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�� ��Empirical Process Methods, Continued

Today, we will discuss the following basic concepts:

• The Rademacher Process

• The Symmetrization Inequality

• Measurability
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�� ��The Rademacher Process

We now consider an important sub-Gaussian process: the Rademacher

process

X(a) =
n∑
i=1

εiai, a ∈ Rn,

where ε1, . . . , εn are i.i.d. Rademacher random variables satisfying

P (ε = −1) = P (ε = 1) = 1/2.

We will verify shortly that this is indeed a sub-Gaussian process with

respect to the Euclidean distance d(a, b) = ‖a− b‖ (which obviously

makes T = Rn into a metric space).
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This process will emerge in our development of Donsker results based on

uniform entropy.

The following lemma verifies that Rademacher processes are

sub-Gaussian:

Lemma 8.7 (Hoeffding’s inequality). Let a = (a1, . . . , an) ∈ Rn and

ε1, . . . , εn be independent Rademacher random variables. Then

pr

(∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣ > x

)
≤ 2e−

1
2
x2/‖a‖2 ,

for the Euclidean norm ‖ · ‖.

Hence ‖
∑
εa‖ψ2 ≤

√
6‖a‖.

4



Empirical Processes: Lecture 11 Spring, 2014

Proof. For any λ and Rademacher variable ε, one has

Eeλε = (eλ + e−λ)/2 =
∞∑
i=0

λ2i/(2i)! ≤ eλ2/2,

where the last inequality follows from the relation (2i)! ≥ 2ii! for all

nonnegative integers.

Hence Markov’s inequality gives for any λ > 0

pr

(
n∑
i=1

εiai > x

)
≤ e−λxE exp

{
λ

n∑
i=1

εiai

}
≤ exp{(λ2/2)‖a‖2−λx}.

5



Empirical Processes: Lecture 11 Spring, 2014

Setting λ = x/‖a‖2 yields the desired upper bound.

Since multiplying ε1, . . . , εn by−1 does not change the joint distribution,

we obtain

pr

(
−

n∑
i=1

εiai > x

)
= pr

(
n∑
i=1

εiai > x

)
,

and the desired upper bound for the absolute value of the sum follows.

The bound on the ψ2-norm follows directly from Lemma 8.1.2
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We now discuss a powerful technique for empirical processes called

symmetrization.

We begin by defining the “symmetrized” empirical process

f 7→ P◦nf ≡ n−1
n∑
i=1

εif(Xi),

where ε1, . . . , εn are independent Rademacher random variables which

are also independent of X1, . . . , Xn.

The basic idea behind symmetrization is to replace supremums of the form

‖(Pn − P )f‖F with supremums of the form ‖P◦nf‖F .
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This replacement is very useful in Glivenko-Cantelli and Donsker theorems

based on uniform entropy.

Note that the processes (Pn − P )f and P◦nf both have mean zero.

A deeper connection between these two processes is that a Donsker

theorem or Glivenko-Cantelli theorem holds for one of these processes if

and only if it holds for the other.
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One potentially troublesome difficulty is that the supremums involved may

not be measurable.

In this setting, we will assume that X1, . . . , Xn are the coordinate

projections of the product space (X n,An, Pn), where (X ,A, P ) is the

probability space for a single observation andAn is the product σ-field

generated from the sets A1 × · · · ×An, where A1, . . . , An ∈ A.
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In some settings, an additional source of randomness, independent of

X1, . . . , Xn, will be involved which we will denote Z .

If we let the probability space for Z be (Z,D, Q), we will assume that the

resulting underlying joint probability space has the form

(X n,An, Pn)× (Z,D, Q) = (X n ×Z,An ×D, Pn ×Q),

where we define the product σ-fieldAn ×D in the same manner as

before.

