Introduction to Empirical Processes and Semiparametric Inference Lecture 03: Overview Continued

Yair Goldberg, Ph.D. Postdoctoral Fellow, Biostatistics University of North Carolina-Chapel Hill

Review

Let X_1, \ldots, X_n be an i.i.d. sample drawn from a probability measure P on an arbitrary sample space \mathcal{X} .

Let \mathcal{F} be a class of measurable functions $f: \mathcal{X} \mapsto \mathbb{R}$.

We define the empirical process as $\{\mathbb{P}_n f, f \in \mathcal{F}\}$ where $\mathbb{P}_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$ is the empirical measure. More specifically, we have the empirical process $\{\mathbb{P}_n f = n^{-1} \sum_{i=1}^n f(X_i), f \in \mathcal{F}\}.$

We say that a class $\mathcal F$ of measurable functions $f:\mathcal X\mapsto \mathbb R$ is $P\text{-}\mathsf{Glivenko}\text{-}\mathsf{Cantelli}$ if

$$\sup_{f\in\mathcal{F}} \left|\mathbb{P}_n f - Pf\right| \stackrel{\mathrm{as}*}{\to} 0,$$

where $Pf = \int_{\mathcal{X}} f(s) P(dx)$.

The bracketing number $N_{[]}(\epsilon, \mathcal{F}, L_r(P))$ is the minimum number of ϵ -brackets in $L_r(P)$ needed in order to ensure that every $f \in \mathcal{F}$ is contained in at least one bracket.

If $N_{[]}(\epsilon, \mathcal{F}, L_1(P)) < \infty$ for every $\epsilon > 0$ then \mathcal{F} is P-Glivenko-Cantelli.

Define the random measure

$$\mathbb{G}_n = \sqrt{n}(\mathbb{P}_n - P),$$

and define \mathbb{G} to be a mean zero Gaussian process indexed by \mathcal{F} ,

- with covariance $E\left[f(X)g(X)\right] E\left[f(X)\right]E\left[g(X)\right]$, for all $f,g\in\mathcal{F}$,
- and having appropriately continuous sample paths (almost surely).

We say that ${\mathcal F}$ is $P\text{-}{\rm Donsker}$ if

$$\mathbb{G}_n \rightsquigarrow \mathbb{G} \text{ in } \ell^{\infty}(\mathcal{F}).$$

The bracketing entropy integral is defined as

$$J_{[]}(\delta, \mathcal{F}, L_r(P)) \equiv \int_0^\delta \sqrt{\log N_{[]}(\epsilon, \mathcal{F}, L_r(P))} \, d\epsilon.$$

We saw that when \mathcal{F} is a class of measurable functions with $J_{[]}(\infty, \mathcal{F}, L_2(P)) < \infty$, \mathcal{F} is P-Donsker.

The Functional Delta Method

Let X_n be a sequence of random vectors such that

$$\sqrt{n}(X_n - \theta) \rightsquigarrow X$$

where $\theta \in \mathbb{R}^p$. Let the function $\phi : \mathbb{R}^p \mapsto \mathbb{R}^q$ has a derivative $\phi'(\theta)$.

Then

$$\sqrt{n}(\phi(X_n) - \phi(\theta)) \rightsquigarrow \phi(\theta)' X.$$

This multivariate delta method can be generalized to random processes.

Quantile example (or what are we missing?)

Define $\xi_p = F^{-1}(p) \equiv \inf\{x : F(x) \ge p\}$ for some $p \in (0, 1)$. $\xi(p)$ is the p-th quantile of the distribution function F.

When F is strictly monotonically increasing and continuous at ξ_p we have $F(\xi_p) = p$.

Can we use the delta method here?

Quantile example (or what are we missing?)

We have
$$\sqrt{n} \left(\mathbb{F}_n(t) - F(t) \right) \rightsquigarrow G(t) \equiv \mathbb{B}(F(t)).$$

Define $\phi(F)(p) = F^{-1}(p)$ for all $p \in [a, b] \subset (0, 1).$

We hope that

$$\sqrt{n}(\phi(\mathbb{F}_n) - \phi(F)) \rightsquigarrow \phi'(\mathbb{B}(F)).$$

Note that $\phi : \mathbb{D} \mapsto \mathbb{E}$ where \mathbb{D} is the space of distribution functions, and \mathbb{E} is the space of monotonic functions on [0, 1].

We need to

- Define derivatives.
- Generalize the delta method.
- Validate the delta method for bootstrapping.

