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(Glivenko-Cantelli Results )

The existence of an integrable envelope of the centered functions of a

class F is a necessary condition for F to be P-G-C:

LEMMA 1. If the class of functions F is strong P-G-C, then
PlIf - Pfl5 < <.

If in addition || P|| 7 < oo, then also P|| f ||’ < oo.
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THEOREM 1. Let F be a class of measurable functions and suppose that
NH(E,F, L1(P)) < OO

for every € > Q.

Then F is P-Glivenko-Cantelli.
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Proof. Fix ¢ > O.

Since the L1-bracketing entropy is bounded, it is possible to choose

finitely many e-brackets [l;, u;| so that
e their union contains JF

e and P(u; — I;) < € for every 1.

Now, for every f € F, there is a bracket |l;, u;| containing f with

(P, —P)f < (P, —Plu; + P(u; — f) < (P, — P)u; +e.
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Hence

sup(P, — P)f < max(P, — P)u; + ¢
fer i

asx

Similar arguments can be used to verify that

inf (P, — P)f > min(P, — P)l; —¢
ferF i

as*
— —E€.

The desired result now follows since € was arbitrary.[]
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THEOREM 2. Let F be a P-measurable class of measurable functions

with envelope F' and

SgpN(GHFHQ,lafaLl(Q)) < 00,

for every € > 0, where the supremum is taken over all finite probability

measures () with || F'||g.1 > 0.

If P*F < oo, then F is P-G-C.
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Proof. The result is trivial if P*F' = 0.

Hence we will assume without loss of generality that P*F' > 0.

Thus there exists an 17 > 0 such that, with probability 1, IP,, F* > 7 for alll

n large enough.

Fix e > 0.
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By assumption, there is a /X < 0o such that
1{P,F > 0}log N(eP,F, F,L1(P,)) < K

almost surely, since IP,, is a finite probability measure.

Hence, with probability 1,
log N(en, F, L1(Py)) < K

for all n large enough.

Since € was arbitrary, we now have that
log N (e, F, L1 (By)) = Op(1)

for all € > 0.
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Now fix € > 0 (again) and M < oo, and define

Fu={f{F <M}: feF}

Since,
I(f —9){F < M}

for any f,g € F, we have

e, < \f—9llip,

N(e, Far, L1(Py)) < N(e, F, L1(Py)).
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Hence
log N (€, Far, L1(Pr)) = Op(1).

Finally, since € and M are both arbitrary, the desired result follows from

Theorem 3 below.U]

10
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THEOREM 3. Let F be a P-measurable class of measurable functions
with envelope F' such that P*F' < o0.

Let F s be as defined above.
If

log N (€, Far, L1(Py)) = op(n)

for every € > 0 and M < oo, then P||P,, — P||’> — 0 and F is strong
P-G-C.

11
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(Donsker Results ]

The following lemma outlines several properties of Donsker classes:

LEMMA 2. Let F be a class of measurable functions, with envelope
F=|fllr

Forany f,qg € F, define p(f, g) = {P(f —Pf—g+ Pg)2}1/2;
and, foranyd > 0, let Fs ={f —g: p(f,g9) <}

Then the following are equivalent:

(i) F is P-Donsker;

12



Empirical Processes: Lecture 12 Spring, 2010

(i) (F, p) is totally bounded and ||G || 5 % 0 forevery 8, | 0;

(i) (F,p) is totally bounded and E*||Gy,|| 75— O for every &, | 0.

These conditions imply that
o E¥||G, ||’z — E||G||’z < oo, forevery 0 < r < 2;
e P(|f— Pfl}z > x) =o(z™%) asz — oo; and

e F isstrong P-G-C.

If in addition || P|| 7 < oo, then also P(F* > x) = o(z™?) asx — oo.

13
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Recall the following bracketing entropy Donsker theorem from Chapter 2:

THEOREM 4. Let F be a class of measurable functions with

J[](OO,.F, LQ(P)) < Q.

