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(Introduction to Part II )

The goal of Part Il is to provide an in depth coverage of the basics of

empirical process techniques which are useful in statistics:

Chapter 6: mathematical background, metric spaces, outer

expectation, linear operators and functional differentiation.

Chapter 7: stochastic convergence, weak convergence, other modes

of convergence.

Chapter 8: empirical process techniques, maximal inequalities,

symmetrization, Glivenk-Canteli results, Donsker results.

Chapter 9: entropy calculations, VC classes, Glivenk-Canteli and

Donsker preservation.

Chapter 10: empirical process bootstrap.
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e Chapter 11: additional empirical process results.
e Chapter 12: the functional delta method.

e Chapter 13: Z-estimators.

e Chapter 14: M-estimators.

e Chapter 15: Case-studies Il.
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(Topological Spaces ]

A collection O of subsets of a set X is a topology in X if:
(i) 0 € Oand X € O, where () is the empty set;
(i) #U; € Oforj =1,...,m,then(,_; . U; €O;

(iii) If {Ua} is an arbitrary collection of members of O (finite, countable or
uncountable), then | J , Uy, € O.

When O is a topology in X, then X (or the pair (X, O)) is a topological

space, and the members of O are called the open setsin X.
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For a subset A C X, the relative topology on A consists of the sets
{AN B : B e O}: check that this is a topology.

Amap f : X — Y between topological spaces is continuous if f~(U)

is open in X whenever U is openin Y.

A set B in X is closed if and only if its complement in X', denoted
X — B, is open.
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The closure of an arbitrary set &/ € X, denoted E, is the smallest closed

set containing F .

The interior of an arbitrary set £/ € X, denoted E°, is the largest open

set contained in F .

A subset A of a topological space X is dense if A=X.

A topological space X is separable if it has a countable dense subset.
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A neighborhood of a point x € X is any open set that contains x.

A topological space is Hausdorffif distinct points in X have disjoint

neighborhoods.

A sequence of points {J;n} in a topological space X converges to a point
x € X, denoted x,, — z, if every neighborhood of x contains all but

finitely many of the x,,.
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Suppose r,, — x and x, — V.

Then x and y share all neighborhoods, and x = y when X is Hausdorff.

Ifamap f : X — Y between topological spaces is continuous, then

f(xn) — f(x) whenever z,, — x in X; to see this,
e Let {z,} C X be asequence withz,, — = € X.

e Then for any open U C Y containing f(x), all but finitely many {x,, }
arein f~1(U), and thus all but finitely many { f(z,,)} are in U.

e Since U was arbitrary, we have f(z,) — f(x).
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We now review the important concept of compactness:

A subset K of a topological space is compact if for every set A D K,
where A is the union of a collection of open sets S, K is also

contained in some finite union of sets in S.

When the topological space involved is also Hausdorff, then
compactness of K is equivalent to the assertion that every sequence

in i has a convergent subsequence (converging to a point in /).

This result implies that compact subsets of Hausdorff topological

spaces are necessarily closed.
Note that a compact set is sometimes called a compact for short.

A o-compact set is a countable union of compacts.
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A collection A of subsets of a set X is a o-field in X (sometimes called a

o -algebra) if:
i) X € A;
(i) fU € A,then X — U € A,;

(i) The countable union U;il U; € AwheneverU; € Aforallj > 1.

Note that (iii) clearly includes finite unions.

When (iii) is only required to hold for finite unions, then A is called a field.

10
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When A is a o-field in X, then X (or the pair (X, .4)) is a measurable

space, and the members of A are called the measurable setsin X.

If X is a measurable space and Y is a topological space, then a map
f: X Y is measurableif f~1(U) is measurable in X whenever U is

openinY .

If O is a collection of subsets of X (not necessary open), then there exists
a smallest o-field A* in X sothat O C A*.

This A* is called the o-field generated by O.

11
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To see that such an A* exists:

Let S be the collection of all o-fields in X which contain O.

Since the collection of all subsets of X is one such o-field, S is not

empty.
Define A* to be the intersection of all A € S.
Clearly, O € A* and A* is in every o-field containing O.

All that remains is to show that A™* is itself a o-field.

12
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To show this,
e Assume that A; € A” for all integers j > 1.
o f A€ S, thenlJ;5 45 € A
e Since (J;»; Aj € Aforevery A € S, wehave | ), 4; € A™.

e Also X € A*since X € Aforall A € S;andforany A € A*, both
Aand X — Aareinevery A € S.

Thus A* is indeed a o-field.

13



Empirical Processes: Lecture 06 Spring, 2010

A o-field is separable if it is generated by a countable collection of subsets.

Note: we have already defined “separable” as a characteristic of certain

topological spaces.