Normed spaces

A normed space is a metric space (\mathbb{D}, d) , where d(x, y) = ||x - y|| for every $x, y \in \mathbb{D}$ where $|| \cdot ||$ is a norm. A norm satisfies

- $||x + y|| \le ||x|| + ||y||$
- $\|\alpha x\| = |\alpha| \cdot \|x\|$
- $\bullet \ \|x\| \geq 0 \text{ and } \|x\| = 0 \text{ iff } x = 0$

for all $x, y \in \mathbb{D}$ and $\alpha \in \mathbb{R}$.

We say that $\|\cdot\|$ is a semi-norm if $\|x\| = 0$ does not necessarily mean that x = 0.

Normed spaces

Examples of normed spaces:

- For $1 \le r < \infty$, $L_r(P)$ is a normed space of measurable functions $f: \mathcal{X} \mapsto \mathbb{R}$ with $\|f\|_{P,r} \equiv [Pf^r(X)]^{1/r} < \infty$.
- $\ell^{\infty}(T)$ is the collection of all bounded functions $f: T \mapsto \mathbb{R}$ with the norm $\|f\|_{\infty} = \sup_{t \in T} f$.
- The cadlag space D[0,1] with the sup norm, where D[0,1] is the space of right continuous with left-hands limits real functions.
- Any linear subspace of a normed space.

Differentiability in normed spaces

We say that a map $\phi : \mathbb{D}_{\phi} \mapsto \mathbb{E}$, $\mathbb{D}_{\phi} \subset \mathbb{D}$, is *Gâteaux-differentiable* at $\theta \in \mathbb{D}_{\phi}$ if for every fixed $h \in \mathbb{D}$ with $\theta + th \in \mathbb{D}_{\phi}$ for every t > 0 small enough, there exists an element $\phi'_{\theta}(h) \in \mathbb{E}$ such that

$$\frac{\phi(\theta + th) - \phi(\theta)}{t} \to \phi'_{\theta}(h)$$

as $t \downarrow 0$.

Differentiability in normed spaces

We say that a map $\phi : \mathbb{D}_{\phi} \subset \mathbb{D} \mapsto \mathbb{E}$, is *Hadamard-differentiable* at $\theta \in \mathbb{D}_{\phi}$ tangentially to $\mathbb{D}_0 \subset \mathbb{D}$ if there exists continuous linear map $\phi'_{\theta} : \mathbb{D}_0 \mapsto \mathbb{E}$ such that

$$\frac{\phi(\theta + t_n h_n) - \phi(\theta)}{t_n} \to \phi'_{\theta}(h)$$

for all converging sequences $t_n \downarrow 0$ and $h_n \to h \in \mathbb{D}_0$ with $h_n \in \mathbb{D}$ and $\theta + t_n h_n \in \mathbb{D}_{\phi}$ for every n large enough.

Quantile example (revisited)

Recall that $\phi(F)(p) = F^{-1}(p)$ for all $p \in [a, b] \subset (0, 1)$. Let $[u, v] = [F^{-1}(a) - \varepsilon, F^{-1}(b) + \varepsilon]$. Define $\mathbb{D} = D[u, v]$, the space of cadlag functions on [u, v]. Define \mathbb{D}_{ϕ} , the space of distribution functions restricted to [u, v]. Define $\mathbb{D}_0 = C[u, v]$, the space of continuous functions on [u, v].

Assume that F has continuous density f such that f(t) > 0 for all $t \in [u, v]$.

Then ϕ is Hadamard differentiable with derivative

$$\phi_F(h)'(p) = \frac{-h(F^{-1}(p))}{f(F^{-1}(p))}$$
 for all $p \in [a, b]$.

Weak Convergence

Theorem 2.8.

Let $\phi : \mathbb{D}_{\phi} \mapsto \mathbb{E}$ be Hadamard-differentiable at $\theta \in \mathbb{D}_{\phi}$, tangentially to $\mathbb{D}_0 \subset \mathbb{D}$.

Assume that

$$r_n(X_n - \theta) \rightsquigarrow X$$

for some sequence $r_n \to \infty$, where X_n takes its values in \mathbb{D}_{ϕ} , and X is a tight process taking its values in \mathbb{D}_0 .

