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�� ��Outer Expectation

For an arbitrary probability space (Ω,A, P ), consider an arbitrary map

T : Ω 7→ R̄, where R̄ ≡ [−∞,∞].

The outer expectation of T , denoted E∗T , is the infimum over all EU ,

where U : Ω 7→ R̄ is measurable, U ≥ T , and EU exists.

For EU to exist, it must not be indeterminate, although it can be±∞,

provided the sign is clear.
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Since T is not necessarily a random variable, the proper term for E∗T is

outer integral.

Nevertheless, we will use the term outer expectation in deference to its

connection with the classical notion of expectation.

We analogously define inner expectation: E∗T = −E∗[−T ].
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The following lemma verifies the existence of a minimal measurable

majorant T ∗ ≥ T :

LEMMA 1. For any T : Ω 7→ R̄, there exists a minimal measurable

majorant T ∗ : Ω 7→ R̄ with

(i) T ∗ ≥ T ;

(ii) For every measurable U : Ω 7→ R̄ with U ≥ T a.s., T ∗ ≤ U a.s.

For any T ∗ satisfying (i) and (ii), E∗T = ET ∗, provided ET ∗ exists; the

last statement is true if E∗T <∞.

Analagous results holds for the existence of a maximal measurable

minorant T∗ for which E∗T = ET∗.
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An important special case of outer expectation is outer probability.

The outer probability of an arbitrary B ⊂ Ω, denoted P ∗(B), is the

infimum over all P (A) such that A ⊃ B and A ∈ A.

The inner probability of an arbitrary B ⊂ Ω is defined to be

P∗(B) = 1− P ∗(Ω−B).
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The following lemma gives the precise connection between outer/inner

expectations and outer/inner probabilities:

LEMMA 2. For any B ⊂ Ω,

(i) P ∗(B) = E∗1{B} and P∗(B) = E∗1{B};

(ii) there exists a measurable set B∗ ⊃ B so that P (B∗) = P ∗(B); for

any such B∗, 1{B∗} = (1{B})∗;

(iii) For B∗ ≡ Ω− {Ω−B}∗, P∗(B) = P (B∗);

(iv) (1{B})∗ + (1{Ω−B})∗ = 1.
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Proof of (iv):

• We have (1{Ω−B})∗ = (1− 1{B})∗ by complementarity.

• Then (1− 1{B})∗ = −(1{B} − 1)∗ by definition of inner

probability.

• Finally, for a constant c and an aribitrary map T , (T + c)∗ ≤ T ∗ + c

and, since T ∗ ≤ (T + c)∗ − c, we also have T ∗ + c ≤ (T + c)∗;

hence (T + c)∗ = T ∗ + c, and thus

−(1{B} − 1)∗ = 1− (1{B})∗,

and the desired conclusion follows.2
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LEMMA 3. Let S, T : Ω 7→ R be arbitrary maps; the following statements

are true almost surely, provided the statements are well-defined:

(i) S∗ + T ∗ ≤ (S + T )∗ ≤ S∗ + T ∗, with all equalities if S is

measurable;

(ii) S∗ + T∗ ≤ (S + T )∗ ≤ S∗ + T ∗, with all equalities if T is

measurable;

(iii) (S − T )∗ ≥ S∗ − T ∗;

(iv) |S∗ − T ∗| ≤ |S − T |∗;

(v) (1{T > c})∗ = 1{T ∗ > c}, for any c ∈ R;

(vi) (1{T ≥ c})∗ = 1{T∗ ≥ c}, for any c ∈ R;

(vii) (S ∨ T )∗ = S∗ ∨ T ∗;

(viii) (S ∧ T )∗ ≤ S∗ ∧ T ∗, with equality if S is measurable.
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We next present an outer-expectation version of the unconditional

Jensen’s inequality (without proof):

LEMMA 4. (Jensen’s inequality) Let T : Ω 7→ R be an arbitrary map,

with E∗|T | <∞, and assume φ : R 7→ R is convex. Then

(i) E∗φ(T ) ≥ φ(E∗T ) ∨ φ(E∗T );

(ii) if φ is also monotone, E∗φ(T ) ≥ φ(E∗T ) ∧ φ(E∗T ).
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The following outer-expectation version of Chebyshev’s inequality is also

useful:

LEMMA 5. (Chebyshev’s inequality) Let T : Ω 7→ R be an arbitrary

map, with φ : [0,∞) 7→ [0,∞) nondecreasing and strictly positive on

(0,∞). Then, for every u > 0,

P ∗ (|T | ≥ u) ≤ E∗φ(|T |)
φ(u)

.
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Proof:

• Since |T | ≥ u implies φ(|T |) ≥ φ(u),

(1{|T | ≥ u})∗ ≤ (1{φ(|T |) ≥ φ(u)})∗ .

• Since 1 {[φ(|T |)]∗ ≥ φ(u)} is a measurable majorizor of

1 {φ(|T |) ≥ φ(u)}, we have

(1{φ(|T |) ≥ φ(u)})∗ ≤ 1 {[φ(|T |)]∗ ≥ φ(u)} ,

by definition of minimal measurable majorant.