Then F is P-Donsker.

We omit the proof.

14
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The following is the correctly stated uniform entropy Donsker theorem:

THEOREM 5. Let F be a class of measurable functions with envelope F’
and J(1,F, Ly) < 00

Let the classes F5 and F2, = {h? : h € F,} be P-measurable for
every 0 > 0.

If P*F? < oo, then F is P-Donsker.

15
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We note here that by Proposition 8.11, if  is PM, then so are
e f5and
° fgo,

for all § > 0, provided F has envelope F such that P* F? < oc.

Since PM implies P-measurability, all measurability requirements for

Theorem 5 are thus satisfied whenever F is PM.

16
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Proof of Theorem 5. Let the positive, decreasing sequence 9,, | 0 be

arbitrary.

By Markov’s inequality for outer probability (see Lemma 6.10) and the

symmetrization Theorem 8.8,

Fso,

fori.i.d. Rademachers €1, ..., €, independent of X{,...,.X,,.

17
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By the P-measurability assumption for Fg, for all > 0,
e the standard version of Fubini’s theorem applies, and

e the outer expectation is just a standard expectation and can be

calculated in the order E x E..

Accordingly, fix X1,...,.X,,.

By Hoeffding’s inequality (Lemma 8.7), the stochastic process f +— n~1/2

X > w1 € f(X;) is sub-Gaussian for the Lo (PP, )-seminorm

=\ 3,

18
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This stochastic process is also separable since, for any measure () and
e > 0,

N(E, F s L2<Q)>

VA

N(E,foo, LQ(Q>)
N2<E/27fa L2(Q))7

VA

and the latter is finite for any finite dimensional probability measure () and

any € > 0.

Thus the second conclusion of Corollary 8.5 holds with

=

% Zﬁz‘f(Xz')

< / \/log N (e, Fs, , La(Py))de. (1)
0
Fsn,

19
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Note that we can omit the term
n
—1/2
E|n 2D € fo(X;)
i=1

from the conclusion of the corollary because 0 = f — f € Fy. .

For sufficiently large €, the set F;_ fits into a single ball of Ly (P, )-radius
€ around the origin, in which case the integrand on the right-hand-side
of (1) is zero.

This will definitely happen when ¢ is larger than 6,,, where

20
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Thus the right-hand-side of (1) is bounded by

On
/ \/10gN(67f5n7L2<IP)n))d€
0

A\

/ . Vog N2(e/2, F, Lo(P,,))de
0

A\

On/2||F||n)
/O VIog N(e[Fllms 7, La(Br))de| Fl.

S N Fllnd (0n, F, La).

21
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The second inequality follows from the change of variables

u = €/(2||F||») (and then renaming u to ).

For the third inequality, note that we can add 1/2 to the envelope function

F’ without changing the existence of its second moment.

Hence || F'||,, > 1/2 without loss of generality, and thus

On/ 2l EFn) < On.

22
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Because || F'||, = Op(1), we can now conclude that the left-hand-side

of (1) goes to zero in probability, provided we can verify that 6,, 5 0.
This would then imply asymptotic Lo ( P)-equicontinuity in probability.

Since || P2, — 0and F5, C Fu, establishing that
|Pn — Pllzz. =0

would prove that 6,, 2o

23
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The class F2, has integrable envelope (2F')? and is P-measurable by

assumption.

Since also, for any f, g € F,

Pn’fQ _92’ S IP)n(|f _9‘4F) S Hf _anHZLFHna

we have that the covering number
N(e|2F I, F5, L1 (Pn))

is bounded by
N (€| F|ln, Foos L2(Pr)).

24
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Since this last covering number is bounded by

SgpN2(€HFHQ,2/27F7 L2(Q)) < 00,

where the supremum is taken over all finitely discrete probability measures
with || F'||g.2 > 0, we have by Theorem 2 that F2, is P-Glivenko-Cantelli

Thus én 2.

