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We say that a map φ : Dφ ⊂ D 7→ E, is Gâteaux-differentiable at

θ ∈ Dφ
if there exists a map φ′θ : D 7→ E such that∥∥∥∥φ(θ + th− φ(θ)

t
− φ′θ(h)

∥∥∥∥→ 0 ,

where θ + th ∈ Dφ for every t > 0 small enough.
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We say that the map is Hadamard-differentiable if there exists a

continuous linear map φ′θ : D 7→ E such that

sup
h∈K

∥∥∥∥φ(θ + th− φ(θ)

t
φ′θ(h)

∥∥∥∥→ 0 , (1)

for every compact set K ⊂ D where θ + th ∈ Dφ for every t > 0 small

enough.

We say that the map is Fréchet-differentiable if the condition (1) holds for

every bounded subset K ⊂ D.
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�� ��Semiparametrics: Models and Efficiency

A statistical model is a collection of probability measures {P ∈ P} that

specify the distribution of a random observation X .

Consider the linear model Y = β′Z + e, where the observed data is

X = (Y,Z), β ∈ Rk is unknown, and the joint distribution of (Z, e)

satisfies

• E(e|Z) = 0 almost surely,

• E(e2|Z) ≤ K <∞ almost surely, and

• the distribution of (Z, e) is otherwise unspecified (mostly).
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In this instance, the model P has

• an unkown parameter β of interest and

• some other unknown components of secondary interest but which

allow flexibility (the joint distribution of (Z, e)).

In general, a model P has

• A parameter (often denoted ψ) of interest and

• several partially unspecified components not of interest.
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For semiparametric models, ψ = (θ, η), where

• θ is finite dimensional and usually of primary interest, and

• η is infinite dimensional and usually of secondary interest.

• There may be other components not of interest which are not

parameterized at all.

• θ and η may have multiple subcomponents.

• Choices of parameter names are contextual and vary in the literature,

although there are some consistencies.
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The goals of semiparametric inference are primarily to:

• Select an appropriate model for inference on X ;

• Estimate one or more subcomponents of ψ, sometimes θ alone is the

focus;

• Conduct inference (e.g., confidence intervals) for the parameters of

interest;

• Try to obtain efficient estimators.

The standard set-up for inference we will use in this book is where

estimation and inference is based on a sample, X1, . . . , Xn of i.i.d.

realizations of a distribution P ∈ P .

7



Empirical Processes: Lecture 04 Spring, 2014

The generic prameter of interest ψ can be viewed as a function of the

distribution ψ(P ), since if we know the distribution, we know the

parameter value.

An estimator Tn (based on the data X1, . . . , Xn) is efficient for ψ(P ) if

the limiting variance V of
√
n(Tn − ψ(P )) is the smallest among all

regular estimators of ψ(P ).

The inverse of V is the information for Tn.
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The optimal efficiency of a parameter ψ(P ) depends on the complexity of

the model P .

Estimation under P is more taxing than estimation under any parametric

submodel P0 = {Pθ : θ ∈ Θ0} ⊂ P , where Θ0 is finite-dimensional.

For example, in the linear regression model P setting above, if we assume

Z and e are independent and e is N(0, σ2), where σ2 is unknown, and

call this model P0, P0 is a parametric submodel of P .
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Thus, and in general, information for P is worse (less) than information for

any parametric submodel P0 ⊂ P .

For a semiparametric model P , if the information for the regular estimator

Tn (to estimate ψ(P )) equals the minimum (infemum) of the Fisher

informations for all parametric submodels of P , then Tn is semiparametric

efficient for ψ(P ), and the associated information for Tn is called the

“efficient information” (also called the efficient information for P ).

This is because the only settings with more information than Tn are for

parametric (not semiparametric) submodels.
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Interestingly, when ψ(P ) is one-dimensional, it is always possible to

identify a one-dimensional parametric submodel that has the same Fisher

information as the efficient information for P .

A parametric submodel that achieves the efficient information is called a

least favorable or hardest submodel.

Fortunately, finding the efficient information for ψ(P ) only requires

consideration of one-dimensional parametric submodels {Pt : t ∈ [0, ε)}
surrounding representative (true) distributions P ∈ P , where P0 = P

and Pt ∈ P for all t ∈ [0, ε).
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If P has a dominating measure µ, then each P can be expressed as a

density p.

