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Maximal inequalities are a very powerful tool in empirical processes.

A very useful class of norms used in maximal inequalities are the Orlicz

norms for a real random variable X , defined for a given nondecreasing,

nonzero convex function ψ : [0,∞] 7→ [0,∞], with ψ(0) = 0.

The Orlicz norm of X , ‖X‖ψ , also called the ψ-norm, is

‖X‖ψ ≡ inf

{
c > 0 : Eψ

(
|X|
c

)
≤ 1

}
,

where the norm takes the value∞ if no finite c exists with

Eψ(|X|/c) ≤ 1.
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Exercise 8.5.1 verifies that ‖ · ‖ψ is indeed a norm on the space of

random variables with ‖X‖ψ <∞.

When ψ is of the form x 7→ xp, where p ≥ 1, the corresponding Orlicz

norm is just the Lp-norm

‖X‖p ≡ (E|X|p)1/p.
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For maximal inequalities, Orlicz norms defined with ψp(x) ≡ exp − 1, for

p ≥ 1, are of greater interest because of their sensitivity to behavior in the

tails.

Clearly, since xp ≤ ψp(x), we have ‖X‖p ≤ ‖X‖ψp .

Also, by the series representation for exponentiation,

‖X‖p ≤ (p!)1/p‖X‖ψ1 for all p ≥ 1.
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Orlicz norms based on ψp relate fairly precisely to the tail probabilities:

LEMMA 1. For a real random variable X and any p ∈ [1,∞), the

following are equivalent:

(i) ‖X‖ψp <∞.

(ii) There exist constants 0 < C,K <∞ such that

pr(|X| > x) ≤ Ke−Cx
p
, for all x > 0. (1)
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An important use for Orlicz norms is to control the behavior of maxima.

This control is somewhat of an extension of the following simple result for

Lp-norms:

For any random variables X1, . . . , Xm,∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
p

≤
(

E max
1≤i≤m

|Xi|p
)1/p

≤

(
E

m∑
i=1

|Xi|p
)1/p

≤ m1/p max
1≤i≤m

‖Xi‖p.
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A similar result holds for certain Orlicz norms:

LEMMA 2. Let ψ : [0,∞) 7→ [0,∞) be convex, nondecreasing and

nonzero, with ψ(0) = 0 and

lim sup
x,y→∞

ψ(x)ψ(y)

ψ(cxy)
<∞

for some constant c <∞.

Then, for any random variables X1, . . . , Xm,∥∥∥∥ max
1≤i≤m

Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
1≤i≤m

‖Xi‖ψ,

where the constant K depends only on ψ.
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An important consequence of Lemma 2 is that maximums of random

variables with bounded ψ-norm grow at the rate ψ−1(m).

Based on Exercise 8.5.4, ψp satisfies the conditions of Lemma 2 with

c = 1, for any p ∈ [1,∞).

The implication is that the growth of maxima is at most logarithmic, since

ψ−1p (m) = (log(m+ 1))1/p.

These results will prove quite useful in the next section.
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�� ��Maximal Inequalities for Processes

The goals of this section are to first establish a general maximal inequality

for separable stochastic processes and then specialize to sub-Gaussian

processes.

A stochastic process {X(t), t ∈ T} is separable when there exists a

countable subset T∗ ⊂ T such that

sup
t∈T

inf
s∈T∗
|X(t)−X(s)| = 0

almost surely.
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For example, any cadlag process indexed by a closed interval in R is

separable because the rationals are a separable subset of R.

The need for separability of certain processes in the Glivenko-Cantelli and

Donsker theorems is hidden in other conditions of the involved theorems,

and direct verification of separability is seldom required in statistical

applications.
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A stochastic process is sub-Gaussian when

P (|X(t)−X(s)| > x) ≤ 2e−
1
2
x2/d2(s,t),

for all s, t ∈ T , x > 0, (2)

for a semimetric d on T .

In this case, we say that X is sub-Gaussian with respect to d.
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An important example of a separable sub-Gaussian stochastic process,

the Rademacher process, will be presented later.

