Introduction to Empirical Processes and Semiparametric Inference Lecture 12: Glivenko-Cantelli and Donsker Results

Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations Research University of North Carolina-Chapel Hill

Glivenko-Cantelli Results

The existence of an integrable envelope of the centered functions of a class \mathcal{F} is a necessary condition for \mathcal{F} to be P-G-C:

LEMMA 1. If the class of functions \mathcal{F} is strong P-G-C, then $P\|f - Pf\|_{\mathcal{F}}^* < \infty$.

If in addition $\|P\|_{\mathcal{F}} < \infty$, then also $P\|f\|_{\mathcal{F}}^* < \infty$.

THEOREM 1. Let \mathcal{F} be a class of measurable functions and suppose that

$N_{[]}(\epsilon, \mathcal{F}, L_1(P)) < \infty$

for every $\epsilon > 0$.

Then \mathcal{F} is P-Glivenko-Cantelli.

Proof. Fix $\epsilon > 0$.

Since the L_1 -bracketing entropy is bounded, it is possible to choose finitely many ϵ -brackets $[l_i, u_i]$ so that

- $\bullet\,$ their union contains ${\cal F}$
- and $P(u_i l_i) < \epsilon$ for every i.

Now, for every $f \in \mathcal{F}$, there is a bracket $[l_i, u_i]$ containing f with

$$(\mathbb{P}_n - P)f \le (\mathbb{P}_n - P)u_i + P(u_i - f) \le (\mathbb{P}_n - P)u_i + \epsilon.$$

Hence

$$\sup_{f \in \mathcal{F}} (\mathbb{P}_n - P)f \leq \max_i (\mathbb{P}_n - P)u_i + \epsilon$$
$$\xrightarrow{as*}{\to} \epsilon.$$

Similar arguments can be used to verify that

$$\inf_{f \in \mathcal{F}} (\mathbb{P}_n - P) f \geq \min_i (\mathbb{P}_n - P) l_i - \epsilon$$

$$\stackrel{\text{as*}}{\to} -\epsilon.$$

The desired result now follows since ϵ was arbitrary. \Box

THEOREM 2. Let \mathcal{F} be a P-measurable class of measurable functions with envelope F and

$$\sup_{Q} N(\epsilon \|F\|_{Q,1}, \mathcal{F}, L_1(Q)) < \infty,$$

for every $\epsilon > 0$, where the supremum is taken over all finite probability measures Q with $||F||_{Q,1} > 0$.

If $P^*F < \infty$, then $\mathcal F$ is P-G-C.

Proof. The result is trivial if $P^*F = 0$.

Hence we will assume without loss of generality that $P^*F > 0$.

Thus there exists an $\eta>0$ such that, with probability 1, $\mathbb{P}_n F>\eta$ for all n large enough.

Fix $\epsilon > 0$.

By assumption, there is a $K < \infty$ such that

 $\mathbf{1}\{\mathbb{P}_n F > 0\} \log N(\epsilon \mathbb{P}_n F, \mathcal{F}, L_1(\mathbb{P}_n)) \le K$

almost surely, since \mathbb{P}_n is a finite probability measure.

Hence, with probability 1,

$$\log N(\epsilon\eta, \mathcal{F}, L_1(\mathbb{P}_n)) \le K$$

for all n large enough.

Since ϵ was arbitrary, we now have that

$$\log N(\epsilon, \mathcal{F}, L_1(\mathbb{P}_n)) = O_P^*(1)$$

for all $\epsilon > 0$.

Now fix $\epsilon>0$ (again) and $M<\infty,$ and define

$$\mathcal{F}_M \equiv \{ f \mathbf{1} \{ F \le M \} : f \in \mathcal{F} \}.$$

Since,

$$\|(f-g)\mathbf{1}\{F \le M\}\|_{1,\mathbb{P}_n} \le \|f-g\|_{1,\mathbb{P}_n}$$

for any $f,g\in \mathcal{F}$, we have

 $N(\epsilon, \mathcal{F}_M, L_1(\mathbb{P}_n)) \leq N(\epsilon, \mathcal{F}, L_1(\mathbb{P}_n)).$

Hence

$$\log N(\epsilon, \mathcal{F}_M, L_1(\mathbb{P}_n)) = O_P^*(1).$$

Finally, since ϵ and M are both arbitrary, the desired result follows from Theorem 3 below. \Box

THEOREM 3. Let \mathcal{F} be a P-measurable class of measurable functions with envelope F such that $P^*F < \infty$.

