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�� ��Stochastic Convergence

Today, we will discuss the following basic concepts:

• Spaces of Bounded Functions

• Other Modes of Convergence

• Continuous Mapping Revisited

• Outer Almost Sure Representation Theorem

• Example: The Cramér-von Mises Statistic
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�� ��Spaces of Bounded Functions

Now we consider stochastic processes Xn with index set T .

The natural metric space for weak convergence in this setting is `∞(T ).
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A nice feature of this setting is the fact that asymptotic measurability of Xn

follows from asymptotic measurability of Xn(t) for each t ∈ T :

Lemma 7.16. Let the sequence of maps Xn in `∞(T ) be asymptotically

tight. Then Xn is asymptotically measurable if and only if Xn(t) is

asymptotically measurable for each t ∈ T .
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Theorem 7.17. The sequence Xn converges to a tight limit in `∞(T ) if

and only if Xn is asymptotically tight and all finite-dimensional marginals

converge weakly to limits.

Moreover, if Xn is asymptotically tight and all of its finite-dimensional

marginals

(Xn(t1), . . . , Xn(tk))

converge weakly to the marginals

(X(t1), . . . , X(tk))

of a stochastic process X , then there is a version of X such that

Xn ; X and X resides in UC(T, ρ) for some semimetric ρ making T

totally bounded.
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Recall from Chapter 2:

Theorem 2.1. Xn converges weakly to a tight X in `∞(T ) if and only if:

(i) For all finite {t1, . . . , tk} ⊂ T , the multivariate distribution of

{Xn(t1), . . . , Xn(tk)} converges to that of {X(t1), . . . , X(tk)}.

(ii) There exists a semimetric ρ for which T is totally bounded and

lim
δ↓0

lim sup
n→∞

P ∗

{
sup

s,t∈T with ρ(s,t)<δ
|Xn(s)−Xn(t)| > ε

}
= 0,

for all ε > 0.
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The proof of Theorem 2.1 (which we omit) shows that whenever Xn ; X

and X is tight, any semimetric ρ defining a σ-compact set UC(T, ρ) with

pr(X ∈ UC(T, ρ)) = 1

will also result in Xn being uniformly ρ-equicontinuous in probability.

What is not clear at this point is the converse:

• that any semimetric ρ∗ which enables uniform asymptotic

equicontinuity

• will also define a σ-compact set UC(T, ρ∗) wherein X resides with

probability 1.
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The following theorem settles this question:

Theorem 7.19. Assume Xn ; X in `∞(T ), and let ρ be a semimetric

making (T, ρ) totally bounded. TFAE:

(i) Xn is asymptotically uniformly ρ-equicontinuous in probability.

(ii) pr(X ∈ UC(T, ρ)) = 1.
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An interesting consequence of Theorems 2.1 and 7.19, in conjunction with

Lemma 7.4, happens when Xn ; X in `∞(T ) and X is a tight

Gaussian process.

Recall from Section 7.1 the semimetric

ρp(s, t) ≡ (E|X(s)−X(t)|p)1/(p∨1),

for any p ∈ (0,∞).
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Then for any p ∈ (0,∞),

• (T, ρp) is totally bounded,

• the sample paths of X are ρp-continuous, and

• Xn is asymptotically uniformly ρp-equicontinuous in probability.

While any value of p ∈ (0,∞) will work, the choice p = 2 (the “standard

deviation” metric) is often the most convenient to work with.
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We now point out an equivalent—but sometimes easier to work

with—condition for Xn to be asymptotically uniformly ρ-equicontinuous in

probability:

Lemma 7.20. Let Xn be a sequence of stochastic processes indexed by

T . TFAE:

(i) There exists a semimetric ρ making T totally bounded and for which

Xn is uniformly ρ-equicontinuous in probability.

(ii) For every ε, η > 0, there exists a finite partition T = ∪ki=1Ti such

that

lim sup
n→∞

P∗

(
sup

1≤i≤k
sup
s,t∈Ti

|Xn(s)−Xn(t)| > ε

)
< η.

11



Empirical Processes: Lecture 09 Spring, 2014

�� ��Other Modes of Convergence

Recall from Chapter 2 the following modes of convergence:

convergence in probability: Xn
P→ X if P{d(Xn, X)∗ > ε} → 0 for

every ε > 0.

outer almost sure convergence: Xn
as∗→ X if there exists a sequence

∆n of measurable random variables such that

• d(Xn, X) ≤ ∆n and

• P{lim supn→∞∆n = 0} = 1.
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We now introduce two additional modes of convergence which can be

useful in some settings:

almost uniform convergence: Xn converges almost uniformly to X if,

for every ε > 0, there exists a measurable set A such that

pr(A) ≥ 1− ε

and d(Xn, X)→ 0 uniformly on A.

almost sure convergence: Xn converges almost surely to X if

P∗( lim
n→∞

d(Xn, X) = 0) = 1.
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Note that an important distinction between almost sure and outer almost

sure convergence is that, in the latter mode, there must exist a measurable

majorant of d(Xn, X) which goes to zero.

