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Empirical Processes: Lecture 08 Spring, 2012�� ��Stochastic Convergence

Today, we will discuss the following basic concepts:

• Stochastic processes in metric spaces

• Tightness and separability of stochastic processes

• Gaussian processes

• Weak convergence and portmanteau theorem

• Continuous mapping theorem

• Asymptotic measurability and asymptotic tightness

• Prohorov’s theorem

• Slutsky’s theorem
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�� ��Stochastic Processes in Metric Spaces

Recall that for a stochastic process {X(t), t ∈ T},X(t) is a measurable

real random variable for each t ∈ T on a probability space (Ω,A, P ).

The sample paths of such a process typically reside in the metric space

D = `∞(T ) with the uniform metric.

Often, however, when X is viewed as a map from Ω to D, it is no longer

Borel measurable.
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A classic example of this issue comes from Billingsley (1968, Pages

152–153).

The example hinges on the existence of a set H ⊂ [0, 1] which is not a

Borel set (this is true).

Define the stochastic process X(t) = 1{U ≤ t}, where t ∈ [0, 1] and

U is uniformly distributed on [0, 1].
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The probability space for X is (Ω,B, P ), where Ω = [0, 1], B are the

Borel sets on [0, 1], and P is the uniform probability measure on [0, 1].

A natural metric space for the sample paths of X is `∞([0, 1]).

Define the set

A = ∪s∈HBs(1/2),

where Bs(1/2) is the uniform open ball of radius 1/2 around the function

t 7→ fs(t) ≡ 1{t ≤ s}.
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Since A is an open set in `∞([0, 1]), and since the uniform distance

between fs1 and fs2 is 1 whenever s1 6= s2,

X(t) ∈ Bs(1/2)

if and only if U = s.

Thus the set

{ω ∈ Ω : X(ω) ∈ A}

equals H .

Since H is not a Borel set, X is not Borel measurable.
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This lack of measurability is the usual state for biostatistics.

Many of the associated technical difficulties can be resolved by using of

outer measure and outer expectation in the context of weak convergence.

In contrast, most of the limiting processes in biostatistics are Borel

measurable.

Hence a brief study of Borel measurable processes is valuable.
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Two Borel random maps X and X ′, with respective laws L and L′, are

versions of each other if L = L′.

Recall BL1(D), the set of all functions f : D 7→ R bounded by 1 and

with Lipschitz norm bounded by 1, i.e., |f(x)− f(y)| ≤ d(x, y) for all

x, y ∈ D.

When the context is clear, we simply use BL1.
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Define a vector lattice F ⊂ Cb(D) to be a vector space such that if

f ∈ F then f ∨ 0 ∈ F .

We also say that a setF of real functions on D separates points of D if, for

any x, y ∈ D with x 6= y, there exists f ∈ F such that f(x) 6= f(y).
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LEMMA 1. Let L1 and L2 be Borel probability measures on a metric

space D. TFAE:

(i) L1 = L2.

(ii)
∫
fdL1 =

∫
fdL2 for all f ∈ Cb(D).

If L1 and L2 are also separable, then (i) and (ii) are both equivalent to

(iii)
∫
fdL1 =

∫
fdL2 for all f ∈ BL1.

Moreover, if L1 and L2 are also tight, then (i)–(iii) are all equivalent to

(iv)
∫
fdL1 =

∫
fdL2 for all f in a vector lattice F ⊂ Cb(D) that both

contains the constant functions and separates points in D.
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�
�

�
Tightness and Separability of Stochastic

Processes

In addition to being Borel measurable, most of the limiting stochastic

processes of interest are tight.

A Borel probability measure L on a metric space D is tight if for every

ε > 0, there exists a compact K ⊂ D so that L(K) ≥ 1− ε.

A Borel random map X : Ω 7→ D is tight if its law L is tight.
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Tightness is equivalent to there being a σ-compact set that has probability

1 under L or X .

