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�� ��Glivenko-Cantelli Results

The existence of an integrable envelope of the centered functions of a

class F is a necessary condition for F to be P -G-C:

LEMMA 1. If the class of functions F is strong P -G-C, then

P‖f − Pf‖∗F <∞.

If in addition ‖P‖F <∞, then also P‖f‖∗F <∞.
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THEOREM 1. Let F be a class of measurable functions and suppose that

N[](ε,F , L1(P )) <∞

for every ε > 0.

Then F is P -Glivenko-Cantelli.
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Proof. Fix ε > 0.

Since the L1-bracketing entropy is bounded, it is possible to choose

finitely many ε-brackets [li, ui] so that

• their union contains F

• and P (ui − li) < ε for every i.

Now, for every f ∈ F , there is a bracket [li, ui] containing f with

(Pn − P )f ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε.
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Hence

sup
f∈F

(Pn − P )f ≤ max
i

(Pn − P )ui + ε

as∗→ ε.

Similar arguments can be used to verify that

inf
f∈F

(Pn − P )f ≥ min
i

(Pn − P )li − ε
as∗→ −ε.

The desired result now follows since ε was arbitrary.2
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THEOREM 2. Let F be a P -measurable class of measurable functions

with envelope F and

sup
Q
N(ε‖F‖Q,1,F , L1(Q)) <∞,

for every ε > 0, where the supremum is taken over all finite probability

measures Q with ‖F‖Q,1 > 0.

If P ∗F <∞, then F is P -G-C.
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Proof. The result is trivial if P ∗F = 0.

Hence we will assume without loss of generality that P ∗F > 0.

Thus there exists an η > 0 such that, with probability 1, PnF > η for all

n large enough.

Fix ε > 0.
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By assumption, there is a K <∞ such that

1{PnF > 0} logN(εPnF,F , L1(Pn)) ≤ K

almost surely, since Pn is a finite probability measure.

Hence, with probability 1,

logN(εη,F , L1(Pn)) ≤ K

for all n large enough.

Since ε was arbitrary, we now have that

logN(ε,F , L1(Pn)) = O∗P (1)

for all ε > 0.
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Now fix ε > 0 (again) and M <∞, and define

FM ≡ {f1{F ≤M} : f ∈ F}.

Since,

‖(f − g)1{F ≤M}‖1,Pn ≤ ‖f − g‖1,Pn
for any f, g ∈ F , we have

N(ε,FM , L1(Pn)) ≤ N(ε,F , L1(Pn)).
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Hence

logN(ε,FM , L1(Pn)) = O∗P (1).

Finally, since ε and M are both arbitrary, the desired result follows from

Theorem 3 below.2
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THEOREM 3. Let F be a P -measurable class of measurable functions

with envelope F such that P ∗F <∞.

Let FM be as defined above.

If

logN(ε,FM , L1(Pn)) = o∗P (n)

for every ε > 0 and M <∞, then P‖Pn − P‖∗F → 0 and F is strong

P -G-C.
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The following lemma outlines several properties of Donsker classes:

LEMMA 2. Let F be a class of measurable functions, with envelope

F ≡ ‖f‖F .

For any f, g ∈ F , define ρ(f, g) ≡
{
P (f − Pf − g + Pg)2

}1/2
;

and, for any δ > 0, let Fδ ≡ {f − g : ρ(f, g) < δ}.

Then the following are equivalent:

(i) F is P -Donsker;
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(ii) (F , ρ) is totally bounded and ‖Gn‖Fδn
P→ 0 for every δn ↓ 0;

(iii) (F , ρ) is totally bounded and E∗‖Gn‖Fδn → 0 for every δn ↓ 0.

These conditions imply that

• E∗‖Gn‖rF → E‖G‖rF <∞, for every 0 < r < 2;

• P (‖f − Pf‖∗F > x) = o(x−2) as x→∞; and

• F is strong P -G-C.

If in addition ‖P‖F <∞, then also P (F ∗ > x) = o(x−2) as x→∞.
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Recall the following bracketing entropy Donsker theorem from Chapter 2:

THEOREM 4. Let F be a class of measurable functions with

J[](∞,F , L2(P )) <∞.

Then F is P -Donsker.