This distinction is quite important because almost sure convergence does

not in general imply convergence in probability when d(Xn, X) is not

measurable.

For this reason, we do generally not use the almost sure convergence

mode except rarely.
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Here are key relationships among the three remaining modes:

Lemma 7.21. Let Xn, X : Ω 7→ D be maps with X Borel measurable.

Then

(i) Xn
as∗→ X implies Xn

P→ X .

(ii) Xn
P→ X if and only if every subsequence Xn′ has a further

subsequence Xn′′ such that Xn′′
as∗→ X .

(iii) Xn
as∗→ X if and only if Xn converges almost uniformly to X if and

only if supm≥n d(Xm, X)
P→ 0.

Since almost uniform convergence and outer almost sure convergence are

equivalent for sequences, we will not use the almost uniform mode much.
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The next lemma describes several important relationships between weak

convergence and convergence in probability.

Before presenting it, we need to extend the definition of convergence in

probability—in the setting where the limit is a constant—to allow the

probability spaces involved to change with n as is already permitted for

weak convergence.

We denote this modified convergence Xn
P→ c, and distinguish it from the

previous form of convergence in probability only by context.
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Lemma 7.23. Let Xn, Yn : Ωn 7→ D be maps, X : Ω 7→ D be Borel

measurable, and c ∈ D be a constant. Then

(i) If Xn ; X and d(Xn, Yn)
P→ 0, then Yn ; X .

(ii) Xn
P→ X implies Xn ; X .

(iii) Xn
P→ c if and only if Xn ; c.
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Proof. We first prove (i).

Let F ⊂ D be closed, and fix ε > 0. Then

lim sup
n→∞

P∗(Yn ∈ F ) = lim sup
n→∞

P∗(Yn ∈ F, d(Xn, Yn)∗ ≤ ε)

≤ lim sup
n→∞

P∗(Xn ∈ F ε)

≤ P (X ∈ F ε).

The result follows by letting ε ↓ 0.
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Now assume Xn
P→ X .

Since X ; X , d(X,Xn)
P→ 0 implies Xn ; X by (i).

This follows by taking in (i) Xn = X and Yn = Xn.

Thus (ii) follows.
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We now prove (iii).

Xn
P→ c implies Xn ; c by (ii).

Now assume Xn ; c, and fix ε > 0.
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Note that

P∗(d(Xn, c) ≥ ε) = P∗(Xn 6∈ B(c, ε)),

where B(c, ε) is the open ε-ball around c ∈ D.

By the portmanteau theorem,

lim sup
n→∞

P∗(Xn 6∈ B(c, ε)) ≤ pr(X 6∈ B(c, ε)) = 0.

Thus Xn
P→ c since ε is arbitrary, and (iii) follows.2
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�� ��Continuous Mapping Revisited

We now present a generalized continuous mapping theorem for

sequences of maps gn which converge to g.

For example, suppose T is high dimensional.

The computational burden of computing the supremum of Xn(t) over T

may be reduced by choosing a finite mesh Tn which closely approximates

T .
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Theorem 7.24 (Extended continuous mapping). Let Dn ⊂ D and

gn : Dn 7→ E satisfy the following: if xn → x with xn ∈ Dn for all

n ≥ 1 and x ∈ D0, then

gn(xn)→ g(x),

where D0 ⊂ D and g : D0 7→ E.

Let Xn be maps taking values in Dn, and let X be Borel measurable and

separable with P∗(X ∈ D0) = 1. Then

(i) Xn ; X implies gn(Xn) ; g(X).

(ii) Xn
P→ X implies gn(Xn)

P→ g(X).

(iii) Xn
as∗→ X implies gn(Xn)

as∗→ g(X).
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The following alternative theorem does not require separability of X and is

a supplement to Theorem 7.7:

Theorem 7.25. Let g : D 7→ E be continuous at all points in D0 ⊂ D, and

let X be Borel measurable with P∗(X ∈ D0) = 1. Then

(i) Xn
P→ X implies g(Xn)

P→ g(X).

(ii) Xn
as∗→ X implies g(Xn)

as∗→ g(X).
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�� ��Outer Almost Sure Representation Theorem

We now present a useful outer almost sure representation result for weak

convergence.

Such representations allow the transformation of certain weak

convergence problems into problems about convergence of fixed

sequences.

We give an illustration of this approach in the sketch of the proof of

Proposition 7.27 below.
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Theorem 7.26. Let Xn : Ωn 7→ D be a sequence of maps, and let X∞

be Borel measurable and separable.

If Xn ; X∞, then there exists a probability space (Ω̃, Ã, P̃ ) and maps

X̃n : Ω̃ 7→ D with

(i) X̃n
as∗→ X̃∞;

(i) E∗f(X̃n) = E∗f(Xn), for every bounded f : D 7→ R and all

1 ≤ n ≤ ∞.

