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�� ��Glivenko-Cantelli Preservation

In this section, we discuss methods which are useful for building up

Glivenko-Cantelli (G-C) classes from other G-C classes.

Such results can be useful for establishing consistency for Z- and M-

estimators and their bootstrapped versions.

It is clear from the definition of P -G-C classes, that if F and G are P -G-C,

then F ∪ G and any subset thereof is also P -G-C.
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The purpose of the remainder of this section is to discuss more

substantive preservation results such as the following, which is a minor

modification of Theorem 3 of van der Vaart and Wellner (2000):

THEOREM 1. Suppose that F1, . . . ,Fk are strong P -G-C classes of

functions with

max
1≤j≤k

‖P‖Fj <∞,

and that φ : Rk 7→ R is continuous.

Then the class

H ≡ φ(F1, . . . ,Fk)
is strong P -G-C provided it has an integrable envelope.
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The following are obvious consequences of this theorem:

COROLLARY 1. Let F and G be P -G-C classes with respective integrable

envelopes F and G.

Then the following are true:

(i) F + G is P -G-C.

(ii) F · G is P -G-C provided P [FG] <∞.

(iii) Let R be the union of the ranges of functions in F , and let

ψ : R 7→ R be continuous; then ψ(F) is P -G-C provided it has an

integrable envelope.
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Proof. The statement (i) is obvious.

Since (x, y) 7→ xy is continuous in R2, statement (ii) follows from

Theorem 1.

Statement (iii) also follows from the theorem since ψ has a continuous

extension to R (Hahn-Banach Theorem), ψ̃, such that

‖Pψ̃(f)‖F = ‖Pψ(f)‖F .2
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It is interesting to note that the “preservation of products” result in the

above corollary does not hold in general for Donsker classes (although it

does hold for BUEI classes).

This preservation result for G-C classes can be useful in formulating

master theorems for bootstrapped Z- and M- estimators.

Consider, for example, verifying the validity of the bootstrap for a

parametric Z-estimator θ̂n which is a zero of θ 7→ Pnψθ , for θ ∈ Θ,

where ψθ is a suitable random function.

6



Empirical Processes: Lecture 12 Spring, 2010

Let Ψ(θ) = Pψθ , where we assume that for any sequence {θn} ∈ Θ,

Ψ(θn)→ 0 implies θn → θ0 ∈ Θ (i.e., the parameter is identifiable).

Usually, to obtain consistency, it is reasonable to assume that the class

{ψθ, θ ∈ Θ) is P -G-C. Clearly, this condition is sufficient to ensure that

θ̂n
as∗→ θ0.

Now, under a few additional assumptions, the Z-estimator master theorem,

Theorem ?? can be applied, to obtain asymptotic normality of√
n(θ̂n − θ0).

7



Empirical Processes: Lecture 12 Spring, 2010

In Section 2.2.5, we made the claim that if Ψ is appropriately differentiable

and the parameter is identifiable (as defined in the previous paragraph),

sufficient additional conditions for this asymptotic normality to hold and for

the bootstrap to be valid are

• that the {ψθ : θ ∈ Θ} is strong P -G-C with supθ∈Θ P |ψθ| <∞,

• that {ψθ : θ ∈ Θ, ‖θ − θ0‖ ≤ δ} is P -Donsker for some δ > 0,

• and that P‖ψθ − ψθ0‖2 → 0 as θ → θ0.
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As we will see in Chapter 13, where we present the arguments for this

result in detail, an important step in the proof of bootstrap validity is to

show that the bootstrap estimate θ̂◦n is unconditionally consistent for θ0.

If we use a weighted bootstrap with i.i.d. non-negative weights ξ1, . . . , ξn,

which are independent of the data and which satisfy Eξ1 = 1, then

result (ii) from the above corollary tells us that

F ≡ {ξψθ : θ ∈ Θ}

is P -G-C.
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This follows since both classes of functions {ξ} (a trivial class with one

member) and {ψθ : θ ∈ Θ} are P -G-C and since the product class F
has an integral envelope by Lemma 8.13.

Note here that we are tacitly augmenting P to be the product probability

measure of both the data and the independent bootstrap weights.