• Puting these together, we have

(1{|T | ≥ u})∗ ≤ 1 {[φ(|T |)]∗ ≥ φ(u)} ,

and the desired conclusion follows from the standard Chebyshev

inequality.2
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�� ��Perfect Maps

Consider composing a map T : Ω 7→ R with a measurable map

φ : Ω̃ 7→ Ω, defined on some probability space, to form

T ◦ φ :
(

Ω̃, Ã, P̃
)
7→ R,

where φ :
(

Ω̃, Ã, P̃
)
7→ (Ω,A, P ).

Denote T ∗ as the minimal measurable cover of T for P̃ ◦ φ−1.
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It is not hard to see that

T ∗ ◦ φ ≥ (T ◦ φ)∗ ≥ T ◦ φ.

The map φ is perfect if

(T ◦ φ)∗ = T ∗ ◦ φ,

for every bounded T : Ω 7→ R.
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This property of perfectness ensures that

P ∗(φ ◦A) =
(
P̃ ◦ φ−1

)∗
(A)

for every set A ⊂ Ω, since

P ∗(φ ◦A) = P̃ ∗(1{A} ◦ φ) = P̃ (1{A} ◦ φ)∗

= P̃ (1{A}∗ ◦ φ) =
(
P̃ ◦ φ−1

)∗
1{A}

=
(
P̃ ◦ φ−1

)∗
(A).
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An important example of a perfect map is a coordinate projection in a

product probability space.

Specifically, let T be a real valued map defined on

(Ω1 × Ω2,A1 ×A2, P1 × P2) which only depends on the first

coordinate of ω = (ω1, ω2).

T ∗ can then be computed by just ignoring Ω2 and thinking of T as a map

on Ω1.

More precisely, suppose T = T1 ◦ π1, where π1 is the projection on the

first coordinate.
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The following lemma shows that T ∗ = T ∗1 ◦ π1, and thus coordinate

projections such as π1 are perfect.

LEMMA 6. A coordinate projection on a product probability space with

product measure is perfect.

We will see other examples of perfect maps later on in Chapter 7.
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Now we consider Fubini’s theorem for maps on product spaces which may

not be measurable.

There is no generally satisfactory version of Fubini’s theorem that will work

in all nonmeasurable settings of interest, and it is frequently necessary to

establish at least some kind of measurability to obtain certain key empirical

process results.

The version of Fubini’s theorem we now present basically states that

repeated outer expectations are always less than joint outer expectations.
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Let T be an arbitrary real map defined on the product space

(Ω1 × Ω2,A1 ×A2, P1 × P2).

We write E∗1E
∗
2T to mean outer expectations taken in turn.

For fixed ω1, let (E∗2T )(ω1) be the infimum of
∫

Ω2
U(ω2)dP2(ω2)

taken over all measurable U : Ω2 7→ R̄ with U(ω2) ≥ T (ω1, ω2) and

for which
∫

Ω2
U(ω2)dP2(ω2) exists.

18



Empirical Processes: Lecture 07 Spring, 2014

Next, E∗1E
∗
2T is the outer integral of E∗2T : Ω1 7→ R.

Repeated inner expectations are analogously defined.

The following version of Fubini’s theorem gives bounds for this repeated

expectation process:

LEMMA 7. (Fubini’s theorem) Let T be an arbitrary real valued map on a

product probability space; then E∗T ≤ E1∗E2∗T ≤ E∗1E∗2T ≤ E∗T .
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�� ��Linear Operators

A linear operator is a map T : D 7→ E between normed spaces with the

property that T (ax+ by) = aT (x) + bT (y) for all scalars a, b and any

x, y ∈ D.

When the range space E is R, then T is a linear functional.

When T is linear, we will often use Tx instead of T (x).
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A linear operator T : D 7→ E is a bounded linear operator if

‖T‖ ≡ sup
x∈D :‖x‖≤1

‖Tx‖ <∞. (1)

Here, the norms ‖ · ‖ are defined by the context.

We have the following proposition:

PROPOSITION 1. For a linear operator T : D 7→ E between normed

spaces, the following are equivalent:

(i) T is continuous at a point x0 ∈ D;

(ii) T is continuous on all of D;

(iii) T is bounded.
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For normed spaces D and E, let B(D,E) be the space of all bounded

linear operators T : D 7→ E.

This structure makes the space B(D,E) into a normed space with norm

‖ · ‖ defined in (1).

When E is a Banach space, then any convergent sequence Tnxn will be

contained in E, and thus B(D,E) is also a Banach space.

When D is not a Banach space, T has a unique continuous extension to

D.
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For normed spaces D and E, and for any T ∈ B(D,E),

• N(T ) ≡ {x ∈ D : Tx = 0} is the null space of T and

• R(T ) ≡ {y ∈ E : Tx = y for some x ∈ D} is the range space of

T .

It is clear that T is one-to-one if and only if N(T ) = {0}.
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We have the following two results for inverses, which we give without proof:

LEMMA 8. Assume D and E are normed spaces and that T ∈ B(D,E).