In this case, we require the densities around p to be smooth enough so

that g(x) = ∂pt(x)/(∂t)|t=0 exists with
∫
X g

2(x)p(x)µ(dx) <∞.

More generally, we say that a submodel is differentiable in quadratic mean

with score function g : X 7→ R if∫ [
(dPt(x))1/2 − (dP (x))1/2

t
− 1

2
g(x)(dP (x))1/2

]2
→ 0. (2)
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Sometimes it is important for us to consider a collection of many

one-dimensional submodels surrounding a representative P , each

submodel represented by a score function g: such a collection of score

functions ṖP is called a tangent set.

Because, for any g ∈ ṖP , Pg = 0 and Pg2 <∞, these tangent sets

are subsets of L0
2(P ), the space of all function h : X 7→ R with Ph = 0

and Ph2 <∞.

When the tangent set is closed under linear combinations, it is called a

tangent space.
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Consider a parametric model P = {Pθ : θ ∈ Θ}, where Θ is an open

subset of Rk and P is dominated by µ, such that the classical score

function ˙̀
θ(x) = ∂ log pθ(x)/(∂θ) exists with Pθ‖ ˙̀

θ‖2 <∞ (and a

few other conditions hold).

One can show that each of the one-dimensional submodels

g(x) = h′ ˙̀θ(x), for any h ∈ Rk, satisfies (2), forming the tangent space

ṖPθ = {h′ ˙̀θ : h ∈ Rk}.

Thus there is a simple and direct connection between the classical score

function and the more general tangent spaces.
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Continuing with the parametric setting, we say that an estimator θ̂ of θ is

efficient for estimating θ if

• it is regular and

• it’s information achieves the Cramèr-Rao lower bound P [ ˙̀
θ

˙̀′
θ].

Thus the tangent set for the model contains information about the optimal

efficiency.

This is also true for semiparametric models, although the relationship

between tangents sets and the optimal information is more complex.
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Consider estimation of the parameter ψ(P ) ∈ Rk for the model P :

For any estimator Tn of ψ(P ), if

√
n(Tn − ψ(P )) =

√
nPnψ̌P + oP (1),

then

• ψ̌P is an influence function for ψ(P ) and

• Tn is asymptotically linear.
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For a given tangent set ṖP , assume for each submodel

{Pt : 0 ≤ t < ε} satisfying (2) with some g ∈ ṖP and some ε > 0, that

∂ψ(Pt)

∂t

∣∣∣∣
t=0

= ψ̇P (g),

for some linear map ψ̇P : L0
2(P ) 7→ Rk:

In this setting, we say that ψ is differentiable at P relative to ṖP .
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When ṖP is a linear space, there exists a measurable function

ψ̃P : X 7→ Rk such that

ψ̇P (g) = P
[
ψ̃P (X)g(X)

]
,

for each g ∈ ṖP .

The function ψ̃P ∈ ṖP ⊂ L0
2(P ) is unique and is called the efficient

influence funtion for the parameter ψ in the model P .
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The efficient influence function ψ̃P for ψ can usually be found by taking

any influence function ψ̌P and projecting it onto ṖP .

Moreover, we will see in Theorem 18.8 that full efficiency of an estimator

Tn of ψ(P ) can be verified by checking that the influence function of Tn

lies in ṖP .
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Consider a parametric model P = {Pθ : θ ∈ Θ}, where Θ ⊂ Rk.

Suppose the parameter of interest is ψ(Pθ) = f(θ), for f : Rk 7→ Rd

with derivative ḟθ at θ, and that the Fisher information for θ,

Iθ ≡ P
[

˙̀
θ

˙̀′
θ

]
is invertible.

Recall that, in this case, g(X) = h′ ˙̀θ(X), for some h ∈ Rk, and thus

Pt = Pθ+th, which implies that ψ̇P (g) = ḟθh.
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Since also we have

ḟθI
−1
θ P

[
˙̀
θ(X)g(X)

]
= ḟθI

−1
θ P

[
˙̀
θ

˙̀′
θh
]

= ḟθh,

we have that ψ̇P (g) = ḟθh = P
[
ψ̃P g

]
, provided

ψ̃P (X) = ḟθI
−1
θ

˙̀
θ(X).