These processes will be utilized later in this chapter in the development of

a Donsker theorem based on uniform entropy.

Another example of a sub-Gaussian process is Brownian motion on [0, 1],

which can easily be shown to be sub-Gaussian with respect to

d(s, t) = |s− t|1/2.

Because the sample paths are continuous, Brownian motion is also

separable.

12



Empirical Processes: Lecture 10 Spring, 2014

The conclusion of Lemma 2 above is not immediately useful for

maximizing X(t) over t ∈ T since a potentially infinite number of random

variables is involved.

However, a method called chaining, does make such maximization

possible in some settings.

The technique depends on the metric entropy of the index set T based on

the semimetric d(s, t) = ‖X(s)−X(t)‖ψ .
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For an arbitrary semimetric space (T, d), the covering numberN(ε, T, d)

is the minimal number of closed d-balls of radius ε required to cover T .

The packing number D(ε, T, d) is the maximal number of points that can

fit in T while maintaining a distance greater than ε between all points.

When the choice of index set T is clear by context, the notation will be

abbreviated as N(ε, d) and D(ε, d), respectively.

The associated entropy numbers are the respective logarithms of the

covering and packing numbers.
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Taken together, these concepts define metric entropy.

For a semimetric space (T, d) and each ε > 0,

N(ε, d) ≤ D(ε, d) ≤ N(ε/2, d).

To see this, note that there exists a maximal subset Tε ⊂ T such that the

cardinality of Tε = D(ε, d) and the minimum distance between distinct

points in Tε is > ε.
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If we now place closed ε-balls around each point in Tε, we have a covering

of T .

If this were not true,

• there would exist a point t ∈ T which has distance > ε from all the

points in Tε,

• but this would mean that D(ε, d) + 1 points can fit into T while still

maintaining a separation > ε between all points.

• But this contradicts the maximality of D(ε, d).

Thus N(ε, d) ≤ D(ε, d).
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Now note that no ball of radius≤ ε/2 can cover more than one point in

Tε, and thus at least D(ε, d) closed ε/2-balls are needed to cover Tε.

Hence D(ε, d) ≤ N(ε/2, d).

This discussion reveals that covering and packing numbers are essentially

equivalent in behavior as ε ↓ 0.
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However, it turns out to be slightly more convenient for our purposes to

focus on packing numbers in this section.

Note that T is totally bounded if and only if D(ε, d) is finite for each

ε > 0.

The success of the upcoming maximal inequality depends on how fast

D(ε, d) increases as ε ↓ 0.
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THEOREM 1. (General maximal inequality) Let ψ satisfy the conditions of

Lemma 2, and let {X(t), t ∈ T} be a separable stochastic process with

‖X(s)−X(t)‖ψ ≤ rd(s, t), for all s, t ∈ T , some semimetric d on T ,

and a constant r <∞.

Then for any η, δ > 0,∥∥∥∥∥ sup
s,t∈T :d(s,t)≤δ

|X(s)−X(t)|

∥∥∥∥∥
ψ

≤ K

[∫ η

0
ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))

]
,

for a constant K <∞ which depends only on ψ and r.
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Moreover,∥∥∥∥∥ sup
s,t∈T

|X(s)−X(t)|

∥∥∥∥∥
ψ

≤ 2K

∫ diamT

0
ψ−1(D(ε, d))dε,

where diamT ≡ sups,t∈T d(s, t) is the diameter of T .
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Proof: Note that if the first integral were infinite, the inequalities would be

trivially true.

Hence we can, without loss of generality, assume that the packing

numbers and associated integral are bounded.

Construct a sequence of finite nested sets T0 ⊂ T1 ⊂ · · · ⊂ T such that

for each Tj ,

• d(s, t) > η2−j for every distinct s, t ∈ Tj , and

• each Tj is “maximal” in the sense that no additional points can be

added to Tj without violating the inequality.
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Note that by the definition of packing numbers, the number of points in Tj

is bounded above by D(η2−j , d).

