
Empirical Processes: Lecture 06 Spring, 2010

Introduction to Empirical Processes
and Semiparametric Inference

Lecture 06: Metric Spaces
Michael R. Kosorok, Ph.D.

Professor and Chair of Biostatistics

Professor of Statistics and Operations Research

University of North Carolina-Chapel Hill

1



Empirical Processes: Lecture 06 Spring, 2010�� ��Introduction to Part II

The goal of Part II is to provide an in depth coverage of the basics of

empirical process techniques which are useful in statistics:

• Chapter 6: mathematical background, metric spaces, outer

expectation, linear operators and functional differentiation.

• Chapter 7: stochastic convergence, weak convergence, other modes

of convergence.

• Chapter 8: empirical process techniques, maximal inequalities,

symmetrization, Glivenk-Canteli results, Donsker results.

• Chapter 9: entropy calculations, VC classes, Glivenk-Canteli and

Donsker preservation.

• Chapter 10: empirical process bootstrap.
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• Chapter 11: additional empirical process results.

• Chapter 12: the functional delta method.

• Chapter 13: Z-estimators.

• Chapter 14: M-estimators.

• Chapter 15: Case-studies II.
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�� ��Topological Spaces

A collectionO of subsets of a set X is a topology in X if:

(i) ∅ ∈ O and X ∈ O, where ∅ is the empty set;

(ii) If Uj ∈ O for j = 1, . . . ,m, then
⋂
j=1,...,m Uj ∈ O;

(iii) If {Uα} is an arbitrary collection of members ofO (finite, countable or

uncountable), then
⋃
α Uα ∈ O.

WhenO is a topology in X , then X (or the pair (X,O)) is a topological

space, and the members ofO are called the open sets in X .
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For a subset A ⊂ X , the relative topology on A consists of the sets

{A ∩B : B ∈ O}: check that this is a topology.

A map f : X 7→ Y between topological spaces is continuous if f−1(U)

is open in X whenever U is open in Y .

A set B in X is closed if and only if its complement in X , denoted

X −B, is open.
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The closure of an arbitrary set E ∈ X , denoted E, is the smallest closed

set containing E.

The interior of an arbitrary set E ∈ X , denoted E◦, is the largest open

set contained in E.

A subset A of a topological space X is dense if A = X .

A topological space X is separable if it has a countable dense subset.
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A neighborhood of a point x ∈ X is any open set that contains x.

A topological space is Hausdorff if distinct points in X have disjoint

neighborhoods.

A sequence of points {xn} in a topological space X converges to a point

x ∈ X , denoted xn → x, if every neighborhood of x contains all but

finitely many of the xn.
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Suppose xn → x and xn → y.

Then x and y share all neighborhoods, and x = y when X is Hausdorff.

If a map f : X 7→ Y between topological spaces is continuous, then

f(xn)→ f(x) whenever xn → x in X ; to see this,

• Let {xn} ⊂ X be a sequence with xn → x ∈ X .

• Then for any open U ⊂ Y containing f(x), all but finitely many {xn}
are in f−1(U), and thus all but finitely many {f(xn)} are in U .

• Since U was arbitrary, we have f(xn)→ f(x).
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We now review the important concept of compactness:

• A subset K of a topological space is compact if for every set A ⊃ K ,

where A is the union of a collection of open sets S , K is also

contained in some finite union of sets in S .

• When the topological space involved is also Hausdorff, then

compactness of K is equivalent to the assertion that every sequence

in K has a convergent subsequence (converging to a point in K).

• This result implies that compact subsets of Hausdorff topological

spaces are necessarily closed.

• Note that a compact set is sometimes called a compact for short.

• A σ-compact set is a countable union of compacts.
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A collectionA of subsets of a set X is a σ-field in X (sometimes called a

σ-algebra) if:

(i) X ∈ A;

(ii) If U ∈ A, then X − U ∈ A;

(iii) The countable union
⋃∞
j=1 Uj ∈ A whenever Uj ∈ A for all j ≥ 1.

Note that (iii) clearly includes finite unions.

