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Let 1{C} denote the collection of all indicator functions of sets in the class

C.

The following theorem gives a bound on the Lr covering numbers of

1{C}:
THEOREM 1. There exists a universal constant K <∞ such that for any

VC-class of sets C, any r ≥ 1, and any 0 < ε < 1,

N(ε, 1{C}, Lr(Q)) ≤ KV (C)(4e)V (C)
(

1

ε

)r(V (C)−1)

.

This is Theorem 2.6.4 of VW, and we omit the proof.
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Since F = 1 serves as an envelope for 1{C}, we have as an immediate

corollary that, for

F = 1{C}, sup
Q
N(ε‖F‖1,Q,F , L1(Q)) <∞

and

J(1,F , L2) .
∫ 1

0

√
log(1/ε)dε =

∫ ∞

0
u1/2e−udu ≤ 1,

where the supremum is over all finite probability measures Q with

‖F‖Q,2 > 0.
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Thus the uniform entropy conditions required in the G-C and Donsker

theorems of the previous chapter are satisfied for indicators of VC-classes

of sets.

Since the constant 1 serves as a universally applicable envelope function,

these classes of indicator functions are therefore G-C and Donsker,

provided the requisite measurability conditions hold.
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For a function f : X 7→ R, the subset of X × R given by

{(x, t) : t < f(x)} is the subgraph of f .

A collection F of measurable real functions on the sample space X

• is a VC-subgraph class or VC-class (for short),

• if the collection of all subgraphs of functions in F forms a VC-class of

sets (as sets in X × R).

Let V (F) denote the VC-index of the set of subgraphs of F .
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VC-classes of functions grow at a polynomial rate just like VC-classes of

sets:

THEOREM 2. There exists a universal constant K <∞ such that, for any

VC-class of measurable functions F with integrable envelope F , any

r ≥ 1, any probability measureQ with ‖F‖Q,r > 0, and any 0 < ε < 1,

N(ε‖F‖Q,r,F , Lr(Q)) ≤ KV (F)(4e)V (F)

(
2

ε

)r(V (F)−1)

.

Thus VC-classes of functions easily satisfy the uniform entropy

requirements of the G-C and Donsker theorems of the previous chapter.
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A related kind of function class is the VC-hull class.

A class of measurable functions G is a VC-hull class if there exists a

VC-class F such that

• each f ∈ G is the pointwise limit of a sequence of functions {fm}

• in the symmetric convex hull of F (denoted sconvF ).

A function f is in sconvF if f =
∑m

i=1 αifi, where the αis are real

numbers satisfying
∑m

i=1 |αi| ≤ 1 and the fis are in F .
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The convex hull of a class of functions F , denoted convF , is similarly

defined but with the requirement that the αi’s are positive.

We use convF to denote pointwise closure of convF and sconvF to

denote the pointwise closure of sconvF .

Thus the class of functions F is a VC-hull class if F = sconvG for some

VC-class G.

8



Empirical Processes: Lecture 12 Spring, 2010

THEOREM 3. Let Q be a probability measure on (X ,A), and let F be a

class of measurable functions with measurable envelope F , such that

QF 2 <∞ and, for 0 < ε < 1,

N(ε‖F‖Q,2,F , L2(Q)) ≤ C
(

1

ε

)V
,

for constants C, V <∞ (possibly dependent on Q).

Then there exist a constant K depending only on V and C such that

logN(ε‖F‖Q,2, convF , L2(Q)) ≤ K
(

1

ε

)2V/(V+2)

.

This is Theorem 2.6.9 of VW, and we omit the proof.

9



Empirical Processes: Lecture 12 Spring, 2010

It is not hard to verify that sconvF is a subset of the convex hull of

F ∪ {−F} ∪ {0}, where−F ≡ {−f : f ∈ F} (see Exercise 9.6.1

below).

Since the covering numbers of F ∪ {−F} ∪ {0} are at most one plus

twice the covering numbers of F , the conclusion of Theorem 3 also holds

if convF is replaced with sconvF .
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This leads to the following easy corollary for VC-hull classes:

COROLLARY 1. For any VC-hull class F of measurable functions and all

0 < ε < 1,

sup
Q

logN(ε‖F‖Q,2,F , L2(Q)) ≤ K
(

1

ε

)2−2/V

, 0 < ε < 1,

where

• the supremum is taken over all probability measures Q with

‖F‖Q,2 > 0,

• V is the VC-index of the VC-subgraph class associated with F ,

• and the constant K <∞ depends only on V .
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We now present several important examples and results about VC-classes

of sets and both VC-subgraph and VC-hull classes of functions.