This completes the proof of asymptotic equicontinuity.

25
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The last thing we need to prove is that F is totally bounded in Lo (P).

By the result of the last paragraph, there exists a sequence of discrete

probability measures P, with

|(Pr = P)f? |7 — O

Fix ¢ > 0 and take n large enough so that

(P = P)f? |7 < €.

26
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Note that
N(e, F,La(Pp))

is finite by assumption, and, for any f, g € F with | f — ¢||p,.2 < €,

P(f —9)? < Pu(f = 9)* + [(Pu — P)(f — 9)%] < 2¢%.

Thus any e-netin Lo(P,) is also a v/2e-net in Lo(P).

Hence F is totally bounded in Lo (P) since € was arbitrary.[J

27
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[Entropy Calculations ]

The focus of this chapter is on computing entropy for empirical processes.

An important use of such entropy calculations is in evaluating whether a

class of functions JF is Glivenko-Cantelli and/or Donsker or neither.

Some of these uses will be very helpful in Chapter 14 for establishing rates

of convergence for M-estimators.

28
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We begin the chapter by describing methods to evaluate uniform entropy.

Provided the uniform entropy for a class JF is not too large, F might be

G-C or Donsker, as long as sufficient measurability holds.

One can think of this chapter as a handbag of tools for establishing weak

convergence properties of empirical processes.

29
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[Vapnik-éervonenkis (VC) Classes j

In this section, we introduce Vapnik-Cervonenkis (VC) classes of sets,

VC-classes of functions, and several related function classes.
We then present several examples of VC-classes.
Consider an arbitrary collection {x1, ..., x,} of points in a set X and a

collection C of subsets of X .

30
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We say that C picks out a certain subset A of {x1,..., 2y} if
A=CnA{xy,...,x,} forsome C € C.

We say that C shatters {x1, ...,y } if all of the 2" possible subsets of

{x1,...,xz,} are picked out by the sets in C.

The VC-index V (C) of the class C is the smallest . for which no set of
sizen {x1,...,x,} C X is shattered by C.

31
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If C shatters all sets {x1,...,z,}foralln > 1,weset V(C) = oc.

Clearly, the more refined C is, the higher the VC-index.

We say that C is a VC-classif V (C) < oc.

32
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For example, let X = R and define the collection of sets
C ={(—o0,c]:ce R}

Consider any two point set {5131, xg} C R and assume, without loss of

generality, that 1 < x2.

It is easy to verify that C can pick out the null set { } and the sets {1}

and {x1, x2} but can’t pick out {x2}.

Thus V(C) = 2 and C is a VC-class.

33
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As another example, let C = {(a,b] : —o0 < a < b < o0},

The collection can shatter any two point set, but consider what happens

with a three point set {x1, x2, z3}.

Without loss of generality, assume x1 < x2 < x3, and note that the set

{x1,x3} cannot be picked out with C.

Thus V' (C) = 3 in this instance.

34
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For any class of sets C and any collection {5131, Ce ,:z:n} C X, let
Ap(C,x1,...,xy,) be the number of subsets of {x1, ..., x,} which

can be picked out by C.

A surprising combinatorial result is that if V' (C) < oo, then

An(C,z1,...,x,) canincrease in n no faster than O(nY (©)~1).

35
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This is more precisely stated in the following lemma:

LEMMA 3. For a VC-class of sets C,

V(C)—1

N—

n
max A (C,z1,...,%Ty) <

L1,y €X ; '
1 n ]:1 ,]

Since the right-hand-side is bounded by V' (C)n"Y (©)=1, the left-hand-side
grows polynomially of order at most O(n" (©)=1).

This is a corollary of Lemma 2.6.2 of VW, and we omit the proof.

36
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Let 1{C} denote the collection of all indicator functions of sets in the class

C.

