ‖P̃n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F <∞.

(iv) For every η > 0, pr
(
‖P̃n − Pn‖F > η

∣∣∣Xn
)

as∗→ 0 and

P ∗‖f − Pf‖F <∞;

(v) For every η > 0, pr
(
‖P̃n − Pn‖∗F > η

∣∣∣Xn
)

as∗→ 0 and

P ∗‖f − Pf‖F <∞, for some version of ‖P̃n − Pn‖∗F .

If in addition P (ξ = 0) = 0, then the requirement that

P ∗‖f − Pf‖F <∞

in (ii) may be dropped.
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The following theorem verifies consistency of the multinomial bootstrapped

empirical measure defined in Section 10.1.3, which we denote P̂n, when

F is strong G-C:

THEOREM 4. Let F be a class of measurable functions, and let the

multinomial vectors Wn in P̂n be independent of the data.

Then the following are equivalent:

(i) F is strong Glivenko-Cantelli;

(ii) ‖P̂n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F <∞;

(iii) EW ‖P̂n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F <∞;

(iv) For every η > 0, pr
(
‖P̂n − Pn‖F > η

∣∣∣Xn
)

as∗→ 0 and
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P ∗‖f − Pf‖F <∞;

(v) For every η > 0, pr
(
‖P̂n − Pn‖∗F > η

∣∣∣Xn
)

as∗→ 0 and

P ∗‖f − Pf‖F <∞, for some version of ‖P̂n − Pn‖∗F .
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Consider Z-estimation based on the estimating equation

θ 7→ Ψn(θ) ≡ Pnψθ,

where θ ∈ Θ ⊂ Rp and x 7→ ψθ(x) is a measurable p-vector valued

function for each θ.

This is a special case of the more general Z-estimation approach

discussed in Section 2.2.5.

Define the map

θ 7→ Ψ(θ) ≡ Pψθ,
and assume θ0 ∈ Θ satisfies Ψ(θ0) = 0.
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Let θ̂n be an approximate zero of Ψn, and let θ̂◦n be an approximate zero

of the bootstrapped estimating equation

θ 7→ Ψ◦n(θ) ≡ P◦nψθ,

where P◦n is either

• P̃n of Corollary 1, with ξ1, . . . , ξn satisfying the conditions specified

in the first paragraph of Section 10.1.3 (the multiplier bootstrap),

• or P̂n of Theorem 4 (the multinomial bootstrap).
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The goal of this section is to determine reasonably general conditions

under which
√
n(θ̂n − θ0) ; Z,

where Z is mean zero normally distributed, and

√
n(θ̂◦n − θ̂n)

P
;◦
k0Z.

Here, we use
P
;◦

to denote either
P
;
ξ

or
P
;
W

depending on which bootstrap

is being used, and

• k0 = τ/µ for the multiplier bootstrap

• while k0 = 1 for the multinomial bootstrap.
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One could also estimate the limiting variance rather than use the bootstrap,

but there are many settings, such as least absolute deviation regression,

where variance estimation may be more awkward than the bootstrap.

For theoretical validation of the bootstrap approach, we have the following

theorem, which is related to Theorem 2.11 and which utilizes some of the

bootstrap results of this chapter:
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THEOREM 5. Let Θ ⊂ Rp be open, and assume θ0 ∈ Θ satisfies

Ψ(θ0) = 0.

Also assume the following:

(A) For any sequence {θn} ∈ Θ, Ψ(θn)→ 0 implies ‖θn − θ0‖ → 0;

(B) The class {ψθ : θ ∈ Θ} is strong Glivenko-Cantelli;

(C) For some η > 0, the class F ≡ {ψθ : θ ∈ Θ, ‖θ − θ0‖ ≤ η} is

Donsker and P‖ψθ − ψθ0‖2 → 0 as ‖θ − θ0‖ → 0;

(D) P‖ψθ0‖2 <∞ and Ψ(θ) is differentiable at θ0 with nonsingular

derivative matrix Vθ0 ;

(E) Ψn(θ̂n) = oP (n−1/2) and Ψ◦n(θ̂◦n) = oP (n−1/2).
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Then

√
n(θ̂n − θ0) ; Z ∼ N

(
0, V −1

θ0
P [ψθ0ψ

T
θ0 ](V −1

θ0
)T
)

and
√
n(θ̂◦n − θ̂n)

P
;◦
k0Z.
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Condition (A) is one of several possible identifiability conditions.

Condition (B) is a sufficient condition, when combined with (A), to yield

consistency of a zero of Ψn.

This condition is generally reasonable to verify in practice.
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Condition (C) is needed for asymptotic normality of
√
n(θ̂n − θ0) and is

also not hard to verify in practice.