LEMMA 1. Let F be a finite-dimensional vector space of measurable

functions f : X 7→ R.

Then F is VC-subgraph with V (F) ≤ dim(F) + 2.

The next three lemmas consist of useful tools for building VC-classes from

other VC-classes.
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LEMMA 2. • Let C andD be VC-classes of sets in a set X ,

• with respective VC-indices VC and VD ;

• and let E be a VC-class of sets inW , with VC-index VE .

• Also let φ : X 7→ Y and ψ : Z 7→ X be fixed functions.

Then

(i) Cc ≡ {Cc : C ∈ C} is VC with V (Cc) = V (C);

(ii) C u D ≡ {C ∩D : C ∈ C, D ∈ D} is VC with index

≤ VC + VD − 1;

(iii) C t D ≡ {C ∪D : C ∈ C, D ∈ D} is VC with index

≤ VC + VD − 1;

(iv) D × E is VC in X ×W with VC index≤ VD + VE − 1;
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(v) φ(C) is VC with index VC if φ is one-to-one;

(vi) ψ−1(C) is VC with index≤ VC .
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LEMMA 3. For any class C of sets in a set X , the class FC of indicator

functions of sets in C is VC-subgraph if and only if C is a VC-class.

Moreover, whenever at least one of C or FC is VC, the respective

VC-indices are equal.
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Proof. LetD be the collection of sets of the form

{(x, t) : t < 1{x ∈ C}}

for all C ∈ C.

Suppose thatD is VC, and let k = V (D).

Then no set of the form {(x1, 0), . . . , (xk, 0)} can be shattered byD,

and hence V (C) ≤ V (D).
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Now suppose that C is VC with VC-index k.

Since for any t < 0, 1{x ∈ C} > t for all x and all C , we have that no

collection

{(x1, t1), . . . , (xk, tk)}
can be shattered byD if any of the tjs are < 0.

It is similarly true that no collection

{(x1, t1), . . . , (xk, tk)}

can be shattered byD if any of the tjs are≥ 1, since 1{x ∈ C} > t is

never true when t ≥ 1.
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It can now be deduced that

{(x1, t1), . . . , (xk, tk)}

can only be shattered if

{(x1, 0), . . . , (xk, 0)}

can be shattered.

But this can only happen if {x1, . . . , xk} can be shattered by C.

Thus V (D) ≤ V (C).2
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LEMMA 4. Let F and G be VC-subgraph classes of functions on a set X ,

with respective VC indices VF and VG .

Let g : X 7→ R, φ : R 7→ R, and ψ : Z 7→ X be fixed functions.

Then

(i) F ∧ G ≡ {f ∧ g : f ∈ F , g ∈ G} is VC-subgraph with index

≤ VF + VG − 1;

(ii) F ∨ G is VC with index≤ VF + VG − 1;

(iii) {F > 0} ≡ {{f > 0} : f ∈ F} is a VC-class of sets with index

VF ;

(iv) −F is VC-subgraph with index VF ;
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(v) F + g ≡ {f + g : f ∈ F} is VC with index VF ;

(vi) F · g ≡ {fg : f ∈ F} is VC with index≤ 2VF − 1;

(vii) F ◦ ψ ≡ {f(ψ) : f ∈ F} is VC with index≤ VF ;

(viii) φ ◦ F is VC with index≤ VF for monotone φ.
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The next two lemmas refer to properties of monotone processes and

classes of monotone functions.

LEMMA 5. Let {X(t), t ∈ T} be a monotone increasing stochastic

process, where T ⊂ R.

Then X is VC-subgraph with index V (X) = 2.
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Proof. Let X be the set of all monotone increasing functions g : T 7→ R;

and for any s ∈ T and x ∈ X , define (s, x) 7→ fs(x) = x(s).

Thus the proof is complete if we can show that the class of functions

F ≡ {fs : s ∈ T} is VC-subgraph with VC index 2.