Let \mathcal{F}_M be as defined above.

lf

$$\log N(\epsilon, \mathcal{F}_M, L_1(\mathbb{P}_n)) = o_P^*(n)$$

for every $\epsilon > 0$ and $M < \infty$, then $P \| \mathbb{P}_n - P \|_{\mathcal{F}}^* \to 0$ and \mathcal{F} is strong P-G-C.

Donsker Results

The following lemma outlines several properties of Donsker classes:

LEMMA 2. Let \mathcal{F} be a class of measurable functions, with envelope $F \equiv \|f\|_{\mathcal{F}}$.

For any
$$f, g \in \mathcal{F}$$
, define $\rho(f, g) \equiv \left\{ P(f - Pf - g + Pg)^2 \right\}^{1/2}$;
and, for any $\delta > 0$, let $\mathcal{F}_{\delta} \equiv \{ f - g : \rho(f, g) < \delta \}$.

Then the following are equivalent:

(i) \mathcal{F} is P-Donsker;

(ii) (\mathcal{F}, ρ) is totally bounded and $\|\mathbb{G}_n\|_{\mathcal{F}_{\delta_n}} \xrightarrow{\mathsf{P}} 0$ for every $\delta_n \downarrow 0$; (iii) (\mathcal{F}, ρ) is totally bounded and $\mathsf{E}^* \|\mathbb{G}_n\|_{\mathcal{F}_{\delta_n}} \to 0$ for every $\delta_n \downarrow 0$.

These conditions imply that

- $\mathsf{E}^* \| \mathbb{G}_n \|_{\mathcal{F}}^r \to \mathsf{E} \| \mathbb{G} \|_{\mathcal{F}}^r < \infty$, for every 0 < r < 2;
- $P\left(\|f Pf\|_{\mathcal{F}}^* > x\right) = o(x^{-2})$ as $x \to \infty$; and
- \mathcal{F} is strong P-G-C.

If in addition $\|P\|_{\mathcal{F}} < \infty$, then also $P(F^* > x) = o(x^{-2})$ as $x \to \infty$.

Recall the following bracketing entropy Donsker theorem from Chapter 2:

THEOREM 4. Let \mathcal{F} be a class of measurable functions with

$J_{[]}(\infty, \mathcal{F}, L_2(P)) < \infty.$

Then \mathcal{F} is P-Donsker.

We omit the proof.

The following is the correctly stated uniform entropy Donsker theorem:

THEOREM 5. Let \mathcal{F} be a class of measurable functions with envelope F and $J(1, \mathcal{F}, L_2) < \infty$.

Let the classes \mathcal{F}_{δ} and $\mathcal{F}_{\infty}^2 \equiv \{h^2 : h \in \mathcal{F}_{\infty}\}$ be P-measurable for every $\delta > 0$.

If $P^*F^2 < \infty$, then ${\mathcal F}$ is P-Donsker.

We note here that by Proposition 8.11, if \mathcal{F} is PM, then so are

- \mathcal{F}_{δ} and
- \mathcal{F}^2_∞ ,

for all $\delta > 0$, provided $\mathcal F$ has envelope F such that $P^*F^2 < \infty$.

Since PM implies P-measurability, all measurability requirements for Theorem 5 are thus satisfied whenever \mathcal{F} is PM.

Proof of Theorem 5. Let the positive, decreasing sequence $\delta_n \downarrow 0$ be arbitrary.

By Markov's inequality for outer probability (see Lemma 6.10) and the symmetrization Theorem 8.8,

$$\mathbf{P}^* \left(\| \mathbb{G}_n \|_{\mathcal{F}_{\delta_n}} > x \right) \le \frac{2}{x} \mathbf{E}^* \left\| \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(X_i) \right\|_{\mathcal{F}_{\delta_n}},$$

for i.i.d. Rademachers $\epsilon_1, \ldots, \epsilon_n$ independent of X_1, \ldots, X_n .