L or X is separable if there is a measurable and separable set which has

probability 1.

L or X is Polish if there is a measurable Polish set having probability 1.
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Note that tightness, separability and Polishness are all topological

properties and do not depend on a metric.

Since both σ-compact and Polish sets are also separable, separability is

the weakest of the three properties.

Whenever we say X has any one of these three properties, we tacitly

imply that X is also Borel measurable.

On a complete metric space, tightness, separability and Polishness are

equivalent.
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For a stochastic process {X(t), t ∈ T}, where (T, ρ) is a separable,

semimetric space, there is another meaning for separable:

X is separable (as a stochastic process) if there exists a countable subset

S ⊂ T and a null set N so that, for each ω 6∈ N and t ∈ T , there exists

a sequence {sm} ∈ S with ρ(sm, t)→ 0 and

|X(sm, ω)−X(t, ω)| → 0.
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It turns out that many empirical processes are separable in this sense,

even though they are not Borel measurable and therefore cannot satisfy

the other meaning for separable.

The distinction between these two definitions will either be explicitly stated

or made clear by the context.
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Most limiting processes X of interest will reside in `∞(T ), where the

index set T is often a class of real functions F with domain equal to the

sample space.

When such limiting processes are tight, the following lemma demands that

X resides on UC(T, ρ), where ρ is some semimetric making T totally

bounded, with probability 1.
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LEMMA 2. Let X be a Borel measurable random element in `∞(T ).

TFAE:

(i) X is tight.

(ii) There exists a semimetric ρ making T totally bounded and for which

X ∈ UC(T, ρ) with probability 1.

Furthermore, if (ii) holds for any ρ, then it also holds for the semimetric

ρ0(s, t) ≡ E arctan |X(s)−X(t)|.
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A nice feature of tight processes in `∞(T ) is that the laws are completely

defined by their finite-dimensional marginal distributions

(X(t1), . . . , X(tk)), where t1, . . . , tk ∈ T :

LEMMA 3. Let X and Y be tight, Borel measurable stochastic processes

in `∞(T ).

Then the Borel laws of X and Y are equal if and only if all corresponding

finite-dimensional marginal distributions are equal.
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Proof. Consider the collection F ⊂ Cb(D) of all functions

f : `∞(T ) 7→ R of the form f(x) = g(x(t1), . . . , x(tk)), where

g ∈ Cb(Rk) and k ≥ 1 is an integer.

We leave it as an exercise to show that F is a vector lattice, an algebra,

and separates points of `∞(T ).

The desired result now follows from Lemma 1.2
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While the semimetric ρ0 defined in Lemma 2 is always applicable when X

is tight, it is frequently not the most convenient choice.

There are also other useful, equivalent choices.

For a process X in `∞(T ) and a semimetric ρ on T , we say that X is

uniformly ρ-continuous in pth mean if

E|X(sn)−X(tn)|p → 0

whenever ρ(sn, tn)→ 0.
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�� ��Gaussian Processes

Perhaps the most frequently occurring limiting process in `∞(T ) is a

Gaussian process.

A stochastic process {X(t), t ∈ T} is Gaussian if all finite-dimensional

marginals {X(t1), . . . , X(tk)} are multivariate normal.
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If a Gaussian process X is tight, then by Lemma 2, there is a semimetric

ρ making T totally bounded and for which the sample paths t 7→ X(t)

are uniformly ρ-continuous.

An interesting feature of Gaussian processes is that this result implies that

the map t 7→ X(t) is uniformly ρ-continuous in pth mean for all

p ∈ (0,∞).
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For a general Banach space D, a Borel measurable random element X

on D is Gaussian if and only if f(X) is Gaussian for every continuous,

linear functional f : D 7→ R.

When D = `∞(T ) for some set T , this definition appears to contradict

the definition of Gaussianity given in the preceding paragraph, since now

we are using all continuous linear functionals instead of just linear

combinations of coordinate projections.
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These two definitions are not really reconcilable in general, and so some

care must be taken in reading the literature.