Now let (x1, t1), (x2, t2) be any two points in X × R.

F shatters (x1, t1), (x2, t2) if the graph G of (fs(x1), fs(x2)) in R2

“surrounds” the point (t1, t2) as s ranges over T .
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By surrounding a point (a, b) ∈ R2, we mean that the graph must pass

through all four of the sets {(u, v) : u ≤ a, v ≤ b},
{(u, v) : u > a, v ≤ b}, {(u, v) : u ≤ a, v > b} and

{(u, v) : u > a, v > b}.

By the assumed monotonicity of x1 and x2, the graph G forms a

monotone curve in R2, and it is thus impossible for it to surround any point

in R2.

Thus (x1, t1), (x2, t2) cannot be shattered by F , and the desired result

follows.2
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LEMMA 6. The set F of all monotone functions f : R 7→ [0, 1] satisfies

sup
Q

logN(ε,F , L2(Q)) ≤ K

ε
, 0 < ε < 1,

where the supremum is taken over all probability measures Q, and the

constant K <∞ is universal.
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Recall for a class of measurable functions F , with envelope F , the

uniform entropy integral

J(δ,F , L2) ≡
∫ δ

0

√
sup
Q

logN(ε‖F‖Q,2,F , L2(Q))dε,

where the supremum is taken over all finitely discrete probability measures

Q with ‖F‖Q,2 > 0.

Note the dependence on choice of envelope F .

This is crucial since there are many random functions which can serve as

an envelope.
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For example, if F is an envelope, then so is F + 1 and 2F .

One must allow that different envelopes may be needed in different

settings.

We say that the class F has bounded uniform entropy integral (BUEI) with

envelope F—or is BUEI with envelope F—if J(1,F , L2) <∞ for that

particular choice of envelope.
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Theorem 2 tells us that a VC-class F is automatically BUEI with any

envelope.

We leave it as an exercise to show that if F and G are BUEI with

respective envelopes F andG, then F tG is BUEI with envelope F ∨G.
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LEMMA 7. Let F1, . . . ,Fk be BUEI classes with respective envelopes

F1, . . . , Fk , and let φ : Rk 7→ R satisfy

|φ ◦ f(x)− φ ◦ g(x)|2 ≤ c2
k∑

j=1

(fj(x)− gj(x))2 , (1)

for every f, g ∈ F1 × · · · × Fk and x for a constant 0 < c <∞.

Then the class φ ◦ (F1, . . . ,Fk) is BUEI with envelope

H ≡ |φ(f0)|+ c

k∑

j=1

(|f0j |+ Fj),

where f0 ≡ (f01, . . . , f0k) is any function in F1 × · · · × Fk, and where

φ ◦ (F1, . . . ,Fk) is as defined in Lemma 8.10.
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Some useful consequences of Lemma 7 are given in the following lemma:

LEMMA 8. Let F and G be BUEI with respective envelopes F and G, and

let φ : R 7→ R be a Lipschitz continuous function with Lipschitz constant

0 < c <∞.

Then

(i) F ∧ G is BUEI with envelope F +G;

(ii) F ∨ G is BUEI with envelope F +G;

(iii) F + G is BUEI with envelope F +G;

(iv) φ(F) is BUEI with envelope |φ(f0)|+ c(|f0|+ F ), provided

f0 ∈ F .
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Most of the BUEI preservation results we give in this section have parallel

Donsker preservation properties.

An important exception, and one which is perhaps the primary justification

for the use of BUEI preservation techniques, applies to products of

Donsker classes.

As verified in the following theorem, the product of two BUEI classes is

BUEI, whether or not the two classes involved are bounded:

THEOREM 4. Let F and G be BUEI classes with respective envelopes F

and G.
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Then

F · G ≡ {fg : f ∈ F , g ∈ G}
is BUEI with envelope FG.

In order for BUEI results to be useful for obtaining Donsker results, it is

necessary that sufficient measurability be established so that

Theorem 8.19 can be used.

Pointwise measurability (PM) is sufficient measurability for this purpose.
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Since there are significant similarities between PM preservation and BUEI

preservation results, one can construct useful joint PM and BUEI

preservation results:

LEMMA 9. Let the classes F1, . . . ,Fk be both BUEI and PM with

respective envelopes F1, . . . , Fk , and let φ : Rk 7→ R satisfy (1) for

every

f, g ∈ F1 × · · · × Fk
and x for a constant 0 < c <∞.