By the *P*-measurability assumption for \mathcal{F}_{δ} , for all $\delta > 0$,

- the standard version of Fubini's theorem applies, and
- the outer expectation is just a standard expectation and can be calculated in the order E_XE_ε.

Accordingly, fix X_1, \ldots, X_n .

By Hoeffding's inequality (Lemma 8.7), the stochastic process $f \mapsto n^{-1/2}$ $\times \sum_{i=1}^{n} \epsilon_i f(X_i)$ is sub-Gaussian for the $L_2(\mathbb{P}_n)$ -seminorm

$$||f||_n \equiv \sqrt{\frac{1}{n} \sum_{i=1}^n f^2(X_i)}.$$

This stochastic process is also separable since, for any measure Q and $\epsilon>0,$

$$N(\epsilon, \mathcal{F}_{\delta_n}, L_2(Q)) \leq N(\epsilon, \mathcal{F}_{\infty}, L_2(Q))$$

$$\leq N^2(\epsilon/2, \mathcal{F}, L_2(Q)),$$

and the latter is finite for any finite dimensional probability measure Q and any $\epsilon>0.$

Thus the second conclusion of Corollary 8.5 holds with

$$\mathsf{E}_{\epsilon} \left\| \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \right\|_{\mathcal{F}_{\delta_{n}}} \lesssim \int_{0}^{\infty} \sqrt{\log N(\epsilon, \mathcal{F}_{\delta_{n}}, L_{2}(\mathbb{P}_{n}))} d\epsilon. (1)$$

Note that we can omit the term

$$\mathsf{E}\left|n^{-1/2}\sum_{i=1}^{n}\epsilon_{i}f_{0}(X_{i})\right|$$

from the conclusion of the corollary because $0 = f - f \in \mathcal{F}_{\delta_n}$.

For sufficiently large ϵ , the set \mathcal{F}_{δ_n} fits into a single ball of $L_2(\mathbb{P}_n)$ -radius ϵ around the origin, in which case the integrand on the right-hand-side of (1) is zero.

This will definitely happen when ϵ is larger than θ_n , where

$$\theta_n^2 \equiv \sup_{f \in \mathcal{F}_{\delta_n}} \|f\|_n^2 = \left\|\frac{1}{n} \sum_{i=1}^n f^2(X_i)\right\|_{\mathcal{F}_{\delta_n}}$$

Thus the right-hand-side of (1) is bounded by

$$\begin{split} \int_{0}^{\theta_{n}} \sqrt{\log N(\epsilon, \mathcal{F}_{\delta_{n}}, L_{2}(\mathbb{P}_{n}))} d\epsilon \\ &\lesssim \int_{0}^{\theta_{n}} \sqrt{\log N^{2}(\epsilon/2, \mathcal{F}, L_{2}(\mathbb{P}_{n}))} d\epsilon \\ &\lesssim \int_{0}^{\theta_{n}/(2\|F\|_{n})} \sqrt{\log N(\epsilon\|F\|_{n}, \mathcal{F}, L_{2}(\mathbb{P}_{n}))} d\epsilon \|F\|_{n} \\ &\lesssim \|F\|_{n} J(\theta_{n}, \mathcal{F}, L_{2}). \end{split}$$

The second inequality follows from the change of variables $u = \epsilon/(2||F||_n)$ (and then renaming u to ϵ).

For the third inequality, note that we can add 1/2 to the envelope function F without changing the existence of its second moment.

Hence $||F||_n \ge 1/2$ without loss of generality, and thus

 $\theta_n/(2\|F\|_n) \le \theta_n.$

Because $||F||_n = O_p(1)$, we can now conclude that the left-hand-side of (1) goes to zero in probability, provided we can verify that $\theta_n \xrightarrow{\mathsf{P}} 0$.

This would then imply asymptotic $L_2(P)$ -equicontinuity in probability.

Since
$$\|Pf^2\|_{\mathcal{F}_{\delta_n}} \to 0$$
 and $\mathcal{F}_{\delta_n} \subset \mathcal{F}_{\infty}$, establishing that $\|\mathbb{P}_n - P\|_{\mathcal{F}^2_{\infty}} \xrightarrow{\mathsf{P}} 0$

would prove that $\theta_n \xrightarrow{\mathsf{P}} 0$.