However, when the process in question is tight, the two definitions are

equivalent, as verified in the following proposition.
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PROPOSITION 1. Let X be a tight, Borel measurable map into `∞(T ).

TFAE:

(i) The vector (X(t1), . . . , X(tk)) is multivariate normal for every finite

set {t1, . . . , tk} ⊂ T .

(ii) φ(X) is Gaussian for every continuous, linear functional

φ : `∞(T ) 7→ R.

(iii) φ(X) is Gaussian for every continuous, linear map φ : `∞(T ) 7→ D
into any Banach space D.
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�
�

�
Weak Convergence and Portmanteau Theo-

rem

The extremely important concept of weak convergence of sequences

arises in many areas of statistics.

To be as flexible as possible, we allow the probability spaces associated

with the sequences to change with n.

Let (Ωn,An, Pn) be a sequence of probability spaces and

Xn : Ωn 7→ D a sequence of maps.
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We say that Xn converges weakly to a Borel measurable X : Ω 7→ D if

E∗f(Xn)→ Ef(X), for every f ∈ Cb(D). (1)

If L is the law of X , (1) can be reexpressed as

E∗f(Xn)→
∫

Ω
f(x)dL(x), for every f ∈ Cb(D).
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Weak convergence is denoted Xn ; X or, equivalently, Xn ; L.

Weak convergence is equivalent to “convergence in distribution” and

“convergence in law.”

By Lemma 1, this definition of weak convergence ensures that the limiting

distributions are unique.
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Note that the choice of probability spaces (Ωn,An, Pn) is important

since these dictate the outer expectation.

In most of the settings discussed in this book, Ωn = Ω for all n ≥ 1.
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The above definition of weak convergence does not appear to connect to

the standard, statistical notion of convergence of probabilities.

However, this connection does hold for probabilities of sets B ⊂ Ω which

have boundaries δB satisfying L(δB) = 0.

The boundary δB of a set B in a topological space is the closure of B

minus the interior of B.
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THEOREM 1. (Portmanteau) TFAE:

(i) Xn ; L;

(ii) lim inf P∗(Xn ∈ G) ≥ L(G) for every open G;

(iii) lim sup P∗(Xn ∈ F ) ≤ L(F ) for every closed F ;

(iv) lim inf E∗f(Xn) ≥
∫

Ω f(x)dL(x) for every lower semicontinuous

f bounded below;

(v) lim sup E∗f(Xn) ≤
∫

Ω f(x)dL(x) for every upper

semicontinuous f bounded above;

(vi) lim P∗(Xn ∈ B) = lim P∗(Xn ∈ B) = L(B) for every Borel B

with L(δB) = 0;

(vii) lim inf E∗f(Xn) ≥
∫

Ω f(x)dL(x) for every bounded, Lipschitz

continuous, nonnegative f .
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Furthermore, if L is separable, then (i)–(vii) are also equivalent to

(viii) supf∈BL1
|E∗f(Xn)− Ef(X)| → 0.
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�� ��Continuous Mapping Theorem

THEOREM 2. (Continuous mapping) Let g : D 7→ E be continuous at all

points in D0 ⊂ D, where D and E are metric spaces.

Then if Xn ; X in D, with P∗(X ∈ D0) = 1, then g(Xn) ; g(X).
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�
�

�


Asymptotic Measureability and Asymptotic
Tightness

A potential issue is that there may sometimes be more than one choice of

metric space D to work with.

For example, if we are studying weak convergence of the usual empirical

process
√
n(F̂n(t)− F (t)) based on data in [0, 1], we could let D be

either `∞([0, 1]) or D[0, 1].
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The following lemma tells us that the choice of metric space is generally

not a problem:

LEMMA 4. Let the metric spaces D0 ⊂ D have the same metric, and

assume X and Xn reside in D0.