Then the class φ ◦ (F1, . . . ,Fk) is both BUEI and PM with envelope

H ≡ |φ(f0)|+ c

k∑

j=1

(|f0j |+ Fj),

where f0 is any function in F1 × · · · × Fk.
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LEMMA 10. Let the classes F and G be both BUEI and PM with

respective envelopes F and G, and let φ : R 7→ R be a Lipschitz

continuous function with Lipschitz constant 0 < c <∞.

Then

(i) F ∪ G is both BUEI and PM with envelope F ∨G;

(ii) F ∧ G is both BUEI and PM with envelope F +G;

(iii) F ∨ G is both BUEI and PM with envelope F +G;

(iv) F + G is both BUEI and PM with envelope F +G;

(v) F · G is both BUEI and PM with envelope FG;

(vi) φ(F) is both BUEI and PM with envelope |φ(f0)|+ c(|f0|+ F ),

where f0 ∈ F .

33



Empirical Processes: Lecture 12 Spring, 2010

If a class of measurable functions F is both BUEI and PM with

envelope F , then Theorem 8.19 implies that F is P -Donsker whenever

P ∗F 2 <∞.

Note that we have somehow avoided discussing preservation for subsets

of classes.

This is because it is unclear whether a subset of a PM class F is itself a

PM class.
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The difficulty is that while F may have a countable dense subset G (dense

in terms of pointwise convergence), it is unclear whether any arbitrary

subsetH ⊂ F also has a suitable countable dense subset.

An easy way around this problem is to use various preservation results to

establish that F is P -Donsker, and then it follows directly that anyH ⊂ F
is also P -Donsker by the definition of weak convergence.
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We now present several useful bracketing entropy results for certain

function classes as well as a few preservation results.

We first mention that bracketing numbers are in general larger than

covering numbers, as verified in the following lemma:

LEMMA 11. Let F be any class of real function on X and ‖ · ‖ any norm

on F .

Then

N(ε,F , ‖ · ‖) ≤ N[](ε,F , ‖ · ‖)
for all ε > 0.
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Proof. Fix ε > 0, and let B be collection of ε-brackets that covers F .

From each bracket B ∈ B, take a function g(B) ∈ B ∩F to form a finite

collection of functions G ⊂ F of the same cardinality as B consisting of

one function from each bracket in B.

Now every f ∈ F lies in a bracket B ∈ B such that ‖f − g(B)‖ ≤ ε by

the definition of an ε-bracket.

Thus G is an ε cover of F of the same cardinality as B. The desired

conclusion now follows.2
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The first substantive bracketing entropy result we present considers

classes of smooth functions on a bounded set X ⊂ Rd.

For any vector k = (k1, . . . , kd) of nonnegative integers define the

differential operator

Dk ≡ ∂|k|

(∂xk1
1 , . . . , ∂x

kd
d )

,

where |k| ≡ k1 + · · ·+ kd.

As defined previously, let bxc be the largest integer j ≤ x, for any x ∈ R.
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For any function f : X 7→ R and α > 0, define the norm

‖f‖α ≡ max
k:|k|≤bαc

sup
x
|Dkf(x)|+ max

k:|k|=bαc
sup
x,y

|Dkf(x)−Dkf(y)|
‖x− y‖α−bαc ,

where the suprema are taken over x 6= y in the interior of X .

When k = 0, we set Dkf = f .

Now let CαM (X ) be the set of all continuous functions f : X 7→ R with

‖f‖α ≤M .

Recall that for a set A in a metric space, diamA = supx,y∈A d(x, y).
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THEOREM 5. Let X ⊂ Rd be bounded and convex with nonempty interior.

There exists a constant K <∞ depending only on α, diamX , and d

such that

logN[](ε, C
α
1 (X ), Lr(Q)) ≤ K

(
1

ε

)d/α
,

for every r ≥ 1, ε > 0, and any probability measure Q on Rd.
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We now consider several results for Lipschitz and Sobolev function

classes.