When (iii) is only required to hold for finite unions, thenA is called a field.
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WhenA is a σ-field in X , then X (or the pair (X,A)) is a measurable

space, and the members ofA are called the measurable sets in X .

If X is a measurable space and Y is a topological space, then a map

f : X 7→ Y is measurable if f−1(U) is measurable in X whenever U is

open in Y .

IfO is a collection of subsets of X (not necessary open), then there exists

a smallest σ-fieldA∗ in X so thatO ⊂ A∗.

ThisA∗ is called the σ-field generated byO.

11



Empirical Processes: Lecture 06 Spring, 2010

To see that such anA∗ exists:

• Let S be the collection of all σ-fields in X which containO.

• Since the collection of all subsets of X is one such σ-field, S is not

empty.

• DefineA∗ to be the intersection of allA ∈ S .

• Clearly,O ∈ A∗ andA∗ is in every σ-field containingO.

• All that remains is to show thatA∗ is itself a σ-field.
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To show this,

• Assume that Aj ∈ A∗ for all integers j ≥ 1.

• IfA ∈ S , then
⋃
j≥1 Aj ∈ A.

• Since
⋃
j≥1Aj ∈ A for everyA ∈ S , we have

⋃
j≥1Aj ∈ A∗.

• Also X ∈ A∗ since X ∈ A for allA ∈ S ; and for any A ∈ A∗, both

A and X −A are in everyA ∈ S .

ThusA∗ is indeed a σ-field.
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A σ-field is separable if it is generated by a countable collection of subsets.

Note: we have already defined “separable” as a characteristic of certain

topological spaces.

There is a connection between the two definitions which we will point out

shortly in our discussion on metric spaces.
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When X is a topological space, the smallest σ-field B generated by the

open sets is called the Borel σ-field of X .

Elements of B are called Borel sets.

A function f : X 7→ Y between topological spaces is Borel-measurable if

it is measurable with respect to the Borel σ-field of X .

Clearly, a continuous function between topological spaces is also

Borel-measurable.
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For a σ-fieldA in a set X , a map µ : A 7→ R̄ is a measure if:

(i) µ(A) ∈ [0,∞] for all A ∈ A;

(ii) µ(∅) = 0;

(iii) For any disjoint sequence {Aj} ∈ A,

µ
(⋃∞

j=1Aj

)
=
∑∞

j=1 µ(Aj) (countable additivity).

The triple (X,A, µ) is called a measure space.
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If X = A1 ∪A2 ∪ · · · for some finite or countable sequence of sets inA
with µ(Aj) <∞ for all indices j, then µ is σ-finite.

If µ(X) = 1, then µ is a probability measure.

For a probability measure P on a set Ω with σ-fieldA, the triple

(Ω,A, P ) is called a probability space.
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If the set [0,∞] in Part (i) is extended to (−∞,∞] or replaced by

[−∞,∞) (but not both), then µ is a signed measure.

For a measure space (X,A, µ), letA∗ be the collection of all E ⊂ X
for which there exists A,B ∈ A with A ⊂ E ⊂ B and µ(B −A) = 0,

and define µ(E) = µ(A) in this setting.

ThenA∗ is a σ-field, µ is still a measure, andA∗ is called the

µ-completion ofA.
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�� ��Metric Spaces

A metric space is a set D together with a metric.

A metric or distance function is a map d : D× D 7→ [0,∞) where:

(i) d(x, y) = d(y, x);

(ii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality);

(iii) d(x, y) = 0 if and only if x = y.

A semimetric or pseudometric satisfies (i) and (ii) but not necessarily (iii).
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Technically, a metric space consists of the pair (D, d), but usually only D
is given and the underlying metric d is implied by the context.

A semimetric space is also a topological space with the open sets

generated by applying arbitrary unions to the open r-balls

Br(x) ≡ {y : d(x, y) < r} for r ≥ 0 and x ∈ D (where B0(x) ≡ ∅).

A metric space is also Hausdorff, and, in this case, a sequence {xn} ∈ D
converges to x ∈ D if d(xn, x)→ 0.
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For a semimetric space, d(xn, x)→ 0 ensures only that xn converges to

elements in the equivalence class of x, where the equivalence class of x

consists of all {y ∈ D : d(x, y) = 0}.