We will expand on these ideas in Section 10.3 of the next chapter for the

special case where Θ ⊂ Rp and in Chapter 13 for the more general case.
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In the context of conducting uniform inference for Pf , as f ranges over a

class of functions F , the following lemma answers the question of when

the limiting covariance ofGn, indexed by F , can be consistently

estimated.

Recall that this covariance is σ(f, g) ≡ Pfg − PfPg, and its estimator

is σ̂(f, g) ≡ Pnfg − PnfPng.

Although knowledge of this covariance matrix is usually not sufficient in

itself to obtain inference on {Pf : f ∈ F}, it still provides useful

information:

LEMMA 1. Let F be Donsker. Then ‖σ̂(f, g)− σ(f, g)‖F·F as∗→ 0 if and

only if P ∗‖f − Pf‖2F <∞.
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Proof. Note that since F is Donsker, F is also G-C.

Hence Ḟ ≡ {ḟ : f ∈ F} is G-C, where for any f ∈ F , ḟ = f − Pf .

Now we first assume that P ∗‖f − Pf‖2F <∞.

By Theorem 1, Ḟ · Ḟ is also G-C.
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Uniform consistency of σ̂ now follows since, for any f, g ∈ F ,

σ̂(f, g)− σ(f, g) = (Pn − P )ḟ ġ − PnḟPnġ.

Assume next that

‖σ̂(f, g)− σ(f, g)‖F·F as∗→ 0.

This implies that Ḟ · Ḟ is G-C.

Now Lemma 8.13 implies that

P ∗‖f − Pf‖2F = P ∗‖fg‖Ḟ ·Ḟ <∞.2
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We close this section with the following theorem that provides several

interesting necessary and sufficient conditions for F to be strong G-C:

THEOREM 2. Let F be a class of measurable functions.

Then the following are equivalent:

(i) F is strong P -G-C;

(ii) E∗‖Pn − P‖F → 0 and E∗‖f − Pf‖F <∞;

(iii) ‖Pn − P‖F P→ 0 and E∗‖f − Pf‖F <∞.
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In this section, we describe several techniques for building Donsker

classes from other Donsker classes.

The first theorem, Theorem 3, gives results for subsets, pointwise closures

and symmetric convex hulls of Donsker classes.

The second theorem, Theorem 4, presents a very powerful result for

Lipschitz functions of Donsker classes.

The corollary that follows presents consequences of this theorem that are

quite useful in statistical applications.
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For a class F of real-valued, measurable functions on the sample space

X , let F (P,2)
be the set of all f : X 7→ R for which there exists a

sequence {fm} ∈ F such that fm → f both pointwise (i.e., for every

argument x ∈ X ) and in L2(P ).

Similarly, let sconv(P,2)F be the pointwise and L2(P ) closure of

sconvF defined in Section 9.1.1.
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THEOREM 3. Let F be a P -Donsker class.

Then

(i) For any G ⊂ F , G is P -Donsker.

(ii) F (P,2)
is P -Donsker.

(iii) sconv(P,2)F is P -Donsker.
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The following theorem, Theorem 2.10.6 of VW, is one of the most useful

Donsker preservation results for statistical applications:

THEOREM 4. Let F1, . . . ,Fk be Donsker classes with

max1≤i≤k ‖P‖Fi <∞.

Let φ : Rk 7→ R satisfy

|φ ◦ f(x)− φ ◦ g(x)|2 ≤ c2
k∑

i=1

(fi(x)− gi(x))2,

for every f, g ∈ F1 × · · · × Fk and x ∈ X and for some constant

c <∞.

Then φ ◦ (F1, . . . ,Fk) is Donsker provided φ ◦ f is square integrable

for at least one f ∈ F1 × · · · × Fk.
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COROLLARY 2. Let F and G be Donsker classes.

Then:

(i) F ∪ G and F + G are Donsker.

(ii) If ‖P‖F∪G <∞, then the classes of pairwise infima, F ∧ G, and

pairwise suprema, F ∨ G, are both Donsker.

(iii) IF F and G are both uniformly bounded, F · G is Donsker.

(iv) If ψ : R 7→ R is Lipschitz continuous, where R is the range of

functions in F , and ‖ψ(f)‖P,2 <∞ for at least one f ∈ F , then

ψ(F) is Donsker.

