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(Review J

Let X1,...,X,, be ani.i.d. sample drawn from a probability measure P
on an arbitrary sample space X.

Let F be a class of measurable functions f : X — R.

We define the empirical process as {P,, f, f € F}
where P,, = n~1 2?21 dx, is the empirical measure.

More specifically, we have the empirical process

{Pnf =n1 2?21 f(Xz>a J € JT}
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We say that a class JF of measurable functions f : X — Ris
P-Glivenko-Cantelli if

sup [P f — Pf| =0
ferF

where Pf = [, f(s)P(dx).
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The bracketing number Ny (¢, F, L;-(P)) is the minimum number of
e-brackets in L,.(P) needed in order to ensure that every f € F is

contained in at least one bracket.

It Npj(e, F, L1(P)) < oo for every € > 0 then F is P-Glivenko-Cantelli.
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Define the random measure

Gn = vn(P, — P),
and define G to be a mean zero Gaussian process indexed by F,

e with covariance F |f(X)g(X)] — E | f(X)] E [g(X)], for all
f.g €F,

e and having appropriately continuous sample paths (almost surely).

We say that F is P-Donsker if

Gn ~ G in £2(F).
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The bracketing entropy integral is defined as

)
Jy(6,F, Lo(P)) = /O o8 Ny (e, F. L,(P)) de.

We saw that when JF is a class of measurable functions with
Jpp(oo, F, La(P)) < oo, Fis P-Donsker.
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(The Functional Delta Method )

Let X,, be a sequence of random vectors such that
vVn(X, —0)~ X

where # € RP. Let the function ¢ : RP — R? has a derivative ¢'(6).

Then
Vn(o(Xn) — ¢(0)) ~ ¢(0)' X .

This multivariate delta method can be generalized to random processes.
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[Quantile example (or what are we missing?) ]

Define £, = F~!(p) = inf{x : F(x) > p} forsome p € (0, 1).
£(p) is the p-th quantile of the distribution function F'.

When F'is strictly monotonically increasing and continuous at fp we have
F(fp) — P-

Can we use the delta method here?
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[Quantile example (or what are we missing?) ]

We have \/n (IF,(t) — F(t)) ~ G(t) = B(F(t)).
Define ¢(F)(p) = F~L(p) forallp € [a,b] C (0,1).

We hope that

Vi(6(Fn) = 6(F)) ~ ¢/ (B(F)) .

Note that ¢ : D — IE where ID is the space of distribution functions, and

[E is the space of monotonic functions on [0, 1].
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We need to
e Define derivatives.
e (Generalize the delta method.

e Validate the delta method for bootstrapping.

10
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(Normed spaces )
A normed space is a metric space (ID, d), where d(x,y) = || — y|| for
every x,y € D where || - || is a norm. A norm satisfies

o [z +yll < =] + [yl

o [az| = [af - |[=|

e |[x]| > 0and||z|| =0iffx =0
forallz,y € Dand a € R.

We say that || - || is a semi-norm if ||z|| = O does not necessarily mean
that x = 0.

11
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(Normed spaces )

Examples of normed spaces:

e For1 < r < oo, L.(P) is a normed space of measurable functions
fiX = Ruwith || fllpr = [Pfr(X)]Y" < .

e (°°(T) is the collection of all bounded functions f : T" +— R with the

norm £ lsc = supyer f-

e The cadlag space D|0, 1] with the sup norm, where D|0, 1] is the

space of right continuous with left-hands limits real functions.

e Any linear subspace of a normed space.

12
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 Differentiability in normed spaces )

We say thatamap ¢ : Dy, — K, Dy C D, is Gateaux-differentiable
att) € Dy

if for every fixed h € D

with 6 + th € Dy for every ¢ > 0 small enough,

there exists an element ¢y (k) € EE such that

¢(0 +th) — ¢(0)
t

> ¢y (h)

ast | 0.