Now we will do the chaining part of the proof.

Begin by “linking” every point tj+1 ∈ Tj+1 to one and only one tj ∈ Tj
such that d(tj , tj+1) ≤ η2−j , for all points in Tj+1.

Continue this process to link all points in Tj with points in Tj−1, and so

on, to obtain for every tj+1 (∈ Tj+1) a chain tj+1, tj , tj−1, . . . , t0 that

connects to a point in T0.
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For any integer k ≥ 0 and arbitrary points sk+1, tk+1 ∈ Tk+1, the

difference in increments along their respective chains connecting to s0, t0

can be bounded as follows:

|{X(sk+1)−X(tk+1)} − {X(s0)−X(t0)}|

=

∣∣∣∣∣∣
k∑
j=0

{X(sj+1)−X(sj)} −
k∑
j=0

{X(tj+1)−X(tj)}

∣∣∣∣∣∣
≤ 2

k∑
j=0

max |X(u)−X(v)|,

where for fixed j the max is taken over all links (u, v) from Tj+1 to Tj .

Hence the jth maximum is taken over at most the cardinality of Tj+1 links,

with each link having ‖X(u)−X(v)‖ψ bounded by rd(u, v) ≤ rη2−j .
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By Lemma 2, we have for a constant K0 <∞ depending only on ψ & r,∥∥∥∥ max
s,t∈Tk+1

|{X(s)−X(s0)} − {X(t)−X(t0)}|
∥∥∥∥
ψ

(3)

≤ K0

k∑
j=0

ψ−1(D(η2−j−1, d))η2−j

= 4K0

k∑
j=0

ψ−1(D(η2−k+j−1, d))η2−k+j−2

≤ 4ηK0

∫ 1

0
ψ−1(D(ηu, d))du

= 4K0

∫ η

0
ψ−1(D(ε, d))dε.
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In this bound, s0 and t0 depend on s and t in that they are the endpoints

of the chains starting at s and t, respectively.

The maximum of the increments |X(sk+1)−X(tk+1)|, over all sk+1

and tk+1 in Tk+1 with d(sk+1, tk+1) < δ, is bounded by

• the left-hand-side of (3)

• plus the maximum of the discrepancies at the ends of the chains

|X(s0)−X(t0)| for those points in Tk+1 which are less than δ

apart.
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For every such pair of endpoints s0, t0 of chains starting at two points in

Tk+1 within distance δ of each other, choose one and only one pair

sk+1, tk+1 in Tk+1, with d(sk+1, tk+1) < δ, whose chains end at

s0, t0.

By definition of T0, this results in at most D2(η, d) pairs.
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Now,

|X(s0)−X(t0)| ≤ |{X(s0)−X(sk+1)} − {X(t0)−X(tk+1)}|

+|X(sk+1)−X(tk+1)|. (4)

Take the maximum of (4) over all pairs of endpoints s0, t0.

27



Empirical Processes: Lecture 10 Spring, 2014

The maximum of the first term of the right-hand-side of (4) is bounded by

the left-hand-side of (3).

The maximum of the second term of the right-hand-side of (4) is the

maximum of D2(η, d) terms with ψ-norm bounded by rδ.

By Lemma 2, this maximum is bounded by some constant C times

δψ−1(D2(η, d)).
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Combining this with (3), we obtain∥∥∥∥ max
s,t∈Tk+1:d(s,t)<δ

|X(s)−X(t)|
∥∥∥∥
ψ

≤ 8K0

∫ η

0
ψ−1(D(ε, d))dε+ Cδψ−1(D2(η, d)).

By the fact that the right-hand-side does not depend on k, we can replace

Tk+1 with T∞ = ∪∞j=0Tj by the monotone convergence theorem.

29



Empirical Processes: Lecture 10 Spring, 2014

If we can verify that taking the supremum over T∞ is equivalent to taking

the supremum over T , then the first conclusion of the theorem follows with

K = (8K0) ∨ C .