(v) If ‖P‖F <∞ and g is a uniformly bounded, measurable function,

then F · g is Donsker.
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�� ��The Bootstrap

The purpose of this chapter is to obtain consistency results for

bootstrapped empirical processes.

Much of the bootstrap results for such estimators will be deferred to later

chapters where we discuss the functional delta method, Z-estimation and

M-estimation.

We do, however, present one specialized result for parametric Z-estimators

in Section 3 of this chapter as a practical illustration of bootstrap

techniques.
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The best choice of bootstrap weights for a given statistical application is

also an important question, and the answer depends on the application.

While the multinomial bootstrap is conceptually simple, its use in survival

analysis applications may result in too much tied data.

In the presence of censoring, it is even possible that a bootstrap sample

could be drawn that consists of only censored observations.

To avoid complications of this kind, it may be better to use the Bayesian

bootstrap (Rubin, 1981).
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The weights for the Bayesian bootstrap are

ξ1/ξ̄, . . . , ξn/ξ̄,

where ξ1, . . . , ξn are i.i.d. standard exponential (mean and variance 1),

independent of the data X1, . . . ,Xn, and where ξ̄ ≡ n−1
∑n

i=1 ξi.

Since these weights are strictly positive, all observations are represented

in each bootstrap realization, and the aforementioned problem with tied

data won’t happen unless the original data has ties.

Both the multinomial and Bayesian bootstraps are included in the

bootstrap weights we discuss in this chapter.
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The multinomial weighted bootstrap is sometimes called the

nonparametric bootstrap since it amounts to sampling from the empirical

distribution, which is a nonparametric estimate of the true distribution.

We also note that the asymptotic results of this chapter are all first order,

and in this situation the limiting results do not vary among those schemes

that satisfy the stated conditions.

A more refined analysis of differences between weighting schemes is

beyond the scope of this chapter, but such differences may be important in

small samples.

A good reference for higher order properties of the bootstrap is Hall (1992).

23



Empirical Processes: Lecture 12 Spring, 2010

Throughout this chapter, we will sometimes for simplicity omit the subscript

when referring to a representative of an i.i.d. sample.

For example, we may use E|ξ| to refer to E|ξ1|, where ξ1 is the first

member of the sample ξ1, . . . , ξn.

The context will make the meaning clear.
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In this section, we present a multiplier central limit theorem that forms the

basis for the bootstrap results of this chapter, and we also present an

interesting corollary.

For a real random variable ξ, recall from Section 2.2.3 the quantity

‖ξ‖2,1 ≡
∫∞

0

√
pr(|ξ| > x)dx.

Exercise 10.5.1 below verifies this is a norm slightly larger than ‖ · ‖2.

Also recall that δXi is the probability measure that assigns a mass of 1 to

Xi so that Pn = n−1
∑n

i=1 δXi andGn = n−1/2
∑n

i=1(δXi − P ).
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THEOREM 5. (Multiplier central limit theorem) Let F be a class of

measurable functions, and let ξ1, . . . , ξn be i.i.d. random variables with

mean zero, variance 1, and with ‖ξ‖2,1 <∞, independent of the sample

data X1, . . . ,Xn.

Let

G′n ≡ n−1/2
n∑

i=1

ξi(δXi − P )

and

G′′n ≡ n−1/2
n∑

i=1

(ξi − ξ̄)δXi ,

where ξ̄ ≡ n−1
∑n

i=1 ξi.

Then the following are equivalent:
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(i) F is P -Donsker;

(ii) G′n converges weakly to a tight process in `∞(F);

(iii) G′n ; G in `∞(F);

(iv) G′′n ; G in `∞(F).
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We now present the following interesting corollary which shows the

possibly unexpected result that the multiplier empirical process is

asymptotically independent of the usual empirical process, even though

the same data X1, . . . ,Xn are used in both processes:

COROLLARY 3. Assume the conditions of Theorem 5 hold and that F is

Donsker.

Then (Gn,G′n,G′′n) ; (G,G′,G′, ) in [`∞(F)]3, whereG andG′ are

independent P -Brownian bridges.
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Proof. By the preceding theorem, the three processes are asymptotically

tight marginally and hence asymptotically tight jointly.

Since the first process is uncorrelated with the second process, the limiting

distribution of the first process is independent of the limiting distribution of

the second process.