13
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( Differentiability in normed spaces )

We say thatamap ¢ : Dy, C D — E,
is Hadamard-differentiable at 0 € 1D
tangentially to Dy C ID

if there exists continuous linear map
¢y : Do — E such that

gb(@ + tnhn) T §b<‘9)

. - o(h)

for all converging sequences t,, | 0 and h,, — h € IDg
with h,, € D and 0 + ¢, h,, € Dy, for every n large enough.

14
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[Quantile example (revisited) J

Recall that ¢(F)(p) = F~1(p) forallp € [a,b] C (0, 1).

Let [u,v] = [F~1(a) — e, F71(b) + ¢].

Define D = D|u, v], the space of cadlag functions on |u, v].
Define D, the space of distribution functions restricted to [u, v|.

Define Dy = C'|u, v], the space of continuous functions on |u, v].

Assume that F" has continuous density f such that f(¢) > O for all
t € |u,v].
Then ¢ is Hadamard differentiable with derivative

_ —h(F'(p))

dr(h) (p) = FF 1)) for all p € [a,b] .

15
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(Weak Convergence )

Theorem 2.8.
Let ¢ : Dy — IE be Hadamard-differentiable at ¢ € Dy, tangentially to
Dy C D.
Assume that
rp(Xp —0) ~ X

for some sequence 1, — 00, where X, takes its values in Dy, and X is
a tight process taking its values in D.
Then

o (A(Xn) — 0(0)) ~ ¢p(X).

16
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[Quantile example (revisited) ]

We so that ¢ is Hadamard differentiable with derivative

or (1 (6) = )

By Theorem 2.8,

Vi (FH(p) = FHp) = Vn(8(Fn)(p) — ¢(F)(p))
—B(F(F(p))

= —jEg)y oW
 Va(EF () — F(F\(p)))

- FE-1() +or(l)
_ _;iwxig—l(p)}—pwm

n fF=1(p))

17
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[Bootstrapping )

Define P, (f) = LS Whi f(X;), where the weights
(Wi, ..., Wan) are independent of X.

We saw that whenever F is P-Donsker
A . P
G, = /nc (]Pn —Pn)f\ij.

Theorem 2.9. Let ¢ : Dy > E be Hadamard-differentiable at 6 € D
tangentially to Dy C D with derivative ¢},. If I@’n and [;, take values at D
and G takes values at D, then

Ve (9(Bn) = 6(Pn) ) > 64(G)

18
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(Z-estimators )

Many statistics can be written as zero, or approximate-zeros, of estimating

equations based on empirical processes: these are called “Z-estimators”.

An example is B from linear regression which can be written as a zero of
Un(B) =Py [X(Y — X'B)].

19
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We would like to generalize Z-estimator results to processes.

Let ¥,, : © — L be data-dependent functions where © and L. are

normed spaces.

A . : A P
We say that 6,, is a Z-estimator if |V, (6,,)|| — O.
The main statistical issues for Z-estimators are
® consistency
e asymptotic normality

e the validity of the bootstrap

20
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(A non-trivial example )

Let (U1,61), ..., (Un, dy) be a sample of right-censored failure time

observations where
U =T, NC;,0; =1{T; < C;}

where T are failure times and C; are censoring times.

The Kaplan-Meier estimator of the survival function S =1 — F'is

su(t) = 1 (1— #{Uf; Uz-})

1:U; <t

21
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Let O be the space of all survival functions S restricted to the segment
0, 7].

Efron (1967) showed that the Kaplan-Meier estimator is the solution of
\Ifn(gn) = O where ¥,, : © — O is defined as

v, (S) (t) — ]P)an,t

where

s =1{U >t} + (1 —6)1{U <t}1{S(U) > O}% — S(t).

22
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[Consistency ]

Usually ¥,, : ©® — L which can be data-dependent is an estimator of a
fixed function ¥ : © +— IL for which U () = 0.

Theorem 2.10. Let U(#y) = 0. Assume that if || (6,,)]] % 0 then
160, — 0o|| — 0. Then

1.0 | ¥, (6,)]| — 0, and supgee || ¥n(6) — T (6)|| = 0, then
A P
H@n — (90H — 0.