The class \mathcal{F}^2_∞ has integrable envelope $(2F)^2$ and is P-measurable by assumption.

Since also, for any $f,g\in\mathcal{F}_\infty$,

$$\mathbb{P}_{n}|f^{2} - g^{2}| \leq \mathbb{P}_{n}(|f - g|4F) \leq ||f - g||_{n} ||4F||_{n},$$

we have that the covering number

$$N(\epsilon \|2F\|_n^2, \mathcal{F}_{\infty}^2, L_1(\mathbb{P}_n))$$

is bounded by

$$N(\epsilon ||F||_n, \mathcal{F}_{\infty}, L_2(\mathbb{P}_n)).$$

Since this last covering number is bounded by

$$\sup_{Q} N^2(\epsilon \|F\|_{Q,2}/2, \mathcal{F}, L_2(Q)) < \infty,$$

where the supremum is taken over all finitely discrete probability measures with $||F||_{Q,2} > 0$, we have by Theorem 2 that \mathcal{F}^2_{∞} is P-Glivenko-Cantelli.

Thus $\hat{\theta}_n \xrightarrow{\mathsf{P}} 0$.

This completes the proof of asymptotic equicontinuity.

The last thing we need to prove is that \mathcal{F} is totally bounded in $L_2(P)$.

By the result of the last paragraph, there exists a sequence of discrete probability measures P_n with

$$||(P_n - P)f^2||_{\mathcal{F}_{\infty}} \to 0.$$

Fix $\epsilon > 0$ and take n large enough so that

$$\|(P_n - P)f^2\|_{\mathcal{F}_{\infty}} < \epsilon^2.$$

Note that

$$N(\epsilon, \mathcal{F}, L_2(P_n))$$

is finite by assumption, and, for any $f, g \in \mathcal{F}$ with $\|f - g\|_{P_n, 2} < \epsilon$,

$$P(f-g)^2 \le P_n(f-g)^2 + |(P_n-P)(f-g)^2| \le 2\epsilon^2.$$

Thus any ϵ -net in $L_2(P_n)$ is also a $\sqrt{2}\epsilon$ -net in $L_2(P)$.

Hence ${\mathcal F}$ is totally bounded in $L_2(P)$ since ϵ was arbitrary. \Box

Entropy Calculations

The focus of this chapter is on computing entropy for empirical processes.

An important use of such entropy calculations is in evaluating whether a class of functions \mathcal{F} is Glivenko-Cantelli and/or Donsker or neither.

Some of these uses will be very helpful in Chapter 14 for establishing rates of convergence for M-estimators.

We begin the chapter by describing methods to evaluate uniform entropy.

Provided the uniform entropy for a class \mathcal{F} is not too large, \mathcal{F} might be G-C or Donsker, as long as sufficient measurability holds.

One can think of this chapter as a handbag of tools for establishing weak convergence properties of empirical processes.

Vapnik-Červonenkis (VC) Classes

In this section, we introduce Vapnik-Červonenkis (VC) classes of sets, VC-classes of functions, and several related function classes.

We then present several examples of VC-classes.

Consider an arbitrary collection $\{x_1, \ldots, x_n\}$ of points in a set \mathcal{X} and a collection \mathcal{C} of subsets of \mathcal{X} .

We say that C picks out a certain subset A of $\{x_1, \ldots, x_n\}$ if $A = C \cap \{x_1, \ldots, x_n\}$ for some $C \in C$.

We say that C shatters $\{x_1, \ldots, x_n\}$ if all of the 2^n possible subsets of $\{x_1, \ldots, x_n\}$ are picked out by the sets in C.

The *VC-index* $V(\mathcal{C})$ of the class \mathcal{C} is the smallest n for which no set of size $n \{x_1, \ldots, x_n\} \subset \mathcal{X}$ is shattered by \mathcal{C} .

If \mathcal{C} shatters all sets $\{x_1, \ldots, x_n\}$ for all $n \ge 1$, we set $V(\mathcal{C}) = \infty$.

Clearly, the more refined ${\cal C}$ is, the higher the VC-index.

We say that \mathcal{C} is a *VC-class* if $V(\mathcal{C}) < \infty$.