Note that by definition,

G′n −G′′n = ξ̄Gn,

and we now have that ‖G′n −G′′n‖F
P→ 0, and thus the remainder of the

corollary follows.2
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The above multiplier processes will now be studied conditional on the data.

This yields in-probability and outer-almost-sure conditional multiplier

central limit theorems.

These results are one step closer to the bootstrap validity results of the

next section.
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For a metric space (D, d), define BL1(D) to be the space of all functions

f : D 7→ R with Lipschitz norm bounded by 1, i.e., ‖f‖∞ ≤ 1 and

|f(x)− f(y)| ≤ d(x, y) for all x, y ∈ D.

In the current set-up, D = `∞(F), for some class of measurable

functions F , and d is the corresponding uniform metric.

As we did in Section 2.2.3, we will use BL1 as shorthand for

BL1(`∞(F)).
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We now present the in-probability conditional multiplier central limit

theorem:

THEOREM 6. Let F be a class of measurable functions, and let ξ1, . . . ,

ξn be i.i.d. random variables with mean zero, variance 1, and

‖ξ‖2,1 <∞, independent of the sample data X1, . . . ,Xn.

LetG′n,G′′n and ξ̄ be as defined in Theorem 5.

Then the following are equivalent:

(i) F is Donsker;

(ii) G′n
P
;
ξ
G in `∞(F) andG′n is asymptotically measurable.

(iii) G′′n
P
;
ξ
G in `∞(F) andG′′n is asymptotically measurable.
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In the above theorem, Eξ denotes taking the expectation conditional on

X1, . . . ,Xn.

Note that for a continuous function h : `∞(F) 7→ R, if we fix

X1, . . . ,Xn, then

(a1, . . . , an) 7→ h(n−1/2
n∑

i=1

ai(δXi − P ))

is a measurable map from Rn to R, provided ‖f(X)− Pf‖∗F <∞
almost surely.

This last inequality is tacitly assumed so that the empirical processes

under investigation reside in `∞(F).
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Thus the expectation Eξ in conclusions (ii) and (iii) is proper.

The following lemma is a conditional multiplier central limit theorem for i.i.d.

Euclidean data:

LEMMA 2. Let Z1, . . . , Zn be i.i.d. Euclidean random vectors, with

EZ = 0 and E‖Z‖2 <∞, independent of the i.i.d. sequence of real

random variables ξ1, . . . , ξn with Eξ = 0 and Eξ2 = 1.

Then, conditionally on Z1, Z2, . . ., n−1/2
∑n

i=1 ξiZi ; N(0, covZ),

for almost all sequences Z1, Z2, . . ..
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Proof sketch of Theorem 6. Basically, the above lemma is used for

finite-dimensional convergence of the conditional multiplier process.

Then the multiplier CLT is used for asymptotical equicontinuity.

We now present the outer-almost-sure conditional multiplier central limit

theorem:

THEOREM 7. Assume the conditions of Theorem 6.

Then the following are equivalent:

(i) F is Donsker and P ∗‖f − Pf‖2F <∞;
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(ii) G′n
as∗
;
ξ
G in `∞(F).

(iii) G′′n
as∗
;
ξ
G in `∞(F).
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Theorems 6 and 7 will now be used to prove Theorems 8 and 9 from

Page 38 of Section 2.2.3. Recall that the multinomial bootstrap is obtained

by resampling from the data X1, . . . ,Xn, with replacement, n times to

obtain a bootstrapped sample X∗1 , . . . ,X
∗
n. The empirical measure P̂∗n of

the bootstrapped sample has the same distribution—given the data—as

the measure P̂n ≡ n−1
∑n

i=1WniδXi , where

Wn ≡ (Wn1, . . . ,Wnn) is a multinomial(n, n−1, . . . , n−1) deviate

independent of the data. As in Section 2.2.3, let

P̂n ≡ n−1
∑n

i=1WniδXi and Ĝn ≡
√
n(P̂n − Pn). Also recall the

definitions P̃n ≡ n−1
∑n

i=1(ξ/ξ̄)δXi and G̃n ≡
√
n(µ/τ)(P̃n − Pn),

where the weights ξ1, . . . , ξn are i.i.d. nonnegative, independent of

X1, . . . ,Xn, with mean 0 < µ <∞ and variance 0 < τ 2 <∞, and

with ‖ξ‖2,1 <∞. When ξ̄ = 0, we define P̃n to be zero. Note that the
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weights ξ1, . . . , ξn in this section must have µ subtracted from them and

then divided by τ before they satisfy the criteria of the multiplier weights in

the previous section.