Then

(i) T has a continuous inverse T−1 : R(T ) 7→ D if and only if there

exists a c > 0 so that ‖Tx‖ ≥ c‖x‖ for all x ∈ D;

(ii) (Banach’s theorem) If D and E are complete and T is continuous

with N(T ) = {0}, then T−1 is continuous if and only if R(T ) is

closed.
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A linear operator T : D 7→ E between normed spaces is a compact

operator if T (U) is compact in E, where

U = {x ∈ D : ‖x‖ ≤ 1}

is the unit ball in D and, for a set A ∈ D, T (A) ≡ {Tx : x ∈ A}.

The operator T is onto if for every y ∈ E, there exists an x ∈ D so that

Tx = y.
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Later on in the class, we will encounter linear operators of the form

T +K , where T is continuously invertible and onto and K is compact.

The following result will be useful:

LEMMA 9. Let A = T +K : D 7→ E be a linear operator between

Banach spaces, where T is both continuously invertible and onto and K is

compact; then if N(A) = {0}, A is also continuously invertible and onto.
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The following simple inversion result for contraction operators is also

useful.

An operator A is a contraction operator if ‖A‖ < 1.

PROPOSITION 2. Let A : D 7→ D be a linear operator with ‖A‖ < 1;

then I −A, where I is the identity, is continuously invertible and onto with

inverse (I −A)−1 =
∑∞

j=0A
j .
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Proof:

• Let B ≡
∑∞

j=0A
j , and note that

‖B‖ ≤
∞∑
j=0

‖A‖j = (1− ‖A‖)−1 <∞.

• Thus B is a bounded linear operator on D.

• Since (I −A)B = I by simple algebra, we have that

B = (I −A)−1, and the result follows.2
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Let D and E be two normed spaces, and let φ : Dφ ⊂ D 7→ E be a

function.

We allow the domain Dφ of the function to be an arbitrary subset of D.

The function φ : Dφ ⊂ D 7→ E is Gâteaux-differentiable at θ ∈ Dφ, in

the direction h, if there exists a quantity φ′θ(h) ∈ E so that

φ(θ + tnh)− φ(θ)

tn
→ φ′θ(h),

as n→∞, for any scalar sequence tn → 0.
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Gâteaux differentiability is usually not strong enough for the applications of

functional derivatives needed for Z-estimators and the delta method.

The stronger differentiability we need is Hadamard and Fréchet

differentiability.

A map φ : Dφ ⊂ D 7→ E is Hadamard differentiable at θ ∈ Dφ if there

exists a continuous linear operator φ′θ : D 7→ E such that

φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h), (2)

as n→∞, for any scalar sequence tn → 0 and any h, {hn} ∈ D, with

hn → h, and so that θ + tnhn ∈ Dφ for all n.
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Hadamard differentiability is equivalent to compact differentiability, where

compact differentiability satisfies

sup
h∈K,θ+th∈Dφ

∥∥∥∥φ(θ + th)− φ(θ)

t
− φ′θ(h)

∥∥∥∥→ 0, as t→ 0, (3)

for every compact K ⊂ D.

Consider restricting the h values to be in a set D0 ⊂ D.

Specifically, if in (2) it is required that hn → h only for h ∈ D0 ⊂ D, we

say φ is Hadamard-differentiable tangentially to the set D0.

There appears to be no easy way to refine compact differentiability in an

equivalent manner.
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A map φ : Dφ ⊂ D 7→ E is Fréchet-differentiable if there exists a

continuous linear operator φ′θ : D 7→ E so that (3) holds uniformly in h on

bounded subsets of D.

This is equivalent to ‖φ(θ + h)− φ(θ)− φ′θ(h)‖ = o(‖h‖), as

‖h‖ → 0.

Since compact sets are bounded, Fréchet differentiability implies

Hadamard differentiability.

Fréchet differentiability will be needed for Z-estimator theory, while

Hadamard differentiability is useful in the delta method.
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The following chain rule for Hadamard differentiability will also prove useful:

LEMMA 10. (Chain rule) Assume φ : Dφ ⊂ D 7→ Eψ ⊂ E is Hadamard

differentiable at θ ∈ Dφ tangentially to D0 ⊂ D, and ψ : Eψ ⊂ E 7→ F
is Hadamard differentiable at φ(θ) tangentially to φ′θ(D0).

Then ψ ◦ φ : Dφ 7→ F is Hadamard differentiable at θ tangentially to D0

with derivative ψ′φ(θ) ◦ φ
′
θ.
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Proof:

• First,

ψ ◦ φ(θ + tht)− ψ ◦ φ(θ) = ψ(φ(θ) + tkt)− ψ(φ(θ)),

where

kt =
φ(θ + tht)− φ(θ)

t
.

• Note that if h ∈ D0, then

kt → k ≡ φ′θ(h) ∈ φ′θ(D0),

as t→ 0, by the Hadamard differentiability of φ.

• Now,
ψ(φ(θ) + tkt)− ψ(φ(θ))

t
→ ψ′φ(θ)(k)

by the Hadamard differentiability of ψ.2
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