Condition (D) enables application of the delta method at the appropriate

juncture in the proof.

Condition (E) is a specification of the level of approximation permitted in

obtaining the zeros of the estimating equations.
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Example (Problem 10.5.5): Assume that, given the covariate Z ∈ Rp, Y

is Bernoulli with probability of success eθ
TZ/(1 + eθ

TZ), where

θ ∈ Θ = Rp and E[ZZT ] is positive definite.

Assume that we observe an i.i.d. sample (Y1, Z1), . . . , (Yn, Zn)

generated from this model with true parameter θ0 ∈ Rp.

We can show that the conditions of Theorem 5 are satisfied for

Z-estimators based on

ψθ(y, z) = Z

(
Y − eθ

TZ

1 + eθTZ

)
.
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�� ��The Functional Delta Method

We now build on the presentation of the functional delta method given in

Section 2.2.4.

Recall the concept of Hadamard differentiability.

The key result of Section 2.2.4 is that the delta method and its bootstrap

counterpart work provided the map φ is Hadamard differentiable

tangentially to a suitable set D0.
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We first discuss the two main theorems of the functional delta method,

• the functional delta method for Hadamard differentiable maps

(Theorem 2.8) and

• the conditional analog for the bootstrap (Theorem 2.9).

We then give several important examples of Hadamard differentiable maps

of use in statistics, along with specific illustrations of how those maps are

utilized.
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THEOREM 6. For normed spaces D and E, let φ : Dφ ⊂ D 7→ E be

Hadamard-differentiable at θ tangentially to D0 ⊂ D.

Assume that rn(Xn − θ) ; X for some sequence of constants

rn →∞, where Xn takes its values in Dφ, and X is a tight process

taking its values in D0.

Then

rn(φ(Xn)− φ(θ)) ; φ′θ(X).
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Proof. Consider the map

h 7→ rn(φ(θ + r−1
n h)− φ(θ)) ≡ gn(h),

and note that it is defined on the domain

Dn ≡ {h : θ + r−1
n h ∈ Dφ}

and satisfies gn(hn)→ φ′θ(h) for every hn → h ∈ D0 with hn ∈ Dn.

Thus the conditions of the extended continuous mapping theorem

(Theorem 7.24) are satisfied by g(·) = φ′θ(·).

Hence conclusion (i) of that theorem implies

gn(rn(Xn − θ)) ; φ′θ(X).2
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Before presenting the next theorem,

• define Xn(Xn) to be a sequence of random elements in a normed

space D based on the data sequence {Xn, n ≥ 1},

• and let X̂n(Xn,Wn) be a bootstrapped version of Xn based on both

the data sequence and a sequence of weights W = {Wn, n ≥ 1}.

Note that the proof of this theorem utilizes the bootstrap continuous

mapping theorem above (Theorem 3).
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THEOREM 7. For normed spaces D and E, let φ : Dφ ⊂ D 7→ E be

Hadamard-differentiable at µ tangentially to D0 ⊂ D, with derivative φ′µ.

Suppose

• Xn and X̂n have values in Dφ, with rn(Xn − µ) ; X,

• where X is tight and takes its values in D0 for some sequence of

constants 0 < rn →∞,

• the maps Wn 7→ h(X̂n) are measurable for every h ∈ Cb(D) outer

almost surely,

• and where rnc(X̂n − Xn)
P
;
W
X, for a constant 0 < c <∞.
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Then

rnc(φ(X̂n)− φ(Xn))
P
;
W
φ′µ(X).
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�� ��Delta Method Examples: Composition

Recall from Section 2.2.4 the map φ : Dφ 7→ D[0, 1], where

φ(f) = 1/f and Dφ = {f ∈ D[0, 1] : |f | > 0}.

In that section, we established that φ was Hadamard differentiable,

tangentially to D[0, 1], with derivative at θ ∈ Dφ equal to h 7→ −h/θ2.

This is a simple example of the following general composition result:
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LEMMA 2. Let

g : B ⊂ R̄ ≡ [−∞,∞] 7→ R

be differentiable with derivative continuous on all closed subsets of B, and

let

Dφ = {A ∈ `∞(X ) : {R(A)}δ ⊂ B for some δ > 0},
where X is a set, R(C) denotes the range of the function C ∈ `∞(X ),

and Dδ is the δ-enlargement of the set D.

Then A 7→ g ◦A is Hadamard-differentiable as a map from

Dφ ⊂ `∞(X ) to `∞(X ), at every A ∈ Dφ.

The derivative is given by φ′A(α) = g′(A)α, where g′ is the derivative of

g.
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Before giving the proof, we briefly return to our simple example of the

reciprocal map A 7→ 1/A.