THEOREM 8. The following are equivalent:

(i) F is P -Donsker.

(ii) Ĝn
P
;
W
G in `∞(F) and the sequence Ĝn is asymptotically

measurable.

(iii) G̃n
P
;
ξ
G in `∞(F) and the sequence G̃n is asymptotically

measurable.

Proof of Theorem 8 (Page 38). The equivalence of (i) and (ii) follows from

Theorem 3.6.1 of VW, which proof we omit. We note, however, that a key

component of this proof is a clever approximation of the multinomial

weights with i.i.d. Poisson mean 1 weights. We will use this approximation
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in our proof of Theorem ?? below.

We now prove the equivalence of (i) and (iii). Let ξ◦i ≡ τ−1(ξi − µ),

i = 1, . . . , n, and defineG◦n ≡ n−1/2
∑n

i=1(ξ◦i − ξ̄◦)δXi , where

ξ̄◦ ≡ n−1
∑n

i=1 ξ
◦
i . The basic idea is to show the asymptotic

equivalence of G̃n andG◦n. Then Theorem 6 can be used to establish the

desired result. Accordingly,

G◦n − G̃n =

(
1− µ

ξ̄

)
G◦n =

(
ξ̄

µ
− 1

)
G̃n. (1)

First, assume that F is Donsker. Since the weights ξ◦1 , . . . , ξ
◦
n satisfy the

conditions of the unconditional multiplier central limit theorem, we have

thatG◦n ; G. Theorem 6 also implies thatG◦n
P
;
ξ
G. Now (1) can be

applied to verify that ‖G̃n −G◦n‖F
P→ 0, and thus G̃n is asymptotically
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measurable and

sup
h∈BL1

∣∣∣Eξh(G◦n)− Eξh(G̃n)
∣∣∣ P→ 0.

Thus (i)⇒(iii).

Second, assume that G̃n
P
;
ξ
G. It is not hard to show, arguing as we did in

the proof of Theorem 6 for the implication (ii)⇒(i), that G̃n ; G in

`∞(F) unconditionally. By applying (1) again, we now have that

‖G◦n − G̃n‖F
P→ 0, and thusG◦n ; G in `∞(F) unconditionally. The

unconditional multiplier central limit theorem now verifies that F is

Donsker, and thus (iii)⇒(i).2

THEOREM 9. The following are equivalent:

(i) F is P -Donsker and P ∗
[
supf∈F (f(X)− Pf)2

]
<∞.
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(ii) Ĝn
as∗
;
W
G in `∞(F).

(iii) G̃n
as∗
;
ξ
G in `∞(F).

Proof of Theorem 9 (Page 40). The equivalence of (i) and (ii) follows from

Theorem 3.6.2 of VW, which proof we again omit. We now prove the

equivalence of (i) and (iii).

First, assume (i). ThenG◦n
as∗
;
ξ
G by Theorem 7. Fix ρ > 0, and note that

by using the first equality in (1), we have for any h ∈ BL1 that
∣∣∣h(G̃n)− h(G◦n)

∣∣∣ ≤ 2× 1

{∣∣∣∣1−
µ

ξ̄

∣∣∣∣ > ρ

}
+ (ρ‖G◦n‖F ) ∧ 1.(2)

The first term on the right
as∗→ 0. Since the map ‖ · ‖F ∧ 1 : `∞(F) 7→ R

is in BL1, we have by Theorem 7 that

Eξ [(ρ‖G◦n‖F ) ∧ 1]
as∗→ E [‖ρG‖F ∧ 1]. Let the sequence 0 < ρn ↓ 0
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converge slowly enough so that that the first term on the right in (2)
as∗→ 0

after replacing ρ with ρn. Since E [‖ρnG‖F ∧ 1]→ 0, we can apply Eξ
to both sides of (2)—after replacing ρ with ρn—to obtain

sup
h∈BL1

∣∣∣h(G̃n)− h(G◦n)
∣∣∣ as∗→ 0.