Then Xn ; X in D0 if and only if Xn ; X in D.
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A sequence Xn is asymptotically measurable if and only if

E∗f(Xn)− E∗f(Xn) → 0, (2)

for all f ∈ Cb(D).

A sequence Xn is asymptotically tight if for every ε > 0, there is a

compact K so that lim inf P∗(Xn ∈ Kδ) ≥ 1− ε, for every δ > 0,

where for a set A ⊂ D,

Aδ = {x ∈ D : d(x,A) < δ}

is the “δ-enlargement” around A.
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Two good properties of asymptotic tightness are that it does not depend on

the metric chosen—only on the topology—and that weak convergence

often implies asymptotic tightness.

The first of these two properties are verified in the following:

LEMMA 5. Xn is asymptotically tight if and only if for every ε > 0 there

exists a compact K so that lim inf P∗(Xn ∈ G) ≥ 1− ε for every open

G ⊃ K .
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The second good property of asymptotic tightness is part (ii) of the

following lemma, part (i) of which gives the necessity of asymptotic

measurability for weakly convergent sequences:

LEMMA 6. Assume Xn ; X . Then

(i) Xn is asymptotically measurable.

(ii) Xn is asymptotically tight if and only if X is tight.
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�� ��Prohorov’s Theorem

Prohorov’s theorem (modernized) tells us that asymptotic measurability

and asymptotic tightness together almost gives us weak convergence.

This “almost-weak-convergence” is relative compactness.

A sequence Xn is relatively compact if every subsequence Xn′ has a

further subsequence Xn′′ which converges weakly to a tight Borel law.
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Weak convergence happens when all of the limiting Borel laws are the

same.

THEOREM 3. (Prohorov’s theorem) If the sequence Xn is asymptotically

measurable and asymptotically tight, then it has a subsequence Xn′ that

converges weakly to a tight Borel law.
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Note that the conclusion of Prohorov’s theorem does not state that Xn is

relatively compact, and thus it appears as if we have broken our earlier

promise.

However, if Xn is asymptotically measurable and asymptotically tight, then

every subsequence Xn′ is also asymptotically measurable and

asymptotically tight.

Thus repeated application of Prohorov’s theorem does indeed imply

relative compactness of Xn.
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The following lemma specifies the relationship between marginal and joint

processes regarding asymptotic measurability and asymptotic tightness:

LEMMA 7. Let Xn : Ωn 7→ D and Yn : Ωn 7→ E be sequences of maps.

TFAT:

(i) Xn and Yn are both asymptotically tight if and only if the same is true

for the joint sequence (Xn, Yn) : Ωn 7→ D× E.

(ii) Asymptotically tight sequences Xn and Yn are both asymptotically

measurable if and only if (Xn, Yn) : Ωn 7→ D× E is asymptotically

measurable.
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�� ��Slutsky’s Theorem

A very useful consequence of Lemma 7 is Slutsky’s theorem:

THEOREM 4. (Slutsky’s theorem) Suppose Xn ; X and Yn ; c,

where X is separable and c is a fixed constant. TFAT:

(i) (Xn, Yn) ; (X, c).

(ii) IfXn and Yn are in the same metric space, thenXn +Yn ; X + c.

(iii) Assume in addition that the Yn are scalars. Then whenever c ∈ R,

YnXn ; cX . Also, whenever c 6= 0, Xn/Yn ; X/c.
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Proof. By completing the metric space for X , we can without loss of

generality assume that X is tight.

Thus by Lemma 7, (Xn, Yn) is asymptotically tight and asymptotically

measurable.

Thus by Prohorov’s theorem, all subsequences of (Xn, Yn) have further

subsequences which converge to tight limits.
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Since these limit points have marginals X and c, and since the marginals

in this case completely determine the joint distribution, we have that all

limiting distributions are uniquely determined as (X, c).

This proves Part (i).

Parts (ii) and (iii) now follow from the continuous mapping theorem.2
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