Then

$$r_n(\phi(X_n) - \phi(\theta)) \rightsquigarrow \phi'_{\theta}(X).$$

Quantile example (revisited)

We so that ϕ is Hadamard differentiable with derivative

$$\phi_F(h)'(p) = \frac{-h(F^{-1}(p))}{f(F^{-1}(p))}$$

By Theorem 2.8,

$$\begin{split} \sqrt{n} \left(\mathbb{F}_{n}^{-1}(p) - F^{-1}(p) \right) &= \sqrt{n} \left(\phi(\mathbb{F}_{n})(p) - \phi(F)(p) \right) \\ &= \frac{-\mathbb{B}(F(F^{-1}(p)))}{f(F^{-1}(p))} + o_{P}(1) \\ &= \frac{-\sqrt{n} \left(\mathbb{F}_{n}(F^{-1}(p)) - F(F^{-1}(p)) \right)}{f(F^{-1}(p))} + o_{P}(1) \\ &= -\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{\mathbf{1}\{X_{i} \leq F^{-1}(p)\} - p}{f(F^{-1}(p))} + o_{P}(1) \end{split}$$

Bootstrapping

Define $\hat{\mathbb{P}}_n(f) = \frac{1}{n} \sum_{i=1}^n W_{ni} f(X_i)$, where the weights (W_{n1}, \dots, W_{nn}) are independent of X_i .

We saw that whenever ${\mathcal F}$ is $P\text{-}{\rm Donsker}$

$$\hat{\mathbb{G}}_n = \sqrt{n}c\left(\hat{\mathbb{P}}_n - \mathbb{P}_n\right) \overset{\mathsf{P}}{\underset{W}{\leftrightarrow}} \mathbb{G}.$$

Theorem 2.9. Let $\phi : \mathbb{D}_{\phi} \mapsto \mathbb{E}$ be Hadamard-differentiable at $\theta \in \mathbb{D}_{\phi}$ tangentially to $\mathbb{D}_0 \subset \mathbb{D}$ with derivative ϕ'_{θ} . If $\hat{\mathbb{P}}_n$ and \mathbb{P}_n take values at \mathbb{D}_{ϕ} and \mathbb{G} takes values at \mathbb{D}_0 , then

$$\sqrt{n}c\left(\hat{\phi(\mathbb{P}_n)} - \phi(\mathbb{P}_n)\right) \stackrel{\mathsf{P}}{\underset{W}{\longrightarrow}} \phi'_{\theta}(\mathbb{G}).$$

Z-estimators

Many statistics can be written as zero, or approximate-zeros, of estimating equations based on empirical processes: these are called "Z-estimators".

An example is $\hat{\beta}$ from linear regression which can be written as a zero of $U_n(\beta) = \mathbb{P}_n \left[X(Y - X'\beta) \right].$

We would like to generalize Z-estimator results to processes.

Let $\Psi_n : \Theta \mapsto \mathbb{L}$ be data-dependent functions where Θ and \mathbb{L} are normed spaces.

We say that
$$\hat{\theta}_n$$
 is a *Z*-estimator if $\|\Psi_n(\hat{\theta}_n)\| \xrightarrow{\mathsf{P}} 0$.

The main statistical issues for Z-estimators are

- consistency
- asymptotic normality
- the validity of the bootstrap

A non-trivial example

Let $(U_1, \delta_1), \ldots, (U_n, \delta_n)$ be a sample of right-censored failure time observations where

$$U_i = T_i \wedge C_i, \, \delta_i = \mathbf{1}\{T_i \le C_i\}$$

where T_i are failure times and C_i are censoring times.

The Kaplan-Meier estimator of the survival function $S \equiv 1 - F$ is

$$S_n(t) = \prod_{i:U_i \le t} \left(1 - \frac{\delta_i}{\#\{U_j \ge U_i\}} \right)$$

Let Θ be the space of all survival functions S restricted to the segment $[0,\tau].$

Efron (1967) showed that the Kaplan-Meier estimator is the solution of $\Psi_n(\hat{S}_n) = 0$ where $\Psi_n : \Theta \mapsto \Theta$ is defined as

$$\Psi_n(S)(t) = \mathbb{P}_n \psi_{S,t}$$

where

$$\psi_{S,t} = \mathbf{1}\{U > t\} + (1 - \delta)\mathbf{1}\{U \le t\}\mathbf{1}\{S(U) > 0\}\frac{S(t)}{S(U)} - S(t).$$

Consistency

Usually $\Psi_n : \Theta \mapsto \mathbb{L}$ which can be data-dependent is an estimator of a fixed function $\Psi : \Theta \mapsto \mathbb{L}$ for which $\Psi(\theta_0) = 0$.

Theorem 2.10. Let $\Psi(\theta_0) = 0$. Assume that if $\|\Psi(\theta_n)\| \xrightarrow{\mathsf{P}} 0$ then $\|\theta_n - \theta_0\| \to 0$. Then

1. If
$$\|\Psi_n(\hat{\theta}_n)\| \xrightarrow{\mathsf{P}} 0$$
, and $\sup_{\theta \in \Theta} \|\Psi_n(\theta) - \Psi(\theta)\| \xrightarrow{\mathsf{P}} 0$, then $\|\hat{\theta}_n - \theta_0\| \xrightarrow{\mathsf{P}} 0$.