Now X1, . . . , Xn are equal to the coordinate projections onto the first n

coordinates, while Z is equal to the coordinate projection onto the

(n+ 1)st coordinate.
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Theorem 8.8 (Symmetrization). For every nondecreasing, convex

φ : R 7→ R and class of measurable functions F ,

E∗φ

(
1

2
‖Pn − P‖F

)
≤ E∗φ (‖P◦n‖F )

≤ E∗φ (2‖Pn − P‖F + |Rn| · ‖P‖F ) ,

where Rn ≡ P◦n1 = n−1
∑n

i=1 εi and the outer expectations are

computed based on the product σ-field described above.
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Before giving the proof, we make a few observations.

Firstly, the constants 1/2, 1 and 2 appearing in front of the three

respective supremum norms in the chain of inequalities can all be replaced

by c/2, c and 2c, respectively, for any positive constant c.

This follows trivially since, for any positive c, x 7→ φ(cx) is nondecreasing

and convex whenever x 7→ φ(x) is nondecreasing and convex.
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Secondly, we note that most of our applications of this theorem will be for

the setting φ(x) = x.

Thirdly, we note that the first inequality in the chain of inequalities will be of

greatest use to us.

However, the second inequality in the chain can be used to establish the

following Glivenko-Cantelli result.
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Proposition 8.9. For any class of measurable functions F , TFAE:

(i) F is P -Glivenko-Cantelli and ‖P‖F <∞.

(ii) ‖P◦n‖F
as∗→ 0.

There is also a similar equivalence involving Donsker results which we will

discuss in Chapter 10.
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Proof of Theorem 8.8. Let Y1, . . . , Yn be independent copies of

X1, . . . , Xn.

Formally, Y1, . . . , Yn are the coordinate projections on the last n

coordinates in the product space

(X n,An, Pn)× (Z,D, Q)× (X n,An, Pn).
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Here, (Z,D, Q) is the probability space for the n-vector of independent

Rademacher random variables ε1, . . . , εn used in P◦n.

By Lemma 6.13 (coordinate projections are perfect maps), the outer

expectations in the theorem are unaffected by the enlarged product

probability space.
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For fixed X1, . . . , Xn,

‖Pn − P‖F = sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

[f(Xi)− Ef(Yi)]

∣∣∣∣∣
≤ E∗Y sup

f∈F

1

n

∣∣∣∣∣
n∑
i=1

[f(Xi)− f(Yi)]

∣∣∣∣∣ ,
where E∗Y is the outer expectation with respect to Y1, . . . , Yn computed

by treating the X1, . . . , Xn as constants and using the probability space

(X n,An, Pn).
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Applying Jensen’s inequality, we obtain

φ (‖Pn − P‖F ) ≤ EY φ

∥∥∥∥∥ 1n
n∑
i=1

[f(Xi)− f(Yi)]

∥∥∥∥∥
∗Y

F

 ,

where ∗Y denotes the minimal measurable majorant of the supremum

with respect to Y1, . . . , Yn and holding X1, . . . , Xn fixed.

Because φ is nondecreasing and continuous, the ∗Y inside of the φ in the

above can be removed after replacing EY with E∗Y , as a consequence of

Lemma 6.8 (part A(i)).
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Now take the expectation of both sides with respect to X1, . . . , Xn to

obtain

E∗φ (‖Pn − P‖F ) ≤ E∗XE∗Y φ

(
1

n

∥∥∥∥∥
n∑
i=1

[f(Xi)− f(Yi)]

∥∥∥∥∥
F

)
.

The repeated outer expectation can now be bounded above by the joint

outer expectation E∗ by Lemma 6.14 (Fubini’s theorem for outer

expectations).
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By the product space structure of the underlying probability space, the

outer expectation of any function g(X1, . . . , Xn, Y1, . . . , Yn) remains

unchanged under permutations of its 2n arguments.