Since X is separable, there exists a countable subset T∗ ⊂ T such that

supt∈T infs∈T∗ |X(t)−X(s)| = 0 almost surely.

Let Ω∗ denote the subset of the sample space of X for which this

supremum is zero.

Accordingly pr(Ω∗) = 1.
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Now, for any point t and sequence {tn} in T , it is easy to see that

d(t, tn)→ 0 implies |X(t)−X(tn)| → 0 almost surely (see

Exercise 8.5.5).

For each t ∈ T∗, let Ωt be the subset of the sample space of X for which

infs∈T∞ |X(s)−X(t)| = 0.

Since T∞ is a dense subset of the semimetric space (T, d), pr(Ωt) = 1.

Letting Ω̃ ≡ Ω∗ ∩ (∩t∈T∗Ωt), we now have pr(Ω̃) = 1.
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This, combined with the fact that

sup
t∈T

inf
s∈T∞

|X(t)−X(s)| ≤ sup
t∈T

inf
s∈T∗
|X(t)−X(s)|

+ sup
t∈T∗

inf
s∈T∞

|X(s)−X(t)|,

implies that supt∈T infs∈T∞ |X(t)−X(s)| = 0 almost surely.

Thus taking the supremum over T is equivalent to taking the supremum

over T∞.
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The second conclusion of the theorem follows from the previous result by

setting δ = η = diamT and noting that, in this case, D(η, d) = 1.

Now we have

δψ−1(D2(η, d)) = ηψ−1(D(η, d))

=

∫ η

0
ψ−1(D(η, d))dε

≤
∫ η

0
ψ−1(D(ε, d))dε,

and the second conclusion follows.2
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As a consequence of Exercise 8.5.5 below, the conclusions of Theorem 1

show that X has d-continuous sample paths almost surely whenever the

integral
∫ η
0 ψ
−1(D(ε, d))dε is bounded for some η > 0.

It is also easy to verify that the maximum of the process of X is bounded,

since

‖ sup
t∈T

X(t)‖ψ ≤ ‖X(t0)‖ψ + ‖ sup
s,t∈T

|X(t)−X(s)| ‖ψ,

for any choice of t0 ∈ T .

Thus X is tight and takes its values in UC(T, d) almost surely.

These results will prove quite useful in later developments.
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An important application of Theorem 1 is to sub-Gaussian processes:

COROLLARY 1. Let {X(t), t ∈ T} be a separable sub-Gaussian process

with respect to d.

Then for all δ > 0,

E

(
sup

s,t∈T :d(s,t)≤δ
|X(s)−X(t)|

)
≤ K

∫ δ

0

√
logD(ε, d)dε,

where K is a universal constant.
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Also, for any t0 ∈ T ,

E

(
sup
t∈T
|X(t)|

)
≤ E|X(t0)|+K

∫ diamT

0

√
logD(ε, d)dε.

Proof. Apply Theorem 1 with ψ = ψ2 and η = δ.

Because ψ−12 (m) =
√

log(1 +m),

ψ−12 (D2(δ, d)) ≤
√

2ψ−12 (D(δ, d)).
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Hence the second term of the general maximal inequality can be replaced

by
√

2δψ−1(D(δ, d)) ≤
√

2

∫ δ

0
ψ−1(D(ε, d))dε,

and we obtain∥∥∥∥∥ sup
d(s,t)≤δ

|X(s)−X(t)|

∥∥∥∥∥
ψ2

≤ K
∫ δ

0

√
log(1 +D(ε, d))dε,

for an enlarged universal constant K .

Note that D(ε, d) ≥ 2 for all ε strictly less than diamT .
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Since (1 +m) ≤ m2 for all m ≥ 2, the 1 inside of the logarithm can be

removed at the cost of increasing K again, whenever δ < diamT .

Thus it is also true for all δ ≤ diamT .

We are done with the first conclusion since d(s, t) ≤ diamT for all

s, t ∈ T .

Since the second conclusion is an easy consequence of the first, the proof

is complete.2

38