Accordingly, the closure A of a set A ∈ D is not only the smallest closed

set containing A, as stated earlier, but A also equals the set of all points

that are limits of sequences {xn} ∈ A.

In addition, two semimetrics d1 and d2 on a set D are considered

equivalent (in a topological sense) if they both generate the same open

sets, and equivalent metrics yield the same convergent subsequences.
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A map f : D 7→ E between two semimetric spaces is continuous at a

point x if and only if f(xn)→ f(x) for every sequence xn → x.

The map f is continuous (in the topological sense) if and only if it is

continuous at all points x ∈ D.

The following lemma helps to define semicontinuity for real valued maps:

LEMMA 1. Let f : D 7→ R be a function on the metric space D; Then

TFAE:

(i) For all c ∈ R, the set {y : f(y) ≥ c} is closed.

(ii) For all y0 ∈ D, lim supy→y0
f(y) ≤ f(y0).
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A function f : D 7→ R satisfying either (i) or (ii) (and hence both) of the

conditions in Lemma 1 is said to be upper semicontinuous.

A function f : D 7→ R is lower semicontinuous if−f is upper

semicontinuous.

Using Condition (ii), it is easy to see that a function which is both upper

and lower semicontinuous is also continuous.

The set of all continuous and bounded functions f : D 7→ R, which we

denote Cb(D), plays an important role in weak convergence on the metric

space D, which we will explore in Chapter 7.
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It is not hard to see that the Borel σ-field on a metric space D is the

smallest σ-field generated by the open balls.

It turns out that the Borel σ-field B of D is also the smallest σ-fieldA
making all of Cb(D) measurable; To see this,

• Note that any closed A ⊂ D is the preimage of the closed set {0} for

the continuous bounded function x 7→ d(x,A) ∧ 1, where for any set

B ⊂ D, d(x,B) ≡ inf{d(x, y) : y ∈ B}.

• Thus B ⊂ A.

• Since it is obvious thatA ⊂ B, we now haveA = B.2
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A Borel-measurable map X : Ω 7→ D defined on a probability space

(Ω,A, P ) is called a random element or random map (or random

variable) with values in D.

Borel measurability is, in many ways, the natural concept to use on metric

spaces since it connects nicely with the topological structure.
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A Cauchy sequence is a sequence {xn} in a semimetric space (D, d)

such that d(xn, xm)→ 0 as n,m→∞.

A semimetric space D is complete if every Cauchy sequence has a limit

x ∈ D.

Every metric space D has a completion D which has a dense subset

isometric with D.

Two metric spaces are isometric if there exists a bijection (a one-to-one

and onto map) between them which preserves distances.
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When a metric space D is separable, and therefore has a countable dense

subset, the Borel σ-field for D is itself a separable σ-field.

To see this, let A ∈ D be a countable dense subset and consider the

collection of open balls with centers at points in A and with rational radii.

Clearly, the set of such balls is countable and generates all open sets in D:

• Let x0 ∈ D, {xn} ∈ A: xn → x0, and εn = |xn − x0|.

• It is not hard to see that

∪n≥1 {x : |x− xn| < (η − εn) ∨ 0} = Bη(x0) for any η > 0.
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A topological space X is Polish if it is separable and if there exists a metric

making X into a complete metric space.

Hence any complete and separable metric space is Polish.

Furthermore, any open subset of a Polish space is also Polish.

Examples of Polish spaces include Euclidean spaces and many other

interesting spaces that we will explore shortly.
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A subset K is totally bounded if and only if for every r > 0, K can be

covered by finitely many open r-balls.

Furthermore, a subset K of a complete semimetric space is compact if

and only if it is totally bounded and closed.

A totally bounded subset K is also called precompact because every

sequence in K has a Cauchy subsequence.
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This relationship between compactness and total boundedness implies

that a σ-compact set in a metric space is separable.

These definitions of compactness agree with the previously given

compactness properties for Hausdorff spaces.