There is a connection between the two definitions which we will point out

shortly in our discussion on metric spaces.

14
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When X is a topological space, the smallest o-field 5 generated by the

open sets is called the Borel o -field of X .

Elements of BB are called Borel sets.

A function f : X — Y between topological spaces is Borel-measurable if

it is measurable with respect to the Borel o-field of X.

Clearly, a continuous function between topological spaces is also

Borel-measurable.

15
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Fora o-field Ainaset X,amappu: A— R is a measure if:
(i) u(A) € [0,00] forall A € A,
(i) (@) = 0;

(iii) For any disjoint sequence {A,} € A,
1 (U;’; Aj) = > _;—1 11(A;) (countable additivity).

The triple (X, A, u) is called a measure space.

16
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f X = A; U Ay U - - - for some finite or countable sequence of sets in A

with ¢1(A;) < oo for all indices j, then (i is o-finite.

If (X') = 1, then w is a probability measure.

For a probability measure P on a set {2 with o-field A, the triple
(2, A, P) is called a probability space.

17
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If the set |0, oo] in Part (i) is extended to (—o0, 00| or replaced by

[— 00, 00) (but not both), then 1 is a signed measure.

For a measure space (X, A, 1), let A* be the collection of all E C X
for which there exists A, B € Awith A C E C Band u(B — A) =0,
and define 1 (F) = p(A) in this setting.

Then A* is a o-field, (4 is still a measure, and A* is called the

(.-completion of A.

18
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[Metric Spaces J

A metric space is a set [ together with a metric.

A metric or distance functionis amap d : ID x D — [0, oo) where:
() d(z,y) = d(y, z);

(i) d(x,z) < d(z,y) + d(y, z) (the triangle inequality);

(iiiy d(x,y) =0ifandonlyifxz = y.

A semimetric or pseudometric satisfies (i) and (ii) but not necessarily (iii).

19
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Technically, a metric space consists of the pair (ID, d), but usually only D

is given and the underlying metric d is implied by the context.

A semimetric space is also a topological space with the open sets
generated by applying arbitrary unions to the open r-balls
B.(x)={y:d(xz,y) <r}forr > 0and x € D (where By(x) = ().

A metric space is also Hausdorff, and, in this case, a sequence {x,,} € D

converges to z € D if d(xy,, z) — 0.

20
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For a semimetric space, d(azn, a:) — 0 ensures only that x,, converges to
elements in the equivalence class of x, where the equivalence class of x
consists of all {y € D : d(x,y) = 0}.

Accordingly, the closure Aofaset A € Dis not only the smallest closed
set containing A, as stated earlier, but A also equals the set of all points

that are limits of sequences {x, } € A.

In addition, two semimetrics d1 and d9 on a set ID are considered
equivalent (in a topological sense) if they both generate the same open

sets, and equivalent metrics yield the same convergent subsequences.

21
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Amap f : D — IE between two semimetric spaces is continuous at a

point x if and only if f(x,) — f(x) for every sequence x,, — .

The map f is continuous (in the topological sense) if and only if it is

continuous at all points « € ID.

The following lemma helps to define semicontinuity for real valued maps:

LEMMA 1. Let f : ID — R be a function on the metric space ID; Then
TFAE:

(i) Forallc € R, theset{y : f(y) > c} is closed.

(i) Forallyy € D, limsup,_ ., f(y) < f(yo).

22
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A function f : ID — R satisfying either (i) or (ii) (and hence both) of the

conditions in Lemma 1 is said to be upper semicontinuous.

A function f : D — R is lower semicontinuous if — f is upper

semicontinuous.

Using Condition (ii), it is easy to see that a function which is both upper

and lower semicontinuous is also continuous.

The set of all continuous and bounded functions f : D — R, which we
denote C(ID), plays an important role in weak convergence on the metric

space I, which we will explore in Chapter 7.

23
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It is not hard to see that the Borel o-field on a metric space ID is the

smallest o-field generated by the open balls.

It turns out that the Borel o-field BB of D is also the smallest o-field A

making all of Cy,(ID) measurable; To see this,

e Note that any closed A C D is the preimage of the closed set {0} for
the continuous bounded function = — d(x, A) A 1, where for any set
B C D,d(z,B) =inf{d(z,y) : y € B}.

e Thus B C A.

e Since it is obvious that A C B, we now have A = B.0O

24
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A Borel-measurable map X : (2 — D defined on a probability space

(€2, A, P) is called a random element or random map (or random

variable) with values in [D.

Borel measurability is, in many ways, the natural concept to use on metric

spaces since it connects nicely with the topological structure.