Combining the fact that h(G◦n)∗ − h(G◦n)∗
as∗→ 0 with additional

applications of (2) yields h(G̃n)∗ − h(G̃n)∗
as∗→ 0. Since h was arbitrary,

we have established that G̃n
as∗
;
ξ
G, and thus (iii) follows.

Second, assume (iii). Fix ρ > 0, and note that by using the second

equality in (1), we have for any h ∈ BL1 that
∣∣∣h(G◦n)− h(G̃n)

∣∣∣ ≤ 2× 1

{∣∣∣∣
ξ̄

µ
− 1

∣∣∣∣ > ρ

}
+
(
ρ‖G̃n‖F

)
∧ 1.

Since the first term on the right
as∗→ 0, we can use virtually identical
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arguments to those used in the previous paragraph—but with the roles of

G◦n and G̃n reversed—to obtain thatG◦n
as∗
;
ξ
G. Now Theorem 7 yields that

F is Donsker, and thus (i) follows.2
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Continuous Mapping Results for the Boot-
strap

We now assume a more general set-up, where X̂n is a bootstrapped

process in a Banach space (D, ‖ · ‖) and is composed of the sample data

Xn ≡ (X1, . . . ,Xn) and a random weight vector Mn ∈ Rn
independent of Xn. We do not require that X1, . . . ,Xn be i.i.d. In this

section, we obtain two continuous mapping results. The first result,

Proposition 1, is a simple continuous mapping results for the very special

case of Lipschitz continuous maps. It is applicable to both the in-probability

or outer-almost-sure versions of bootstrap consistency. An interesting

special case is the map g(x) = ‖x‖. In this case, the proposition

validates the use of the bootstrap to construct asymptotically uniformly

valid confidence bands for {Pf : f ∈ F} whenever Pf is estimated by

Pnf and F is P -Donsker. Now assume that X̂n
P
;
M
X and that the
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distribution of ‖X‖ is continuous. Lemma 3 towards the end of this section

reveals that pr(‖X̂n‖ ≤ t|Xn) converges uniformly to P (‖X‖ ≤ t), in

probability. A parallel outer almost sure result holds when X̂n
as∗
;
M
X .

The second result, Theorem 10, is a considerably deeper result for general

continuous maps applied to bootstraps which are consistent in probability.

Because of this generality, we must require certain measurability

conditions on the map Mn 7→ X̂n. Fortunately, based on the discussion

in the paragraph following Theorem 6 above, these measurability

conditions are easily satisfied when either X̂n = Ĝn or X̂n = G̃n. It

appears that other continuous mapping results for bootstrapped empirical

processes hold, such as for bootstraps which are outer almost surely

consistent, but such results seem to be very challenging to verify.

PROPOSITION 1. Let D and E be Banach spaces, X a tight random

variable on D, and g : D 7→ E Lipschitz continuous. We have the
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following:

(i) If X̂n
P
;
M
X , then g(X̂n)

P
;
M
g(X).

(ii) If X̂n
as∗
;
M
X , then g(X̂n)

as∗
;
M
g(X).

Proof. Let c0 <∞ be the Lipschitz constant for g, and, without loss of

generality, assume c0 ≥ 1. Note that for any h ∈ BL1(E), the map

x 7→ h(g(x)) is an element of c0BL1(D). Thus

sup
h∈BL1(E)

∣∣∣EMh(g(X̂n))− Eh(g(X))
∣∣∣ ≤ sup

h∈c0BL1(D)

∣∣∣EMh(X̂n)− Eh(X)
∣∣∣

= c0 sup
h∈BL1(D)

∣∣∣EMh(X̂n)− Eh(X)
∣∣∣ ,

and the desired result follows by the respective definitions of
P
;
M

and
as∗
;
M

.2

THEOREM 10. Let g : D 7→ E be continuous at all points in D0 ⊂ D,
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where D and E are Banach spaces and D0 is closed. Assume that

Mn 7→ h(X̂n) is measurable for every h ∈ Cb(D) outer almost surely.

Then if X̂n
P
;
M
X in D, where X is tight and P∗(X ∈ D0) = 1,

g(X̂n)
P
;
M
g(X).