We omit the proof.
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The following is the correctly stated uniform entropy Donsker theorem:

THEOREM 5. Let F be a class of measurable functions with envelope F

and J(1,F , L2) <∞.

Let the classes Fδ and F2
∞ ≡ {h2 : h ∈ F∞} be P -measurable for

every δ > 0.

If P ∗F 2 <∞, then F is P -Donsker.
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We note here that by Proposition 8.11, if F is PM, then so are

• Fδ and

• F2
∞,

for all δ > 0, provided F has envelope F such that P ∗F 2 <∞.

Since PM implies P -measurability, all measurability requirements for

Theorem 5 are thus satisfied whenever F is PM.
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Proof of Theorem 5. Let the positive, decreasing sequence δn ↓ 0 be

arbitrary.

By Markov’s inequality for outer probability (see Lemma 6.10) and the

symmetrization Theorem 8.8,

P∗
(
‖Gn‖Fδn > x

)
≤ 2

x
E∗
∥∥∥∥∥

1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
Fδn

,

for i.i.d. Rademachers ε1, . . . , εn independent of X1, . . . ,Xn.
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By the P -measurability assumption for Fδ , for all δ > 0,

• the standard version of Fubini’s theorem applies, and

• the outer expectation is just a standard expectation and can be

calculated in the order EXEε.

Accordingly, fix X1, . . . ,Xn.

By Hoeffding’s inequality (Lemma 8.7), the stochastic process f 7→ n−1/2

×∑n
i=1 εif(Xi) is sub-Gaussian for the L2(Pn)-seminorm

‖f‖n ≡

√√√√ 1

n

n∑

i=1

f2(Xi).
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This stochastic process is also separable since, for any measure Q and

ε > 0,

N(ε,Fδn , L2(Q)) ≤ N(ε,F∞, L2(Q))

≤ N2(ε/2,F , L2(Q)),

and the latter is finite for any finite dimensional probability measure Q and

any ε > 0.

Thus the second conclusion of Corollary 8.5 holds with

Eε

∥∥∥∥∥
1√
n

n∑

i=1

εif(Xi)

∥∥∥∥∥
Fδn

.
∫ ∞

0

√
logN(ε,Fδn , L2(Pn))dε. (1)
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Note that we can omit the term

E

∣∣∣∣∣n
−1/2

n∑

i=1

εif0(Xi)

∣∣∣∣∣

from the conclusion of the corollary because 0 = f − f ∈ Fδn .

For sufficiently large ε, the set Fδn fits into a single ball of L2(Pn)-radius

ε around the origin, in which case the integrand on the right-hand-side

of (1) is zero.

This will definitely happen when ε is larger than θn, where

θ2
n ≡ sup

f∈Fδn
‖f‖2n =

∥∥∥∥∥
1

n

n∑

i=1

f2(Xi)

∥∥∥∥∥
Fδn

.
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Thus the right-hand-side of (1) is bounded by

∫ θn

0

√
logN(ε,Fδn , L2(Pn))dε

.
∫ θn

0

√
logN2(ε/2,F , L2(Pn))dε

.
∫ θn/(2‖F‖n)

0

√
logN(ε‖F‖n,F , L2(Pn))dε‖F‖n

. ‖F‖nJ(θn,F , L2).
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The second inequality follows from the change of variables

u = ε/(2‖F‖n) (and then renaming u to ε).

For the third inequality, note that we can add 1/2 to the envelope function

F without changing the existence of its second moment.

Hence ‖F‖n ≥ 1/2 without loss of generality, and thus

θn/(2‖F‖n) ≤ θn.
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Because ‖F‖n = Op(1), we can now conclude that the left-hand-side

of (1) goes to zero in probability, provided we can verify that θn
P→ 0.

This would then imply asymptotic L2(P )-equicontinuity in probability.

Since ‖Pf2‖Fδn → 0 and Fδn ⊂ F∞, establishing that

‖Pn − P‖F2∞
P→ 0

would prove that θn
P→ 0.
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The class F2
∞ has integrable envelope (2F )2 and is P -measurable by

assumption.