Any estimator Tn for which
√
n(Tn − ψ(P )) =

√
nPnψ̃P + oP (1) has

asymptotic variance ḟθI
−1
θ ḟTθ and thus achieves the Cramèr Rao lower

bound and is efficient.
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It turns out that one can show that, in the general semiparametric setting,

ψ̃P achieve the semiparametric efficiency bound.

This requires the tangent set ṖP to be rich enough to correspond to all

regular, one-dimensional parametric submodels of ṖP but not richer:

• If g is the score function for some one-dimensional parametric

submodel of P , then g ∈ ṖP .

• If g ∈ ṖP , then there exists a one-dimensional parametric submodel

{Pt, 0 ≤ t < ε} ⊂ P for which g is the score function.

22



Empirical Processes: Lecture 04 Spring, 2014

We have focussed on the setting where the parameter ψ(P ) is

finite-dimensional.

One can also study efficiency when ψ(P ) is infinite-dimensional.

One way to express efficiency in this setting is through the convolution

theorem which states that for any regular estimator Tn of ψ(P ),
√
n(Tn − ψ(P )) has a weak limit that is the convolution of a Gaussian

process Z and an independent process M , where

• Z = Gψ̃P and

• ψ̃P is the efficient influence function of ψ(P ).
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A regular estimator Tn for which M is zero almost surely is an efficient

estimator for ψ(P ).

Sometimes we will refer to efficiency in the infinite-dimensional setting as

uniform efficiency.

Suppose ψ(P ) ∈ `∞(T ); then (Theorem 18.9) Tn is uniformly efficient

for ψ(P ) if

• Tn(t) is efficient for ψ(P )(t) for each t ∈ T , and

•
√
n(Tn − ψ(P )) converges weakly in `∞(T ) to a tight process.

24



Empirical Processes: Lecture 04 Spring, 2014

A parameter ψ(P ) of particular interest is the parametric component θ of

a semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H}, where

• Θ is an open subset of Rk and

• H is an arbitrary set that my be infinite dimensional.

Tangent sets (spaces) can be used to derive an efficient estimator for

ψ(Pθ,η) = θ through the formation of an efficient score function.
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In this setting, we use submodels of the form

{Pθ+ta,ηt , 0 ≤ t < ε}

that are differentiable in quadratic mean with score function

∂ log dPθ+ta,ηt
∂t

∣∣∣∣
t=0

= a′ ˙̀θ,η + g,

where

• a ∈ Rk,

• ˙̀
θ,η : X 7→ Rk is the ordinary score for θ when η is fixed, and where

• g : X 7→ R is an element of the tangent set Ṗ(η)
Pθ,η

for the submodel

Pθ = {Pθ,η : η ∈ H} (holding θ fixed).
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The tangent set Ṗ(η)
Pθ,η

(the tangent set for η) should be rich enough to

reflect all parametric submodels of Pθ.

The tangent set for the full model is

ṖPθ,η =
{
a′ ˙̀θ,η + g : a ∈ Rk, g ∈ Ṗ(η)

Pθ,η

}
.

The efficient score ˜̀
θ,η is computed by projecting ˙̀

θ,η onto the

orthocomplement of Ṗ(η)
Pθ,η

.
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The efficient information is

Ĩθ,η = P
[
˜̀
θ,η

˜̀′
θ,η

]
and the efficient influence function is

ψ̃θ,η = Ĩ−1θ,η
˜̀
θ,η.

If we can find an estimator Tn of θ such that

√
n(Tn − θ) =

√
nPnψ̃θ,η + oP (1),

then Tn is a semiparametrically efficient estimator of θ.
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Much of the work in semiparametrics involves finding ψ̃θ,η and finding

estimators Tn which are asymptotically efficient.

Consider the Cox model Λ(t;Z) = eβ
′ZΛ0(t) under right censoring:

• If β̂ is the partial likelihood estimator of β, then β̂ is a semiparametric

efficient estimator for β.

• If Λ̂ is the Breslow estimator∫ (·)

0

∑n
i=1 dNi(t)∑n

i=1 Yi(t)e
β̂′Zi

,

then Λ̂ is uniformly efficient for Λ0.

We will focus more in these ideas in Part III toward the end of the semester.
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