Proof. As in the proof of the implication (ii)⇒(i) of Theorem 6, we can

argue that X̂n ; X unconditionally, and thus g(X̂n) ; g(X)

unconditionally by the standard continuous mapping theorem. Moreover,

we can replace E with its closed linear span so that the restriction of g to

D0 has an extension g̃ : D 7→ E which is continuous on all of D by

Dugundji’s extension theorem (Theorem 11 below). Thus

(g(X̂n), g̃(X̂n)) ; (g(X), g̃(X)), and hence g(X̂n)− g̃(X̂n)
P→ 0.

Therefore we can assume without loss of generality that g is continuous on

all of D. We can also assume without loss of generality that D0 is a
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separable Banach space since X is tight. Hence E0 ≡ g(D0) is also a

separable Banach space.

Fix ε > 0. There now exists a compact K ⊂ E0 such that

pr(g(X) 6∈ K) < ε. By Theorem 12 below, the proof of which is given in

Section 10.4, we know there exists an integer k <∞, elements

z1, . . . , zk ∈ C[0, 1], continuous functions f1, . . . , fk : E 7→ R, and a

Lipschitz continuous function J : lin(z1, . . . , zk) 7→ E, such that the map

x 7→ Tε(x) ≡ J
(∑k

j=1 zjfj(x)
)

has domain E and range⊂ E and

satisfies supx∈K ‖Tε(x)− x‖ < ε. Let BL1 ≡ BL1(E). We now
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have

sup
h∈BL1

∣∣∣EMh(g(X̂n))− Eh(g(X))
∣∣∣

≤ sup
h∈BL1

∣∣∣EMh(Tεg(X̂n))− Eh(Tεg(X))
∣∣∣

+EM
{∥∥∥Tεg(X̂n)− g(X̂n)

∥∥∥ ∧ 2
}

+ E {‖Tεg(X)− g(X)‖ ∧ 2} .

However, the outer expectation of the second term on the right converges

to the third term, as n→∞, by the usual continuous mapping theorem.

Thus, provided

sup
h∈BL1

∣∣∣EMh(Tεg(X̂n))− Eh(Tεg(X))
∣∣∣ P→ 0, (3)
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we have that

lim sup
n→∞

E∗
{

sup
h∈BL1

∣∣∣EMh(g(X̂n))− Eh(g(X))
∣∣∣
}

(4)

≤ 2E {‖Tεg(X)− g(X)‖ ∧ 2}
≤ 2E ‖{Tεg(X)− g(X)} 1{g(X) ∈ K}‖+ 4pr(g(X) 6∈ K)

< 6ε.

Now note that for each h ∈ BL1,

h
(
J
(∑k

j=1 zjaj

))
= h̃(a1, . . . , ak) for all (a1, . . . , ak) ∈ Rk and

some h̃ ∈ c0BL1(Rk), where 1 ≤ c0 <∞ (this follows since J is

Lipschitz continuous and
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∥∥∥
∑k

j=1 zjaj

∥∥∥ ≤ max1≤j≤k |aj | ×
∑k

j=1 ‖zj‖). Hence

sup
h∈BL1

∣∣∣EMh(Tεg(X̂n))− Eh(Tεg(X))
∣∣∣ (5)

≤ sup
h∈c0BL1(Rk)

∣∣∣EMh(u(X̂n))− Eh(u(X))
∣∣∣

= c0 sup
h∈BL1(Rk)

∣∣∣EMh(u(X̂n))− Eh(u(X))
∣∣∣ ,

where x 7→ u(x) ≡ (f1(g(x)), . . . , fk(g(x))). Fix any

v : Rk 7→ [0, 1] which is Lipschitz continuous (the Lipschitz constant may

be > 1). Then, since X̂n ; X unconditionally,

E∗
{

EMv(u(X̂n))∗ − EMv(u(X̂n))∗
}
≤

E∗
{
v(u(X̂n))∗ − v(u(X̂n))∗

}
→ 0, where sub- and super- script ∗

denote measurable majorants and minorants, respectively, with respect to
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the joint probability space of (Xn,Mn). Thus
∣∣∣EMv(u(X̂n))− EMv(u(X̂n))∗

∣∣∣ P→ 0. (6)

Note that we are using at this point the outer almost sure measurability of

Mn 7→ v(u(X̂n)) to ensure that EMv(u(X̂n)) is well defined, even if

the resulting random expectation is not itself measurable.