This happens because a semimetric space D can be made into a

metric—and hence Hausdorff—space DH by equating points in DH with

equivalence classes in D.
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A very important example of a metric space is a normed space.

A normed space D is a vector space (also called a linear space) equipped

with a norm, and a norm is a map ‖ · ‖ : D 7→ [0,∞) such that, for all

x, y ∈ D and α ∈ R,

(i) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (another triangle inequality);

(ii) ‖αx‖ = |α| × ‖x‖;

(iii) ‖x‖ = 0 if and only if x = 0.

A seminorm satisfies (i) and (ii) but not necessarily (iii).
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A normed space is a metric space (and a seminormed space is a

semimetric space) with d(x, y) = ‖x− y‖, for all x, y ∈ D.

A complete normed space is called a Banach space.

Two seminorms ‖ · ‖1 and ‖ · ‖2 on a set D are equivalent if the following

is true for all x, {xn} ∈ D:

‖xn − x‖1 → 0 if and only if ‖xn − x‖2 → 0.
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In our definition of a normed space D, we require the space to also be a

vector space (and therefore it contains all linear combinations of elements

in D).

However, it is sometimes of interest to apply norms to subsets K ⊂ D
which may not be linear subspaces.

In this setting, let linK denote the linear span of K (all linear

combinations of elements in K), and let linK the closure of linK .

Note that both linK and linK are now vector spaces and that linK is also

a Banach space.
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We now present several specific examples of metric spaces.//[0.5ex]

The Euclidean space Rd is a Banach space with squared norm

‖x‖2 =
∑d

j=1 x
2
j .

This space is equivalent under several other norms, including

‖x‖ = max1≤j≤d |xj | and ‖x‖ =
∑d

j=1 |xj |.

A Euclidean space is separable with a countably dense subset consisting

of all vectors with rational coordinates.
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By the Heine-Borel theorem, a subset in a Euclidean space is compact if

and only if it is closed and bounded.

The Borel σ-field is generated by the intervals of the type (−∞, x], for

rational x, where the interval is defined as follows: y ∈ (−∞, x] if and

only if yj ∈ (−∞, xj ] for all coordinates j = 1, . . . , d.

For one-dimensional Euclidean space, R, the norm is ‖x‖ = |x|
(absolute value).
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The extended real line R̄ = [−∞,∞] is a metric space with respect to

the metric d(x, y) = |G(x)−G(y)|, where G : R̄ 7→ R is any strictly

monotone increasing, continuous and bounded function, such as the

arctan function.

For any sequence {xn} ∈ R̄, |xn − x| → 0 implies d(xn, x)→ 0,

while divergence of d(xn, x) implies divergence of |xn − x|.

In addition, it is possible for a sequence to converge, with respect to d, to

either−∞ or∞.

This makes R̄ compact.
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Another important example is the set of bounded real functions

f : T 7→ R, where T is an arbitrary set.

This is a vector space if sums z1 + z2 and products with scalars, αz, are

defined pointwise for all z, z1, z2 ∈ `∞(T ).

Specifically, (z1 + z2)(t) = z1(t) + z2(t) and (αz)(t) = αz(t), for all

t ∈ T .

This space is denoted `∞(T ).

37



Empirical Processes: Lecture 06 Spring, 2010

The uniform norm ‖x‖T ≡ supt∈T |x(t)| makes `∞(T ) into a Banach

space consisting exactly of all functions z : T 7→ R satisfying

‖z‖T <∞.

Note that `∞(T ) is separable if and only if T is countable.

Two useful subspaces of `∞([a, b]), where a, b ∈ R̄, are C[a, b] and

D[a, b].
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The space C[a, b] consists of continuous functions z : [a, b] 7→ R, and

D[a, b] is the space of cadlag functions which are right-continuous with

left-hand limits (cadlag is an abbreviation for continue à droite, limites à

gauche).

We usually equip these spaces with the uniform norm ‖ · ‖[a,b] inherited

from `∞([a, b]).

Note that C[a, b] ⊂ D[a, b] ⊂ `∞([a, b]).
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Relative to the uniform norm, C[a, b] is separable, and thus also Polish by

the completeness established in Exercise 6.5.5(a), but D[a, b] is not

separable.