25
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A Cauchy sequence is a sequence {x, } in a semimetric space (ID, d)

such that d(z,,, T,,,) — 0asn,m — oo,

A semimetric space D is complete if every Cauchy sequence has a limit
x e D.

Every metric space ID has a completion D which has a dense subset

isometric with ID.

Two metric spaces are isometric if there exists a bijection (a one-to-one

and onto map) between them which preserves distances.

26
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When a metric space [ is separable, and therefore has a countable dense

subset, the Borel o-field for D is itself a separable o-field.

To see this, let A € D be a countable dense subset and consider the

collection of open balls with centers at points in A and with rational radii.

Clearly, the set of such balls is countable and generates all open sets in ID:
o Letxg € D, {x,} € A: x,, — x0,and €, = |z,, — x0].

e [t is not hard to see that

Un>1{z: |z —xp| < (7 —€,) VO} = By(z0) forany n > 0.

27
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A topological space X is Polish if it is separable and if there exists a metric

making X into a complete metric space.

Hence any complete and separable metric space is Polish.

Furthermore, any open subset of a Polish space is also Polish.

Examples of Polish spaces include Euclidean spaces and many other

interesting spaces that we will explore shortly.

28
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A subset K is totally bounded if and only if for every r > 0, K can be

covered by finitely many open r-balls.

Furthermore, a subset /X of a complete semimetric space is compact if

and only if it is totally bounded and closed.

A totally bounded subset K is also called precompact because every

sequence in K has a Cauchy subsequence.

29
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This relationship between compactness and total boundedness implies

that a o-compact set in a metric space is separable.

These definitions of compactness agree with the previously given

compactness properties for Hausdorff spaces.

This happens because a semimetric space D can be made into a
metric—and hence Hausdorff—space D g by equating points in D g with

equivalence classes in .

30
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(Banach Spaces ]

A very important example of a metric space is a normed space.

A normed space D is a vector space (also called a linear space) equipped
with a norm, and anormisamap || - || : D — |0, c0) such that, for all
x,y € Dand a € R,

i) ||z + y|| < ||x|| + ||y|| (another triangle inequality);

(i) ||ax|| = |a| x ||x

b

(i) ||=|| = Oifand only if x = 0.

A seminorm satisfies (i) and (ii) but not necessarily (iii).

31
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A normed space is a metric space (and a seminormed space is a

semimetric space) with d(x,y) = || — y||, forall z,y € D.

A complete normed space is called a Banach space.

Two seminorms || - ||1 and || - ||2 on a set ID are equivalent if the following
is true for all z, {x,, } € D:

|xn — x|t — 0 ifandonlyif ||z, — x|2 — O.

32
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In our definition of a normed space [, we require the space to also be a

vector space (and therefore it contains all linear combinations of elements

in D).

However, it is sometimes of interest to apply norms to subsets K C D

which may not be linear subspaces.

In this setting, let lin /X' denote the linear span of K (all linear

combinations of elements in K), and let lin K the closure of lin .

Note that both lin K and lin K are now vector spaces and that linK is also

a Banach space.

33



Empirical Processes: Lecture 06 Spring, 2010

We now present several specific examples of metric spaces.//[0.5ex]

The Euclidean space R% is a Banach space with squared norm

d
] = 325 5.

This space is equivalent under several other norms, including

d
]| = maxi<j<q|z;| and [|z]| = >y [xj].

A Euclidean space is separable with a countably dense subset consisting

of all vectors with rational coordinates.

34
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By the Heine-Borel theorem, a subset in a Euclidean space is compact if

and only if it is closed and bounded.

The Borel o-field is generated by the intervals of the type (—oo, x|, for
rational , where the interval is defined as follows: y € (—oo, x| if and

only if y; € (—o0, ;] for all coordinates j =1, ... ,d.

For one-dimensional Euclidean space, R, the normis ||x|| = ||

(absolute value).

35
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The extended real line R = [—oo, oo] IS @ metric space with respect to
the metric d(z,vy) = |G(x) — G(y)|, where G : R — R is any strictly
monotone increasing, continuous and bounded function, such as the

arctan function.

For any sequence {z,,} € R, |z, — x| — 0 implies d(z,,x) — 0,

while divergence of d(x,,, x) implies divergence of |x,, — x|.

In addition, it is possible for a sequence to converge, with respect to d, to

either —o0 or Q.

This makes R compact.

36
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Another important example is the set of bounded real functions

f T +— R, whereI'is an arbitrary set.

This is a vector space if sums 21 + z9 and products with scalars, az, are

defined pointwise for all z, 21, zo € £°°(T).

Specifically, (21 + 22)(t) = 21(t) + 2z2(t) and (az)(t) = az(t), for all
tel.

This space is denoted £°°(T).

