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�� ��Example: Partly Linear Logistic Regression
The observed data are n i.i.d. realizations of (Y,Z, U), where

• Z ∈ Rp and U ∈ R are covariates which are not linearly dependent,

• Z is restricted to a bounded set, U ∈ [0, 1],

• Y is a dichotomous outcome with conditional expectation

ν[β′Z + η(U)],

• β ∈ Rp (p = 1 hereafter for simplicity),

• ν(t) = et/(1 + et), and where

• η is an unknown smooth function.
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We assume, for some integer k ≥ 1, that

J2(η) =

∫ 1

0

[
η(k)(t)

]2
dt <∞.

We estimate β and η based on the following penalized log-likelihood:

L̃n(β, η) = n−1
n∑
i=1

log pβ,η(Xi)− λ̂2nJ2(η),

where

pβ,η(x) = {ν [βz + η(u)]}y {1− ν [βz + η(u)]}1−y

and λ̂n satisfies λ̂n = oP (n
−1/4) and λ̂−1n = OP (n

k/(2k+1)).
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Denote

• β̂n and η̂n to be the maximizers of L̃n(β, η),

• with Pβ,η the expectation under the model, and

• β0 and η0 the true values of the parameters.

Consistency of β̂n and η̂n and efficiency of β̂n are established for partly

linear generalized linear models in Mammen and van de Geer (1997).
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We now

• derive the efficient score for β

• then sketch a verification that β̂n is asymptotically linear

• with influence function equal to the efficient influence function.

Several difficult steps will be reserved for Chapter 15.

Our approach diverges only slightly from that used by Mammen and van

de Geer (1997).

5



Empirical Processes: Lecture 05 Spring, 2014

LetH be the linear space of functions h : [0, 1] 7→ R with J(h) <∞.

For t ∈ [0, ε) and ε sufficiently small, let

βt = β + tv and ηt = η + th

for v ∈ R and h ∈ H.

If we differentiate the non-penalized log-likelihood, we deduce that the

score for β and η, in the direction (v, h), is

(vZ + h(U))(Y − µβ,η(Z,U)),

where µβ,η(Z,U) = ν[βZ + η(U)].
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Thus the usual score for β is

˙̀
β,η(X) = vZ(Y − µβ,η(Z,U)),

and the tangent space for η is

Ṗ(η)
Pβ,η

= {h(U)(Y − µβ,η(Z,U)) : h ∈ L2(U)} .

We need to find the projection of ˙̀β,η(X) onto Ṗ(η)
Pβ,η

, and subtract it from

˙̀
β,η to obtain the efficient score ˜̀

β,η .
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Now let

h1(u) =
E{ZVβ,η(Z,U)|U = u}
E{Vβ,η(Z,U)|U = u}

,

where Vβ,η(Z,U) = µβ,η(U,Z)(1− µβ,η(U,Z)), and assume that

h1 is bounded (and thus h1 ∈ H).

Note first that qβ,η(X) ≡ h1(U)(Y − µβ,η(X)) ∈ Ṗ(η)
Pβ,η

by

assumption on h1.

If we can also verify that (Z − h1(U))(Y − µβ,η(X)) is uncorrelated

with h(U)(Y − µβ,η(X)) for all h ∈ L2(U), then qβ,η is the desired

projection onto Ṗ(η)
Pβ,η

.
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Note that

P [qβ,η(X)h(U)(Y − µβ,η(X))]

= P
[
P
{
(Z − h1(U))h(U) (Y − µβ,η(X))2

∣∣∣U}]
= P [P {h1(U)h(U)P [Vβ,η(Z,U)|U ]− h1(U)h(U)P [Vβ,η(Z,U)|U ]}]

= 0,

and thus we have the desired uncorrelation.

Hence ˜̀
β,η(X) = (Z − h1(U))(Y − µβ,η(X)) is the efficient score

for β.
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Hence the efficient information for β is

Ĩβ,η = P
[
˜̀
β,η

˜̀′
β,η

]
= Pβ,η

[
(Z − h1(U))2Vβ,η(Z,U)

]
and the efficient influence function is

ψ̃β,η = Ĩ−1β,η
˜̀
β,η,

provided Ĩβ,η > 0, which we assume hereafter for β = β0 and η = η0.

10



Empirical Processes: Lecture 05 Spring, 2014

In order to prove asymptotic linearity of β̂n, we need to slightly strengthen

our assumption that Z and U are not linearly dependent to require that

Pβ0,η0

[
Z − h̃1(U)

]2
> 0,

where h̃1(u) = E{Z|U = u}.

We prove in Chapter 15 that β̂n and η̂n are both uniformly consistent for

β0 and η0, respectively, and that

Pn
[
(β̂n − β0)Z + η̂n(U)− η0(U)

]2
= oP (n

−1/2), (1)

which we will for now take as given.
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Let β̂ns = β̂n + s and η̂ns(u) = η̂n(u)− sh1(u).