Since also, for any f, g ∈ F∞,

Pn|f2 − g2| ≤ Pn(|f − g|4F ) ≤ ‖f − g‖n‖4F‖n,

we have that the covering number

N(ε‖2F‖2n,F2
∞, L1(Pn))

is bounded by

N(ε‖F‖n,F∞, L2(Pn)).
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Since this last covering number is bounded by

sup
Q
N2(ε‖F‖Q,2/2,F , L2(Q)) <∞,

where the supremum is taken over all finitely discrete probability measures

with ‖F‖Q,2 > 0, we have by Theorem 2 that F2
∞ is P -Glivenko-Cantelli.

Thus θ̂n
P→ 0.

This completes the proof of asymptotic equicontinuity.
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The last thing we need to prove is that F is totally bounded in L2(P ).

By the result of the last paragraph, there exists a sequence of discrete

probability measures Pn with

‖(Pn − P )f2‖F∞ → 0.

Fix ε > 0 and take n large enough so that

‖(Pn − P )f2‖F∞ < ε2.
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Note that

N(ε,F , L2(Pn))

is finite by assumption, and, for any f, g ∈ F with ‖f − g‖Pn,2 < ε,

P (f − g)2 ≤ Pn(f − g)2 + |(Pn − P )(f − g)2| ≤ 2ε2.

Thus any ε-net in L2(Pn) is also a
√

2ε-net in L2(P ).

Hence F is totally bounded in L2(P ) since ε was arbitrary.2
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�� ��Entropy Calculations

The focus of this chapter is on computing entropy for empirical processes.

An important use of such entropy calculations is in evaluating whether a

class of functions F is Glivenko-Cantelli and/or Donsker or neither.

Some of these uses will be very helpful in Chapter 14 for establishing rates

of convergence for M-estimators.
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We begin the chapter by describing methods to evaluate uniform entropy.

Provided the uniform entropy for a class F is not too large, F might be

G-C or Donsker, as long as sufficient measurability holds.

One can think of this chapter as a handbag of tools for establishing weak

convergence properties of empirical processes.
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�
	Vapnik-C̆ervonenkis (VC) Classes

In this section, we introduce Vapnik-Červonenkis (VC) classes of sets,

VC-classes of functions, and several related function classes.

We then present several examples of VC-classes.

Consider an arbitrary collection {x1, . . . , xn} of points in a set X and a

collection C of subsets of X .
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We say that C picks out a certain subset A of {x1, . . . , xn} if

A = C ∩ {x1, . . . , xn} for some C ∈ C.

We say that C shatters {x1, . . . , xn} if all of the 2n possible subsets of

{x1, . . . , xn} are picked out by the sets in C.

The VC-index V (C) of the class C is the smallest n for which no set of

size n {x1, . . . , xn} ⊂ X is shattered by C.
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If C shatters all sets {x1, . . . , xn} for all n ≥ 1, we set V (C) =∞.

Clearly, the more refined C is, the higher the VC-index.

We say that C is a VC-class if V (C) <∞.
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For example, let X = R and define the collection of sets

C = {(−∞, c] : c ∈ R}.

Consider any two point set {x1, x2} ⊂ R and assume, without loss of

generality, that x1 < x2.

It is easy to verify that C can pick out the null set {} and the sets {x1}
and {x1, x2} but can’t pick out {x2}.

Thus V (C) = 2 and C is a VC-class.
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As another example, let C = {(a, b] : −∞ ≤ a < b ≤ ∞}.

The collection can shatter any two point set, but consider what happens

with a three point set {x1, x2, x3}.

Without loss of generality, assume x1 < x2 < x3, and note that the set

{x1, x3} cannot be picked out with C.

Thus V (C) = 3 in this instance.
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For any class of sets C and any collection {x1, . . . , xn} ⊂ X , let

∆n(C, x1, . . . , xn) be the number of subsets of {x1, . . . , xn} which

can be picked out by C.

A surprising combinatorial result is that if V (C) <∞, then

∆n(C, x1, . . . , xn) can increase in n no faster than O(nV (C)−1).
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This is more precisely stated in the following lemma:

LEMMA 3. For a VC-class of sets C,

max
x1,...,xn∈X

∆n(C, x1, . . . , xn) ≤
V (C)−1∑

j=1


 n

j


 .

Since the right-hand-side is bounded by V (C)nV (C)−1, the left-hand-side

grows polynomially of order at most O(nV (C)−1).

This is a corollary of Lemma 2.6.2 of VW, and we omit the proof.
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Let 1{C} denote the collection of all indicator functions of sets in the class

C.