Now, for every subsequence n′, there exists a further subsequence n′′

such that X̂n′′
as∗
;
M
X . This means that for this subsequence, the set B of

data subsequences {Xn′′ : n ≥ 1} for which

EMv(u(X̂n′′))− Ev(u(X))→ 0 has inner probability 1. Combining

this with (6) and Proposition ??, we obtain that

EMv(u(X̂n))− Ev(u(X))
P→ 0. Since v was an arbitrary real,

Lipschitz continuous function on Rk, we now have by Part (i) of Lemma 3
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below followed by Lemma 4 below, that

sup
h∈BL1(Rk)

∣∣∣EMh(u(X̂n))− Eh(u(X))
∣∣∣ P→ 0.

Combining this with (5), we obtain that (3) is satisfied. The desired result

now follows from (4), since ε > 0 was arbitrary.2

THEOREM 11. (Dugundji’s extension theorem) Let X be an arbitrary

metric space, A a closed subset of X , L a locally convex linear space

(which includes Banach vector spaces), and f : A 7→ L a continuous

map. Then there exists a continuous extension of f , F : X 7→ L.

Moreover, F (X) lies in the closed linear span of the convex hull of f(A).

Proof. This is Theorem 4.1 of Dugundji (1951), and the proof can be found

therein.2

THEOREM 12. Let E0 ⊂ E be Banach spaces with E0 separable and

linE0 ⊂ E. Then for every ε > 0 and every compact K ⊂ E0, there
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exists an integer k <∞, elements z1, . . . , zk ∈ C[0, 1], continuous

functions f1, . . . , fk : E 7→ R, and a Lipschitz continuous function

J : lin(z1, . . . , zk) 7→ E, such that the map

x 7→ Tε(x) ≡ J
(∑k

j=1 zjfj(x)
)

has domain E and range⊂ E, is

continuous, and satisfies supx∈K ‖Tε(x)− x‖ < ε.

The proof of this theorem is given in Section 10.4. For the next two

lemmas, we use the usual partial ordering on Rk to define relations

between points, e.g., for any s, t ∈ Rk , s ≤ t is equivalent to

s1 ≤ t1, . . . , sk ≤ tk.

LEMMA 3. Let Xn and X be random variables in Rk for all n ≥ 1. Define

S ⊂ [R ∪ {−∞,∞}]k to be the set of all continuity points of

t 7→ F (t) ≡ pr(X ≤ t) and H to be the set of all Lipschitz continuous

functions h : Rk 7→ [0, 1] (the Lipschitz constants may be > 1). Then,

provided the expectations are well defined, we have:
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(i) If E[h(Xn)|Yn]
P→ Eh(X) for all h ∈ H , then

supt∈A |pr(Xn ≤ t|Yn)− F (t)| P→ 0 for all closed A ⊂ S ;

(ii) If E[h(Xn)|Yn]
as∗→ Eh(X) for all h ∈ H , then

supt∈A |pr(Xn ≤ t|Yn)− F (t)| as∗→ 0 for all closed A ⊂ S .

Proof. Let t0 ∈ S . For every δ > 0, there exists h1, h2 ∈ H , such that

h1(u) ≤ 1{u ≤ t0} ≤ h2(u) for all u ∈ Rk and

E[h2(X)− h1(X)] < δ. Under the condition in (i), we therefore have

that pr(Xn ≤ t0|Yn)
P→ F (t0), since δ was arbitrary. The conclusion

of (i) follows since this convergence holds for all t0 ∈ S , since both

pr(Xn ≤ t|Yn) and F (t) are monotone in t with range⊂ [0, 1], and

since [0, 1] is compact. The proof for Part (ii) follows similarly.2

LEMMA 4. Let {Fn} and F be distribution functions on Rk, and let

S ⊂ [R ∪ {−∞,∞}]k be the set of all continuity points of F . Then the
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following are equivalent:

(i) supt∈A |Fn(t)− F (t)| → 0 for all closed A ⊂ S .

(ii) suph∈BL1(Rk)

∣∣∫
Rk h(dFn − dF )

∣∣→ 0.

The relatively straightforward proof is saved as Exercise 10.5.3.
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