For example, let $\mathcal{X} = \mathbb{R}$ and define the collection of sets $\mathcal{C} = \{(-\infty, c] : c \in \mathbb{R}\}.$

Consider any two point set $\{x_1, x_2\} \subset \mathbb{R}$ and assume, without loss of generality, that $x_1 < x_2$.

It is easy to verify that C can pick out the null set $\{\}$ and the sets $\{x_1\}$ and $\{x_1, x_2\}$ but can't pick out $\{x_2\}$.

Thus $V(\mathcal{C})=2$ and \mathcal{C} is a VC-class.

As another example, let $\mathcal{C} = \{(a, b] : -\infty \le a < b \le \infty\}.$

The collection can shatter any two point set, but consider what happens with a three point set $\{x_1, x_2, x_3\}$.

Without loss of generality, assume $x_1 < x_2 < x_3$, and note that the set $\{x_1, x_3\}$ cannot be picked out with C.

Thus $V(\mathcal{C}) = 3$ in this instance.

For any class of sets C and any collection $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, let $\Delta_n(C, x_1, \ldots, x_n)$ be the number of subsets of $\{x_1, \ldots, x_n\}$ which can be picked out by C.

A surprising combinatorial result is that if $V(\mathcal{C}) < \infty$, then $\Delta_n(\mathcal{C}, x_1, \dots, x_n)$ can increase in n no faster than $O(n^{V(\mathcal{C})-1})$. This is more precisely stated in the following lemma:

```
LEMMA 3. For a VC-class of sets C,
```

$$\max_{x_1,\dots,x_n\in\mathcal{X}}\Delta_n(\mathcal{C},x_1,\dots,x_n)\leq \sum_{j=1}^{V(\mathcal{C})-1}\left(\begin{array}{c}n\\j\end{array}\right).$$

Since the right-hand-side is bounded by $V(\mathcal{C})n^{V(\mathcal{C})-1}$, the left-hand-side grows polynomially of order at most $O(n^{V(\mathcal{C})-1})$.

This is a corollary of Lemma 2.6.2 of VW, and we omit the proof.

Let $\mathbf{1}\{\mathcal{C}\}$ denote the collection of all indicator functions of sets in the class \mathcal{C} .

The following theorem gives a bound on the L_r covering numbers of $\mathbf{1}\{\mathcal{C}\}$:

THEOREM 6. There exists a universal constant $K < \infty$ such that for any VC-class of sets C, any $r \ge 1$, and any $0 < \epsilon < 1$,

$$N(\epsilon, \mathbf{1}\{\mathcal{C}\}, L_r(Q)) \le KV(\mathcal{C})(4e)^{V(\mathcal{C})} \left(\frac{1}{\epsilon}\right)^{r(V(\mathcal{C})-1)}$$

This is Theorem 2.6.4 of VW, and we omit the proof.

Since F = 1 serves as an envelope for $\mathbf{1}\{\mathcal{C}\}$, we have as an immediate corollary that, for

$$\mathcal{F} = \mathbf{1}\{\mathcal{C}\}, \sup_{Q} N(\epsilon \|F\|_{1,Q}, \mathcal{F}, L_1(Q)) < \infty$$

and

$$J(1,\mathcal{F},L_2) \lesssim \int_0^1 \sqrt{\log(1/\epsilon)} d\epsilon = \int_0^\infty u^{1/2} e^{-u} du \le 1,$$

where the supremum is over all finite probability measures Q with $\|F\|_{Q,2}>0.$

Thus the uniform entropy conditions required in the G-C and Donsker theorems of the previous chapter are satisfied for indicators of VC-classes of sets.

Since the constant 1 serves as a universally applicable envelope function, these classes of indicator functions are therefore G-C and Donsker, provided the requisite measurability conditions hold. For a function $f : \mathcal{X} \mapsto \mathbb{R}$, the subset of $\mathcal{X} \times \mathbb{R}$ given by $\{(x,t) : t < f(x)\}$ is the *subgraph* of f.

A collection ${\mathcal F}$ of measurable real functions on the sample space ${\mathcal X}$

- is a VC-subgraph class or VC-class (for short),
- if the collection of all subgraphs of functions in \mathcal{F} forms a VC-class of sets (as sets in $\mathcal{X} \times \mathbb{R}$).