We first present the results for covering numbers based on the uniform

norm and then present the relationship to bracketing entropy:

THEOREM 6. For a compact, convex subset C ⊂ Rd, let F be the class

of all convex functions f : C 7→ [0, 1] with |f(x)− f(y)| ≤ L‖x− y‖
for every x, y.

For some integer m ≥ 1, let G be the class of all functions

g : [0, 1] 7→ [0, 1] with
∫ 1

0 [g(m)(x)]2dx ≤ 1, where superscript (m)

denotes the m’th derivative.
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Then

logN(ε,F , ‖ · ‖∞) ≤ K(1 + L)d/2
(

1

ε

)d/2
, and

logN(ε,G, ‖ · ‖∞) ≤ M

(
1

ε

)1/m

,

where ‖ · ‖∞ is the uniform norm and the constant K <∞ depends only

on d and C and the constant M depends only on m.
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The following lemma shows how Theorem 6 applies to bracketing entropy:

LEMMA 12. For any norm ‖ · ‖ dominated by ‖ · ‖∞ and any class of

functions F ,

logN[](2ε,F , ‖ · ‖) ≤ logN(ε,F , ‖ · ‖∞),

for all ε > 0.

Proof. Let f1, . . . , fm be a uniform ε-cover of F .

Since the 2ε-brackets [fi − ε, fi + ε] now cover F , the result follows.2
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We now present a second Lipschitz continuity result which is in fact a

generalization of Lemma 12.

The result applies to function classes of the form F = {ft : t ∈ T},
where

|fs(x)− ft(x)| ≤ d(s, t)F (x) (2)

for some metric d on T , some real function F on the sample space X ,

and for all x ∈ X .

This special Lipschitz structure arises in a number of settings, including

parametric Z- and M- estimation.
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For example, consider the least absolute deviation regression setting of

Section 2.2.6, under the assumption that the random covariate U and

regression parameter θ are constrained to known compact subsets

U ,Θ ⊂ Rp.

Recall that, in this setting, the outcome given U is modeled as

Y = θ′U + e, where the residual error e has median zero.

45



Empirical Processes: Lecture 12 Spring, 2010

Estimation of the true parameter value θ0 is accomplished by minimizing

θ 7→ Pnmθ, where

mθ(X) ≡ |e− (θ − θ0)′U | − |e|, X ≡ (Y,U)

and e = Y − θ′0U .

From (2.20) in Section 2.2.6, we know that the class F = {mθ : θ ∈ Θ}
satisfies (2) with T = Θ, d(s, t) = ‖s− t‖ and F (x) = ‖u‖, where

x = (y, u) is a realization of X .
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The following theorem shows that the bracketing numbers for a general F
satisfying (2) are bounded by the covering numbers for the associated

index set T :

THEOREM 7. Suppose the class of functions F = {ft : t ∈ T}
satisfies (2) for every s, t ∈ T and some fixed function F .

Then, for any norm ‖ · ‖,

N[](2ε‖F‖,F , ‖ · ‖) ≤ N(ε, T, d).
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Proof. Note that for any ε-net t1, . . . , tk that covers T with respect to d,

the brackets [ftj − εF, ftj + εF ] cover F .

Since these brackets are all of size 2ε‖F‖, the proof is complete.2

Note that when ‖ · ‖ is any norm dominated by ‖ · ‖∞, Theorem 7

simplifies to Lemma 12 when T = F and d = ‖ · ‖∞ (and thus

automatically F = 1).
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We move now from continuous functions to monotone functions:

THEOREM 8. For each integer r ≥ 1, there exists a constant K <∞
such that the class F of monotone functions f : R 7→ [0, 1] satisfies

logN[](ε,F , Lr(Q)) ≤ K

ε
,

for all ε > 0 and every probability measure Q.
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Useful preservation results for bracketing entropy are, unfortunately, rare,

but the following are two such results:

LEMMA 13. Let F and G be classes of measurable function.

Then for any probability measure Q and any 1 ≤ r ≤ ∞,

(i) N[](2ε,F + G, Lr(Q)) ≤ N[](ε,F , Lr(Q))N[](ε,G, Lr(Q));

(ii) Provided F and G are bounded by 1,

N[](2ε,F · G, Lr(Q)) ≤ N[](ε,F , Lr(Q))N[](ε,G, Lr(Q)).
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