Since

−[f(Xi)− f(Yi)] = [f(Yi)− f(Xi)],

we have for any n-vector (e1, . . . , en) ∈ {−1, 1}n, that∥∥∥∥∥n−1
n∑
i=1

ei[f(Xi)− f(Yi)]

∥∥∥∥∥
F

is just a permutation of

h(X1, . . . , Xn, Y1, . . . , Yn) ≡

∥∥∥∥∥n−1
n∑
i=1

[f(Xi)− f(Yi)]

∥∥∥∥∥
F

.
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Hence

E∗φ (‖Pn − P‖F ) ≤ EεE
∗
X,Y φ

∥∥∥∥∥ 1n
n∑
i=1

ei[f(Xi)− f(Yi)]

∥∥∥∥∥
F

.

Now the triangle inequality combined with the convexity of φ yields

E∗φ (‖Pn − P‖F ) ≤ EεE
∗
X,Y φ (2‖P◦n‖F ) ,

Since φ(a+ b) ≤ (φ(2a) + φ(2b))/2.
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By the perfectness of coordinate projections, E∗X,Y can be replaced by

E∗XE∗Y .

Now EεE
∗
XE∗Y is bounded above by the joint expectation E∗ by

reapplication of Lemma 6.14 (outer Fubini’s).

This proves the first inequality.
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For the second inequality, let Y1, . . . , Yn be independent copies of

X1, . . . , Xn as before.

Holding X1, . . . , Xn and ε1, . . . , εn fixed, we have

‖P◦nf‖F = ‖P◦n(f − Pf) + P◦nPf‖F
= ‖P◦n(f − Ef(Y )) +RnPf‖F

≤ E∗Y

∥∥∥∥∥ 1n
n∑
i=1

εi[f(Xi)− f(Yi)]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F .
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Applying Jensen’s inequality, we now have

φ (‖P◦n‖F ) ≤ E∗Y φ

(∥∥∥∥∥ 1n
n∑
i=1

εi[f(Xi)− f(Yi)]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)
.

Using the permutation argument we used previously, we can replace the

ε1, . . . , εn in the summation with all 1’s, and take expectations with

respect to X1, . . . , Xn and ε1, . . . , εn (which are still present in Rn).
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This gives us

E∗φ (‖P◦n‖F ) ≤ EεE
∗
XE∗Y φ

(∥∥∥∥∥ 1n
n∑
i=1

[f(Xi)− f(Yi)]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)
.

After adding and subtracting Pf in the summation and applying the

convexity of φ, we can bound the right-hand-side by

25



Empirical Processes: Lecture 11 Spring, 2014

1

2
EεE
∗
XE∗Y φ

(
2

∥∥∥∥∥ 1n
n∑
i=1

[f(Xi)− Pf ]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)

+
1

2
EεE
∗
XE∗Y φ

(
2

∥∥∥∥∥ 1n
n∑
i=1

[f(Yi)− Pf ]

∥∥∥∥∥
F

+ |Rn| · ‖P‖F

)
.

By reapplication of the permutation argument and Lemma 6.14 (outer

Fubini’s), we obtain the desired upper bound.2
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�� ��Measurability

The above symmetrization results will be most useful when the supremum

‖P◦n‖F is measurable and Fubini’s theorem permits taking the expectation

• first with respect to ε1, . . . , εn given X1, . . . , Xn and

• secondly with respect to X1, . . . , Xn.

Without this measurability, only the weaker version of Fubini’s theorem for

outer expectations applies (Lemma 6.14), and thus the desired reordering

of expectations may not be valid.
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To overcome this difficulty, we will assume that the class F is a

P -measurable class.

A class F of measurable functions f : X 7→ R, on the probability space

(X ,A, P ), is P -measurable if

(X1, . . . , Xn) 7→

∥∥∥∥∥
n∑
i=1

eif(Xi)

∥∥∥∥∥
F

is measurable on the completion of (X n,An, Pn) for every constant

vector (e1, . . . , en) ∈ Rn.
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It is possible to weaken this condition, but at least some measurability

assumptions will usually be needed.