Let $V(\mathcal{F})$ denote the VC-index of the set of subgraphs of \mathcal{F} .

VC-classes of functions grow at a polynomial rate just like VC-classes of sets:

THEOREM 7. There exists a universal constant $K < \infty$ such that, for any VC-class of measurable functions \mathcal{F} with integrable envelope F, any $r \geq 1$, any probability measure Q with $||F||_{Q,r} > 0$, and any $0 < \epsilon < 1$,

$$N(\epsilon \|F\|_{Q,r}, \mathcal{F}, L_r(Q)) \le KV(\mathcal{F})(4e)^{V(\mathcal{F})} \left(\frac{2}{\epsilon}\right)^{r(V(\mathcal{F})-1)}$$

Thus VC-classes of functions easily satisfy the uniform entropy requirements of the G-C and Donsker theorems of the previous chapter.

A related kind of function class is the VC-hull class.

A class of measurable functions ${\cal G}$ is a VC-hull class if there exists a VC-class ${\cal F}$ such that

- each $f \in \mathcal{G}$ is the pointwise limit of a sequence of functions $\{f_m\}$
- in the symmetric convex hull of \mathcal{F} (denoted sconv \mathcal{F}).

A function f is in sconv \mathcal{F} if $f = \sum_{i=1}^{m} \alpha_i f_i$, where the α_i s are real numbers satisfying $\sum_{i=1}^{m} |\alpha_i| \leq 1$ and the f_i s are in \mathcal{F} .

The *convex hull* of a class of functions \mathcal{F} , denoted conv \mathcal{F} , is similarly defined but with the requirement that the α_i 's are positive.

We use $\overline{\text{conv}}\mathcal{F}$ to denote pointwise closure of $\text{conv}\mathcal{F}$ and $\overline{\text{sconv}}\mathcal{F}$ to denote the pointwise closure of $\text{sconv}\mathcal{F}$.

Thus the class of functions \mathcal{F} is a VC-hull class if $\mathcal{F} = \overline{\text{sconv}}\mathcal{G}$ for some VC-class \mathcal{G} .

THEOREM 8. Let Q be a probability measure on $(\mathcal{X}, \mathcal{A})$, and let \mathcal{F} be a class of measurable functions with measurable envelope F, such that $QF^2 < \infty$ and, for $0 < \epsilon < 1$,

$$N(\epsilon ||F||_{Q,2}, \mathcal{F}, L_2(Q)) \le C\left(\frac{1}{\epsilon}\right)^V,$$

for constants $C, V < \infty$ (possibly dependent on Q).

Then there exist a constant K depending only on V and C such that

$$\log N(\epsilon \|F\|_{Q,2}, \overline{\operatorname{conv}}\mathcal{F}, L_2(Q)) \le K\left(\frac{1}{\epsilon}\right)^{2V/(V+2)}$$

This is Theorem 2.6.9 of VW, and we omit the proof.

It is not hard to verify that sconv \mathcal{F} is a subset of the convex hull of $\mathcal{F} \cup \{-\mathcal{F}\} \cup \{0\}$, where $-\mathcal{F} \equiv \{-f : f \in \mathcal{F}\}$ (see Exercise 9.6.1 below).

Since the covering numbers of $\mathcal{F} \cup \{-\mathcal{F}\} \cup \{0\}$ are at most one plus twice the covering numbers of \mathcal{F} , the conclusion of Theorem 8 also holds if $\overline{\text{conv}}\mathcal{F}$ is replaced with $\overline{\text{sconv}}\mathcal{F}$.

This leads to the following easy corollary for VC-hull classes:

COROLLARY 1. For any VC-hull class \mathcal{F} of measurable functions and all $0 < \epsilon < 1$,

$$\sup_{Q} \log N(\epsilon \|F\|_{Q,2}, \mathcal{F}, L_2(Q)) \le K\left(\frac{1}{\epsilon}\right)^{2-2/V}, \quad 0 < \epsilon < 1,$$

where

- the supremum is taken over all probability measures Q with $\|F\|_{Q,2} > 0$,
- V is the VC-index of the VC-subgraph class associated with \mathcal{F} ,
- and the constant $K < \infty$ depends only on V.