If we now differentiate L̃n(β̂ns, η̂ns) and evaluate at s = 0, we obtain

0 = Pn [(Y − µβ0,η0)(Z − h1(U))]

−Pn
[
(µβ̂n,η̂n − µβ0,η0)(Z − h1(U))

]
−λ2n

{
∂J2(η̂ns)/(∂s)|s=0

}
= An −Bn − Cn,

since L̃n(β, η) is maximized at β̂n and η̂n by definition.
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Using (1), we obtain by Taylor expansion

Bn = Pn
[
Vβ0,η0(Z,U)

{
(β̂n − β0)Z + η̂n(U)− η0(U)

}
(Z − h1(U))

]
+Pn

[
V̇β∗,η∗(Z,U)

2

{
(β̂n − β0)Z + η̂n(U)− η0(U)

}2

× (Z − h1(U))]

= Qn + En,

where (β∗, η∗) is on the line segment between (β̂n, η̂n) and (β0, η0).

Since V̇β∗,η∗(X), Z and h1(U) are all bounded, we obtain from (1) that

En = oP (n
−1/2).
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By definition of h1, we have

Pβ0,η0 [Vβ0,η0(Z,U)(η̂n(U)− η0(U))(Z − h1(U))] = 0.

If we can also show that

√
n(Pn − P )Vβ0,η0(Z,U)(η̂n(U)− η0(U))(Z − h1(U)) = oP (1),

(2)

then we know that

Bn = (β̂n − β0)Pn [Vβ0,η0(Z,U)(Z − h1(U))] + oP (n
−1/2).

(3)
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To verify (2), we need to show that for each τ > 0, η̂n(U)− η0(U) lies

in a bounded Pβ0,η0 -Donsker class with probability > (1− τ) for all

n ≥ 1 large enough and all τ > 0.

Then, since products of bounded Donsker classes are themselves

Donsker, we will have that Vβ0,η0(X,U)(η̂n(U)− η0(U))(Z−h1(U))

also lies in a Donsker class with increasingly high probability.

Since also

Pβ0,η0 [Vβ0,η0(Z,U)(η̂n(U)− η0(U))(Z − h1(U))]2
P→ 0,

the desired conclusion (2) will follow.
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This means that (3) will follow, and thus

Bn = (β̂n − β0)Pβ0,η0
[
Vβ0,η0(Z,U)(Z − h1(U))2

]
+ oP (n

−1/2),

= (β̂n − β0)Ĩβ0,η0 + oP (n
−1/2), (4)

since

Pβ0,η0 [Vβ0,η0(Z,U)Z(Z − h1(U))] = Pβ0,η0
[
Vβ0,η0(Z,U)(Z − h1(U))2

]
by definition of h1.
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If we can show that Cn = oP (n
−1/2), then since An = Pn ˜̀β0,η0 , we

have

Pn ˜̀β0,η0 − (β̂n − βn)Ĩβ0,η0 = oP (n
−1),

and thus
√
n(β̂n − β0) =

√
nPnψ̃β0,η0 + oP (1), where

ψ̃β0,η0 = Ĩ−1β0,η0
˜̀
β0,η0

is the efficient influence function.

Thus β̂n is regular and semiparametric efficient!
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We are now left with the tasks of verifying that

1. η̂n(U)− η0(U) lies in a Donsker class with increasingly high

probability and

2. Cn = oP (n
−1/2).

For 1, letHc be the subset ofH with functions h satisfying J(h) ≤ c and

‖h‖∞ ≤ c.

We will show in Chapter 15 that {h(U) : h ∈ Hc} is indeed Donsker for

each c <∞ and also that J(η̂n) = OP (1).
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This yields the desired Donsker property, and 1 follows.

Since

∂

∂s

∫ 1

0
[η̂n(u)− sη0(u)]2 du

∣∣∣∣
s=0

= −2
∫ 1

0
η̂n(u)η0(u)du

and λn = oP (n
−1/4) by assumption,

Cn ≤ 2λ2nJ(η̂n)J(η0) = oP (n
−1/2),

and 2 follows.

19



Empirical Processes: Lecture 05 Spring, 2014

In this example, the steps for solving the problem are essentially:

• Obtain consistency of β̂n and η̂n (uniform).

• Show that J(η̂n) = OP (1).

• Derive the efficient score ˜̀
β0,η0 , efficient information Ĩβ0,η0 and

efficient influence function ψ̃β0,η0 .

• Show that
√
n(β̂n − β0) =

√
nPnψ̃β0,η0 + oP (n

−1/2).

With three additional/intermediate steps including:

• Show that P [η̂n(U)− η0(U)]2 = oP (1).

• Show that Pn
[
(β̂n − β0)Z + η̂n(U)− η0(U)

]2
= oP (n

−1/2).

• Show that ‖η̂n(U)− η0(U)‖P,2 = oP (n
−k/(2k+1)).
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