Moreover, X̃n can be chosen to be equal to Xn ◦ φn, for all

1 ≤ n ≤ ∞, where the φn : Ω̃ 7→ Ωn are measurable and perfect maps

and Pn = P̃ ◦ φ−1n .
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Recall our previous discussion about perfect maps.

In the setting of the above theorem, if the X̃n are constructed from the

perfect maps φn, then[
f(X̃n)

]∗
= [f(Xn)]∗ ◦ φn

for all bounded f : D 7→ R.

Thus the equivalence between X̃n and Xn can be made much stronger

than simply equivalence in law.
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The following proposition can be useful in studying weak convergence of

certain statistics which can be expressed as stochastic integrals.

For example, the Wilcoxon and Cramér-von Mises statistics can be

expressed in this way.

Proposition 7.27. Let Xn, Gn ∈ D[a, b] be stochastic processes with

Xn ; X and Gn
P→ G in D[a, b], where X has continuous sample

paths, G is fixed, and Gn and G have total variation bounded by

K <∞. Then∫ (·)

a
Xn(s)dGn(s) ;

∫ (·)

a
X(s)dG(s)

in D[a, b].
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Sketch of Proof. First, Slutsky’s theorem and Lemma 7.23 establish that

(Xn, Gn) ; (X,G).

Next, Theorem 7.26 tells us that there exists a new probability space and

processes X̃n, X̃ , G̃n and G̃ which have the same outer integrals for

bounded functions as Xn, X , Gn and G, respectively, but which also

satisfy

(X̃n, G̃n)
as∗→ (X̃, G̃).
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Fix ε > 0.

By the continuity of the sample paths of X̃ over the compact [a, b] (which

can include extended reals), we have that there exists an integer

1 ≤ m <∞ and a partition of [a, b], a = t0 < t1 < · · · < tm = b,

where

max
1≤j≤m

sup
s,t∈(tj−1,tj ]

|X̃(s)− X̃(t)| ≤ ε.
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Define X̃m ∈ D[a, b] such that X̃m(a) = X̃(a) and

X̃m(t) ≡
m∑
j=1

1{tj−1 < t ≤ tj}X̃(tj),

for t ∈ (a, b].

Note that the integral of interest evaluated at t = a is zero since the set

(a, a] is empty.
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We now have, for any t ∈ (a, b], that∣∣∣∣∫ t

a
X̃n(s)dG̃n(s)−

∫ t

a
X̃(s)dG̃(s)

∣∣∣∣
≤

∫ b

a

∣∣∣X̃n(s)− X̃(s)
∣∣∣× |dG̃n(s)|

+

∫ b

a

∣∣∣X̃m(s)− X̃(s)
∣∣∣× |dG̃n(s)|

+

∣∣∣∣∫ t

a
X̃m(s)

{
dG̃n(s)− dG̃(s)

}∣∣∣∣
+

∫ t

a

∣∣∣X̃m(s)− X̃(s)
∣∣∣× |dG̃(s)|

Note that the first term→ 0, while the second and fourth terms are

bounded by Kε.
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By definition of X̃m, the third term equals∣∣∣∣∣∣
m∑
j=1

X̃(tj)

∫
(tj−1,tj ]∩(a,t]

{
dG̃n(s)− dG̃(s)

}∣∣∣∣∣∣ ≤ m‖X̃‖∞‖G̃n − G̃‖∞

→ 0.

Thus all four parts summed are asymptotically bounded by 2Kε.
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Since ε was arbitrary, we conclude that∫ (·)

a
X̃n(s)dG̃n(s)

as∗→
∫ (·)

a
X̃(s)dG̃(s).

Now part (ii) of Lemma 7.23 yields that we can replace the outer almost

sure convergence with week convergence.

This now implies weak convergence in the original probability space, and

the proof is complete.2
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�
�

�
�Example: The Cramér-von Mises Statistic

Let X1, . . . , Xn be i.i.d. real random variables with continuous

distribution F and corresponding empirical process F̂n.

The Cramér-von Mises Statistic for testing the null hypothesis

H0 : F = F0 has the form:

Tn = n

∫ ∞
−∞

(
F̂n(t)− F0(t)

)2
dF̂n(t).
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In this case, Xn = n
(
F̂n − F0

)2
, Gn = F̂n, and [a, b] = [−∞,∞].

Standard empirical process results yield that when F = F0 (i.e., under

the null), Xn ; X and Gn
P→ G in D[a, b], where

X(t) = B2(F0(t)),

B is a standard Brownian bridage, and G = F0.

Note that X has continuous sample paths and the total variation of Gn

and G is at most 1.
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Thus all of the conditions of Proposition 7.27 are met, and thus

Tn ;

∫ 1

0
B2(t)dt,

which is a pivotal limit.

The distribution of this pivotal can be written as an infinite series which is

not difficult to compute (see, e.g., Tolmatz, 2001, Annals of Probability):

the critical value for α = 0.05 is approximately 0.220 (I think).
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