The following theorem gives a bound on the L, covering numbers of

1{C}:
THEOREM 6. There exists a universal constant I < oo such that for any

VC-class of setsC, anyr > 1, and any 0 < € < 1,

A\ F(V©-1)
V(e 1) L(Q) < KV (@10 @ (1) |

This is Theorem 2.6.4 of VW, and we omit the proof.

37
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Since I' = 1 serves as an envelope for 1{C}, we have as an immediate

corollary that, for

F =1{C), o N(el|Fllq, F, L1(Q)) < oo

and

J(1,F, L) / V1og(1/¢) de—/ u e du < 1,
0 0

where the supremum is over all finite probability measures () with
IFllg2>0.

38
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Thus the uniform entropy conditions required in the G-C and Donsker
theorems of the previous chapter are satisfied for indicators of VC-classes

of sets.

Since the constant 1 serves as a universally applicable envelope function,
these classes of indicator functions are therefore G-C and Donsker,

provided the requisite measurability conditions hold.

39
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For a function f : X — R, the subset of X X IR given by
{(x,t) : t < f(x)} is the subgraph of f.

A collection F of measurable real functions on the sample space X’
® is a VC-subgraph class or VC-class (for short),

e if the collection of all subgraphs of functions in F forms a VC-class of

sets (as sets in X X IR).

Let V' (F) denote the VC-index of the set of subgraphs of F.

40
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VC-classes of functions grow at a polynomial rate just like VC-classes of

sets:

THEOREM 7. There exists a universal constant I < oo such that, for any
VC-class of measurable functions J with integrable envelope F', any
r > 1, any probability measure Q) with || F'||g.» > 0, andany 0 < € < 1,
o (2" VED
Nl Fllor 7. L (@) < KV(F)a9) ' (2) |

€

Thus VC-classes of functions easily satisfy the uniform entropy

requirements of the G-C and Donsker theorems of the previous chapter.

41
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A related kind of function class is the VC-hull class.

A class of measurable functions G is a VC-hull class if there exists a
VC-class F such that

e cach f € G is the pointwise limit of a sequence of functions { f,, }

e in the symmetric convex hull of F (denoted sconv.F).

A function fis in sconvF if f = Y., «; fi, where the a;s are real

numbers satisfying > . | |a;| < 1 andthe f;s are in F.

42
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The convex hull of a class of functions JF, denoted conv.F, is similarly

defined but with the requirement that the «;’s are positive.

We use conv.F to denote pointwise closure of convF and sconv.F to

denote the pointwise closure of sconv.F.

Thus the class of functions JF is a VC-hull class if F = sconv{ for some
VC-class G.

43
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THEOREM 8. Let () be a probability measure on (X, A), and let F be a
class of measurable functions with measurable envelope F', such that
QF? < 0o and, for) < € < 1,

€

V
N(el| Fllga. F. L2(Q)) < C (1) |

for constants C', V' < oo (possibly dependent on ().

Then there exist a constant KX depending only on V' and C' such that

1\ 2V/(V+2)
log N (€]| F'||g2,convF, L2(Q)) < K (—) .

€

This is Theorem 2.6.9 of VW, and we omit the proof.

44
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It is not hard to verify that sconv.F is a subset of the convex hull of
FU{-=F}U{0}, where —F = {—f: f € F} (see Exercise 9.6.1

below).

Since the covering numbers of 7 U {—F} U {0} are at most one plus
twice the covering numbers of JF, the conclusion of Theorem 8 also holds

if conv.F is replaced with sconv.F.

45
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This leads to the following easy corollary for VC-hull classes:

COROLLARY 1. For any VC-hull class F of measurable functions and all
0 <e<l,

1\ 2-2/V
suplog N(€||Fllo.2, F, L2(Q)) < K (—) L 0<e<l,
Q

€

where

e the supremum is taken over all probability measures () with
IFllgz2>0,

e /' is the VC-index of the VC-subgraph class associated with F,

e and the constant K < oo depends onlyonV .
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