Sometimes, D[a, b] is called the Skorohod space, although Skorohod

equipped D[a, b] with a special metric—quite different than the uniform

metric—resulting in a separable space.
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An important subspace of `∞(T ) is the space UC(T, ρ), where ρ is a

semimetric on T .

UC(T, ρ) consists of all bounded function f : T 7→ R which are

uniformly ρ-continuous, i.e.,

lim
δ↓0

sup
ρ(s,t)<δ

|f(s)− f(t)| = 0.

When (T, ρ) is totally bounded, the boundedness requirement for

functions in UC(T, ρ) is superfluous since a uniformly continuous

function on a totally bounded set must necessarily be bounded.
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We denote C(T, ρ) to be the space of ρ-continuous (not necessarily

continuous) function on T .

The spaces C[a, b], D[a, b], UC(T, ρ), C(T , ρ), when (T, ρ) is a

totally bounded semimetric space, and UC(T, ρ) and `∞(T ), for an

arbitrary set T , are all complete with respect to the uniform metric.

When (T, ρ) is a compact semimetric space, T is totally bounded, and a

ρ-continuous function in T is automatically uniformly ρ-continuous.
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Thus, when T is compact, C(T, ρ) = UC(T, ρ).

Actually, every space UC(T, ρ) is equivalent to a space C(T , ρ),

because the completion T of a totally bounded space T is compact and,

furthermore, every uniformly continuous function on T has a unique

continuous extension to T .

The foregoing structure makes it clear that UC(T, ρ) is a Polish space

that is made complete by the uniform norm (and hence is also separable).
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Moreover, all compact sets in `∞(T ) have a specific form:

THEOREM 1. (Arzelà-Ascoli)

(a) The closure of K ⊂ `∞(T ) is compact if and only if

(i) supx∈K |x(t0)| <∞, for some t0 ∈ T ; and

(ii) for some semimetric ρ making T totally bounded,

lim
δ↓0

sup
x∈K

sup
s,t∈T :ρ(s,t)<δ

|x(s)− x(t)| = 0.

(b) The set K ⊂ `∞(T ) is σ-compact if and only if K ⊂ LC(T, ρ) for

some semimetric ρ making T totally bounded, where LC(T, ρ) is the

subset of UC(T, ρ) consisting of all bounded functions x with

sup
δ>0

sup
s,t∈T :ρ(s,t)<δ

|x(s)− x(t)|
δ

<∞.
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(c) The closure of K ⊂ `∞(T ) is separable if and only if

K ⊂ UC(T, ρ) for some semimetric ρ making T totally bounded.

Since all compact sets are trivially σ-compact, Theorem 1 implies that any

compact set in `∞(T ) is actually contained in LC(T, ρ) for some

semimetric ρ making T totally bounded.
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Another important class of metric spaces are product spaces.

For a pair of metric spaces (D, d) and (E, e), the Cartesian product

D× E is a metric space with respect to the metric

ρ((x1, y1), (x2, y2)) ≡ d(x1, x2) ∨ e(y1, y2),

for x1, x2 ∈ D and y1, y2 ∈ E.

The resulting topology is the product topology.

In this setting, convergence of (xn, yn)→ (x, y) is equivalent to

convergence of both xn → x and yn → y.
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There are two natural σ-fields for D× E that we can consider.

The first is the Borel σ-field for D× E generated from the product

topology.

The second is the product σ-field generated by all sets of the form A×B,

where A ∈ A, B ∈ B, andA and B are the respective σ-fields for D
and E.

These two are equal when D and E are separable, but they may be

unequal otherwise, with the first σ-field larger than the second.
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Suppose X : Ω 7→ D and Y : Ω 7→ E are Borel-measurable maps

defined on a measurable space (Ω,A).

Then (X,Y ) : Ω 7→ D× E is a measurable map for the product of the

two σ-fields by the definition of a measurable map.

Unfortunately, when the Borel σ-field for D× E is larger than the product

σ-field, then it is possible for (X,Y ) to not be Borel-measurable.
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