2. 1f | W,,(0,)]] 220, and supgee || ¥n(0) — T (0)|| = 0, then
Hén — 90” aik 0.

23
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[Consistency ]

Back to the Kaplan-Meier example.

Ua(S)(t) = P ({U >t}
+(1 = )1{U < th{S(U) > 0}% — S(t)>
U(S)(t) = P({U >t}

+(1—60)1{U <tH{SU) > 0}% — S(t)> =0

We need to show that the identifiability condition
| W (6,,)]| — 0then ||8,, — 6y|| — O holds.

24
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We also need to show that supyee || ¥ (6) — U(0)| = 0.

25
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(Weak Convergence )

Let U(6y) = 0O for some 6 in the interior of 6.

Let én be a sequence of estimators such that
A P A P
V7|, (0,)]] - 0and ||6, — 6] — 0.

Let G (0) = /71 (T () — T(H)).

26
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(Weak Convergence )

Theorem 2.11 If

1.0, 5 0,

2. G, ~ G where & is a tight process.

3. (14 v/nllfn — 0oll) |G (Bn) — Gn(Bo)| = 0

4. U is Fréchet-differentiable at 6y with continuous inverse \Pe_ol.

Then /n(0, — 0p) ~ — ¥, 1 (G).

When W, (0) = P09 and W(0) = P1)y, then under some conditions

on the class {1y }, a bootstrap version of this theorem can be proved.

27



Empirical Processes: Lecture 03 Spring, 2012

 Differentiability in normed spaces )

We say that a map ¢ : Dy — [ is Fréchet-differentiable at 0 € D if

there exists a continuous linear map ¢, : D — [ such that

p(0 + hn) — ¢(0) — Pp(hn)|

> (0
||

for all sequences h,, such that ||k, || — 0 and 0 + h,, € Dy for every
n>1

28
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(M-estimators )

Many statistics can be written as maxima or minima of objective functions

based on empirical processes. These are called “M-estimators”.

Let M, : © — R be data-dependent functions where (O, d) is a metric

space.

We say that én is an M-estimator if
A P
Mn(é’n) — SUPgeco Mn(Q) — 0.

Examples include least-squares, maximum likelihood and minimum

penalized likelihoods.

29



Empirical Processes: Lecture 03 Spring, 2012

The main statistical issues for M-estimators are
® consistency
e asymptotic normality,
e the validity of the bootstrap, and

® convergence rates

30
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(Consistency )

Assume that the following identifiability condition holds:
For some 0y € O, liminf,, . M (6,) > M (6))
implies d(0,,,609) — 0.

Theorem 2.12. Let én be a sequence of estimators. Then
1. 1f My, (0,) — supgee M, () 50, and
supgcg |Mn(0) — M(0)] 5 0, then d(0,,, 0)) 50

A asx

2. If M,,(6),) — supgeg Mn(0) = 0, and
SUPgee | Mn(6) — M(0)] 220, then d(6,,,60) = 0.

31
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Partly Linear Regression )

Suppose we observe the random triplet X = (Y, Z, U), where Z € RP
and U € R are covariates that are not linearly dependent, and Y is a

dichotomous outcome with
E{Y|Z,U} = v[B'Z +n(U)],

where 5 € RP, Z is restricted to a bounded set, and U € |0, 1],
v(t) =1/(1+e7t),andn : [0,1] — Ris an unknown smooth function.

We assume that the first & — 1 derivatives of 1) exist and are absolutely

continuous, with

J2(n) = /O 1 [n<k> (t)]2 dt < oo

32
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We defined the the penalized log-likelihood

n
T —1 12 72
Ln(B,m) =n~") logpgy(Xi) — A2J*(n).
i=1
It can be shown that when the smoothing parameter j\n IS chosen wisely

e /n(B — B) converges to a mean zero Gaussian vector.

o Sup,cioq [71(w) — n(w)| = 0.

o n¥/EFVP I (H(U) ~n(U))*] 5 0
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