The differentiability of this map easily generalizes from D[0, 1] to `∞(X ),

for arbitrary X , provided we restrict the domain of the reciprocal map to

Dφ = {A ∈ `∞(X ) : inf
x∈X
|A(x)| > 0}.

This follows after applying Lemma 2 to the set B = [−∞, 0) ∪ (0,∞].
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Proof of Lemma 2. Note that D = `∞(X ) in this case, and that the

tangent set for the derivative is all of D.

Let tn be any real sequence with tn → 0, let {hn} ∈ `∞(X ) be any

sequence converging to α ∈ `∞(X ) uniformly, and define

An = A+ tnhn.

Then, by the conditions of the theorem, there exists a closed B1 ⊂ B
such that {R(A) ∪R(An)}δ ⊂ B1 for some δ > 0 and all n large

enough.
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Hence

sup
x∈X

∣∣∣∣
g(A(x) + tnhn(x))− g(A(x))

tn
− g′(A(x))α(x)

∣∣∣∣→ 0,

as n→∞, since continuous functions on closed sets are bounded, and

thus g′ is uniformly continuous on B1.2
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�� ��Delta Method Example: Integration

For anM <∞ and an interval [a, b] ∈ R̄, letBVM [a, b] be the set of all

functions A ∈ D[a, b] with total variation |A(0)|+
∫

(a,b] |dA(s)| ≤M .

In this section, we consider, for given functions A ∈ D[a, b] and

B ∈ BVM [a, b] and domain DM ≡ D[a, b]×BVM [a, b], the maps

φ : DM 7→ R and ψ : DM 7→ D[a, b] defined by

φ(A,B) =

∫

(a,b]
A(s)dB(s) and ψ(A,B)(t) =

∫

(a,t]
A(s)dB(s).

(1)
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The following lemma verifies that these two maps are Hadamard

differentiable:

LEMMA 3. For each fixed M <∞, the maps φ : DM 7→ R and

ψ : DM 7→ D[a, b] defined in (1) are Hadamard differentiable at each

(A,B) ∈ DM with
∫

(a,b] |dA| <∞.

The derivatives are given by

φ′A,B(α, β) =

∫

(a,b]
Adβ +

∫

(a,b]
αdB, and

ψ′A,B(α, β)(t) =

∫

(a,t]
Adβ +

∫

(a,t]
αdB.
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Note that in the above lemma we define
∫

(a,t]
Adβ = A(t)β(t)−A(a)β(a)−

∫

(a,t]
β(s−)dA(s)

so that the integral is well defined even when β does not have bounded

variation.

We now look at a statistical applications of Lemma 3 to the two-sample

Wilcoxon rank sum statistic.

Let X1, . . . ,Xm and Y1, . . . , Yn be independent samples from

distributions F and G on the reals.
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If Fm andGn are the respective empirical distribution functions, the

Wilcoxon rank sum statistic for comparing F and G has the form

T1 = m

∫

R
(mFm(x) + nGn(x))dFm(x).

If we temporarily assume that F and G are continuous, then

T1 = mn

∫

R
Gn(x)dFm(x) +m2

∫

R
Fm(x)dFm(x)

= mn

∫

R
Gn(x)dFm(x) +

m2 +m

2

≡ mnT2 +
m2 +m

2
,

where T2 is the Mann-Whitney statistic.
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When F or G have atoms, the relationship between the Wilcoxon and

Mann-Whitney statistics is more complex.

We will now study the asymptotic properties of the Mann-Whitney version

of the rank sum statistic, T2.

For arbitrary F and G, T2 = φ(Gn,Fm), where φ is as defined in

Lemma 3.

Note that F , G, Fm andGn all have total variation ≤ 1.
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Thus Lemma 3 applies, and we obtain that the Hadamard derivative of φ

at (A,B) = (G,F ) is the map

φ′G,F (α, β) =

∫

R
Gdβ +

∫

R
αdF,

which is continuous and linear over α, β ∈ D[−∞,∞].

If we assume that m/(m+ n)→ λ ∈ [0, 1], as m ∧ n→∞, then

√
mn

m+ n


 Gn −G
Fm − F


;




√
λB1(G)

√
1− λB2(F )


 ,

where B1 and B2 are independent standard Brownian bridges.
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HenceGG(·) ≡ B1(G(·)) andGF (·) ≡ B2(F (·)) both live in

D[−∞,∞].

Now Theorem 6 yields

T2 ;
√
λ

∫

R
GdGF +

√
1− λ

∫

R
GFdG,

as m ∧ n→∞.
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When F = G and F is continuous, this limiting distribution is mean zero

normal with variance 1/12.

The delta method bootstrap, Theorem 7, is also applicable and can be

used to obtain an estimate of the limiting distribution under more general

hypotheses on F and G.
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