The following theorem gives a bound on the Lr covering numbers of

1{C}:
THEOREM 6. There exists a universal constant K <∞ such that for any

VC-class of sets C, any r ≥ 1, and any 0 < ε < 1,

N(ε, 1{C}, Lr(Q)) ≤ KV (C)(4e)V (C)
(

1

ε

)r(V (C)−1)

.

This is Theorem 2.6.4 of VW, and we omit the proof.
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Since F = 1 serves as an envelope for 1{C}, we have as an immediate

corollary that, for

F = 1{C}, sup
Q
N(ε‖F‖1,Q,F , L1(Q)) <∞

and

J(1,F , L2) .
∫ 1

0

√
log(1/ε)dε =

∫ ∞

0
u1/2e−udu ≤ 1,

where the supremum is over all finite probability measures Q with

‖F‖Q,2 > 0.
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Thus the uniform entropy conditions required in the G-C and Donsker

theorems of the previous chapter are satisfied for indicators of VC-classes

of sets.

Since the constant 1 serves as a universally applicable envelope function,

these classes of indicator functions are therefore G-C and Donsker,

provided the requisite measurability conditions hold.
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For a function f : X 7→ R, the subset of X × R given by

{(x, t) : t < f(x)} is the subgraph of f .

A collection F of measurable real functions on the sample space X

• is a VC-subgraph class or VC-class (for short),

• if the collection of all subgraphs of functions in F forms a VC-class of

sets (as sets in X × R).

Let V (F) denote the VC-index of the set of subgraphs of F .
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VC-classes of functions grow at a polynomial rate just like VC-classes of

sets:

THEOREM 7. There exists a universal constant K <∞ such that, for any

VC-class of measurable functions F with integrable envelope F , any

r ≥ 1, any probability measureQ with ‖F‖Q,r > 0, and any 0 < ε < 1,

N(ε‖F‖Q,r,F , Lr(Q)) ≤ KV (F)(4e)V (F)

(
2

ε

)r(V (F)−1)

.

Thus VC-classes of functions easily satisfy the uniform entropy

requirements of the G-C and Donsker theorems of the previous chapter.
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A related kind of function class is the VC-hull class.

A class of measurable functions G is a VC-hull class if there exists a

VC-class F such that

• each f ∈ G is the pointwise limit of a sequence of functions {fm}

• in the symmetric convex hull of F (denoted sconvF ).

A function f is in sconvF if f =
∑m

i=1 αifi, where the αis are real

numbers satisfying
∑m

i=1 |αi| ≤ 1 and the fis are in F .
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The convex hull of a class of functions F , denoted convF , is similarly

defined but with the requirement that the αi’s are positive.

We use convF to denote pointwise closure of convF and sconvF to

denote the pointwise closure of sconvF .

Thus the class of functions F is a VC-hull class if F = sconvG for some

VC-class G.
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THEOREM 8. Let Q be a probability measure on (X ,A), and let F be a

class of measurable functions with measurable envelope F , such that

QF 2 <∞ and, for 0 < ε < 1,

N(ε‖F‖Q,2,F , L2(Q)) ≤ C
(

1

ε

)V
,

for constants C, V <∞ (possibly dependent on Q).

Then there exist a constant K depending only on V and C such that

logN(ε‖F‖Q,2, convF , L2(Q)) ≤ K
(

1

ε

)2V/(V+2)

.

This is Theorem 2.6.9 of VW, and we omit the proof.
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It is not hard to verify that sconvF is a subset of the convex hull of

F ∪ {−F} ∪ {0}, where−F ≡ {−f : f ∈ F} (see Exercise 9.6.1

below).

Since the covering numbers of F ∪ {−F} ∪ {0} are at most one plus

twice the covering numbers of F , the conclusion of Theorem 8 also holds

if convF is replaced with sconvF .
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This leads to the following easy corollary for VC-hull classes:

COROLLARY 1. For any VC-hull class F of measurable functions and all

0 < ε < 1,

sup
Q

logN(ε‖F‖Q,2,F , L2(Q)) ≤ K
(

1

ε

)2−2/V

, 0 < ε < 1,

where

• the supremum is taken over all probability measures Q with

‖F‖Q,2 > 0,

• V is the VC-index of the VC-subgraph class associated with F ,

• and the constant K <∞ depends only on V .
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