In the Donsker theorem for uniform entropy, it will be necessary to assume

that several related classes of F are also P -measurable:

• Fδ ≡ {f − g : f, g ∈ F , ‖f − g‖P,2 < δ}, for all δ > 0, and

• F2
∞ ≡ {(f − g)2 : f, g ∈ F} (recall that ‖f‖P,2 ≡ (Pf2)1/2).
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Another assumption on F that is stronger than P -measurability but often

easier to verify in statistical applications is pointwise measurability.

A class F of measurable functions is pointwise measurable if there exists

a countable subset G ⊂ F such that for every f ∈ F , there exists a

sequence {gm} ∈ G with gm(x)→ f(x) for every x ∈ X .
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Since, by Exercise 8.5.6,

‖
∑

eif(Xi)‖F = ‖
∑

eif(Xi)‖G

for all (e1, . . . , en) ∈ Rn, pointwise measurable classes are

P -measurable for all P .

Consider, for example, the class F = {1{x ≤ t} : t ∈ R} where the

sample space X = R.
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Let G = {1{x ≤ t} : t ∈ Q}, and fix the function

x 7→ f(x) = 1{x ≤ t0}

for some t0 ∈ R.

Note that G is countable.

Let {tm} be a sequence of rationals with tm ≥ t0, for all m ≥ 1, and

with tm ↓ t0.
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Then x 7→ gm(x) = 1{x ≤ tm} satisfies gm ∈ G, for all m ≥ 1, and

gm(x)→ f(x) for all x ∈ R.

Since t0 was arbitrary, we have just proven that F is pointwise

measurable (and hence also P -measurable for all P ).
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Hereafter, we will use the abbreviation PM as a shorthand for denoting

pointwise measurable classes.

Another nice feature of PM classes is that they have a number of useful

preservation features.

An obvious example is that when F1 and F2 are PM classes, then so is

F1 ∪ F2.
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The following lemma provides a number of additional preservation results:

Lemma 8.10. Let F1, . . . ,Fk be PM classes of real functions on X , and

let φ : Rk 7→ R be continuous.

Then the class φ ◦ (F1, . . . ,Fk) is PM, where φ ◦ (F1, . . . ,Fk)
denotes the class

{φ(f1, . . . , fk) : (f1, . . . , fk) ∈ F1 × · · · × Fk} .
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Lemma 8.10 automatically yields many other useful PM preservation

results, including the following for PM classes F1 and F2:

• F1 ∧ F2 (all possible pairwise minimums) is PM.

• F1 ∨ F2 (all possible pairwise maximums) is PM.

• F1 + F2 is PM.

• F1 · F2 ≡ {f1f2 : f1 ∈ F1, f2 ∈ F2} is PM.

These are useful to establish Donsker properties for important statistical

settings.
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The following proposition shows an additional property of PM classes that

potentially simplifies the measurability requirements of the Donsker

theorem for uniform entropy, Theorem 8.19, given in Section 8.4:

Proposition 8.11. Let F be a class of measurable functions f : X 7→ R
on the probability space (X ,A, P ).

Provided F is PM with envelope F such that P ∗F 2 <∞, then Fδ and

F2
∞ are PM for all 0 < δ ≤ ∞.

37



Empirical Processes: Lecture 11 Spring, 2014

We next consider establishing P -measurability for the class{
1{Y − βTZ ≤ t} : β ∈ Rk, t ∈ R

}
,

where

X ≡ (Y,Z) ∈ X ≡ R× Rk

has distribution P , for arbitrary P .

This class was considered in the linear regression example of Section 4.1.
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The desired measurability result is stated in the following lemma:

Lemma 8.12. Let

F ≡
{

1{Y − βTZ ≤ t} : β ∈ Rk, t ∈ R
}
.

Then the classes F ,

Fδ ≡ {f − g : f, g ∈ F , ‖f − g‖P,2 < δ} ,

and

F2
∞ ≡

{
(f − g)2 : f, g ∈ F

}
are all P -measurable for 0 < δ ≤ ∞ and any probability measure on X .
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