37
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The uniform norm ||z||7 = sup,ep |x(t)| makes £°°(T") into a Banach
space consisting exactly of all functions z : 1" — IR satisfying

Izl < oo

Note that /°°('T") is separable if and only if 1" is countable.

Two useful subspaces of £>°([a, b]), where a, b € R, are C|a, b] and
Dla, ).

38
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The space C'a, b] consists of continuous functions z : [a, b] — R, and
Dla, b| is the space of cadlag functions which are right-continuous with
left-hand limits (cadlag is an abbreviation for continue a droite, limites a

gauche).

We usually equip these spaces with the uniform norm || - ||, ¢ inherited
from £°°([a, b)]).

Note that C'|a, b] C Dla,b] C £°°([a,]).

39
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Relative to the uniform norm, C'[a, b] is separable, and thus also Polish by
the completeness established in Exercise 6.5.5(a), but D|a, b] is not

separable.

Sometimes, D|a, ] is called the Skorohod space, although Skorohod
equipped D |a, b] with a special metric—quite different than the uniform

metric—resulting in a separable space.

40
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(Arzela-Ascola Theorem )

An important subspace of £°°('T") is the space UC (T, p), where p is a

semimetric on 1.

UC(T, p) consists of all bounded function f : T" — R which are

uniformly p-continuous, i.e.,

lim sup |[f(s)— f(t)] =0.
m s 11(s) ()

When (T, p) is totally bounded, the boundedness requirement for
functions in UC(T', p) is superfluous since a uniformly continuous

function on a totally bounded set must necessarily be bounded.

41
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We denote C'(T', p) to be the space of p-continuous (not necessarily

continuous) function on 7"

The spaces Cla, b], Dl]a,b], UC(T, p), C(T, p), when (T, p) is a
totally bounded semimetric space, and UC (T, p) and £°°('T), for an

arbitrary set I', are all complete with respect to the uniform metric.

When (T, p) is a compact semimetric space, 1’ is totally bounded, and a

p-continuous function in 1" is automatically uniformly p-continuous.

42
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Thus, when T is compact, C'(T', p) = UC(T, p).

Actually, every space UC (T, p) is equivalent to a space C'(T', p),
because the completion T of a totally bounded space 1’ is compact and,
furthermore, every uniformly continuous function on 1" has a unique

continuous extension to 1.

The foregoing structure makes it clear that U C'(T, p) is a Polish space

that is made complete by the uniform norm (and hence is also separable).

43



Empirical Processes: Lecture 06 Spring, 2010

Moreover, all compact sets in £°°('T") have a specific form:

THEOREM 1. (Arzela-Ascoli)

(a) The closure of K C £°°('T") is compact if and only if
(i) Supyex |z(to)| < oo, forsomety € T'; and
(i) for some semimetric p making ‘I’ totally bounded,

lim sup sup [z(s) — z(t)| = 0.
010 zeK s;t€T:p(s,t)<d

(b) The set K C (*°(T) is o-compact if and only if K C LC(T, p) for

some semimetric p making I’ totally bounded, where LC (T, p) is the
subset of UC (T, p) consisting of all bounded functions x with

z(s) — 2(t)]

sup sup < OQ.
0>0 s,teT:p(s,t)<d 0

44
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(¢) The closure of K C £°°(T') is separable if and only if
K Cc UC(T, p) for some semimetric p making T" totally bounded.

Since all compact sets are trivially o-compact, Theorem 1 implies that any
compact set in £°°(T") is actually contained in LC'(T', p) for some

semimetric p making I’ totally bounded.

45
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Another important class of metric spaces are product spaces.

For a pair of metric spaces (ID, d) and (E, e), the Cartesian product

D x K is a metric space with respect to the metric

p((331,y1), (3327y2)) = d(aj17332) \ 6(91792)7

forx1,r2 € Dand y1, ys € K.

The resulting topology is the product topology.

In this setting, convergence of (y,, y,) — (x,y) is equivalent to

convergence of both x,, — x and y,, — v.

46
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There are two natural o-fields for D x K that we can consider.

The first is the Borel o-field for D x I£ generated from the product

topology.

The second is the product o-field generated by all sets of the form A X B,
where A € A, B € B, and A and B are the respective o-fields for D
and [E.

These two are equal when [D and IE are separable, but they may be

unequal otherwise, with the first o-field larger than the second.

47
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Suppose X : Q+— DandY : ) — [ are Borel-measurable maps

defined on a measurable space ({2, .A).

Then (X,Y) : Q +— D x E is a measurable map for the product of the

two o-fields by the definition of a measurable map.

Unfortunately, when the Borel o-field for D x K is larger than the product

o-field, then it is possible for (X, Y') to not be Borel-measurable.
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