2. If
$$\|\Psi_n(\hat{\theta}_n)\| \stackrel{\text{as*}}{\to} 0$$
, and $\sup_{\theta \in \Theta} \|\Psi_n(\theta) - \Psi(\theta)\| \stackrel{\text{as*}}{\to} 0$, then $\|\hat{\theta}_n - \theta_0\| \stackrel{\text{as*}}{\to} 0$.

Consistency

Back to the Kaplan-Meier example.

$$\begin{split} \Psi_n(S)(t) &= \mathbb{P}_n \left(\mathbf{1}\{U > t\} \right. \\ &+ (1 - \delta) \mathbf{1}\{U \le t\} \mathbf{1}\{S(U) > 0\} \frac{S(t)}{S(U)} - S(t) \right) \\ \Psi(S)(t) &= P \left(\mathbf{1}\{U > t\} \right. \\ &+ (1 - \delta) \mathbf{1}\{U \le t\} \mathbf{1}\{S(U) > 0\} \frac{S(t)}{S(U)} - S(t) \right) = 0 \end{split}$$

We need to show that the identifiability condition $\|\Psi(\theta_n)\| \to 0$ then $\|\theta_n - \theta_0\| \to 0$ holds.

We also need to show that $\sup_{\theta \in \Theta} \|\Psi_n(\theta) - \Psi(\theta)\| \stackrel{as*}{\to} 0.$

Weak Convergence

Let $\Psi(\theta_0) = 0$ for some θ_0 in the interior of θ .

Let $\hat{\theta}_n$ be a sequence of estimators such that $\sqrt{n} \|\Psi_n(\hat{\theta}_n)\| \xrightarrow{\mathsf{P}} 0$ and $\|\hat{\theta}_n - \theta_0\| \xrightarrow{\mathsf{P}} 0$.

Let $\mathbb{G}_n(\theta) = \sqrt{n} \left(\Psi_n(\theta) - \Psi(\theta) \right).$

Weak Convergence

Theorem 2.11 If

- 1. $\hat{\theta}_n \xrightarrow{\mathsf{P}} \theta_0$.
- 2. $\mathbb{G}_n \rightsquigarrow \mathbb{G}$ where \mathbb{G} is a tight process.

3.
$$(1 + \sqrt{n} \|\hat{\theta}_n - \theta_0\|)^{-1} \|\mathbb{G}_n(\hat{\theta}_n) - \mathbb{G}_n(\theta_0)\| \xrightarrow{\mathsf{P}} 0$$

4. Ψ is Fréchet-differentiable at θ_0 with continuous inverse $\dot{\Psi}_{\theta_0}^{-1}$. Then $\sqrt{n}(\hat{\theta}_n - \theta_0) \rightsquigarrow -\dot{\Psi}_{\theta_0}^{-1}(\mathbb{G})$.

When $\Psi_n(\theta) = \mathbb{P}_n \psi_{\theta}$ and $\Psi(\theta) = P \psi_{\theta}$, then under some conditions on the class $\{\psi_{\theta}\}$, a bootstrap version of this theorem can be proved.

Differentiability in normed spaces

We say that a map $\phi : \mathbb{D}_{\phi} \mapsto \mathbb{E}$ is *Fréchet-differentiable* at $\theta \in \mathbb{D}_{\phi}$ if there exists a continuous linear map $\phi'_{\theta} : \mathbb{D} \mapsto \mathbb{E}$ such that

$$\frac{\|\phi(\theta+h_n) - \phi(\theta) - \phi'_{\theta}(h_n)\|}{\|h_n\|} \to 0$$

for all sequences h_n such that $\|h_n\| \to 0$ and $\theta + h_n \in \mathbb{D}_\phi$ for every $n \geq 1$

M-estimators

Many statistics can be written as maxima or minima of objective functions based on empirical processes. These are called "M-estimators".

Let $M_n : \Theta \mapsto \mathbb{R}$ be data-dependent functions where (Θ, d) is a metric space.

We say that $\hat{\theta}_n$ is an *M*-estimator if $M_n(\hat{\theta}_n) - \sup_{\theta \in \Theta} M_n(\theta) \xrightarrow{\mathsf{P}} 0.$

Examples include least-squares, maximum likelihood and minimum penalized likelihoods.

The main statistical issues for M-estimators are

- consistency
- asymptotic normality,
- the validity of the bootstrap, and
- convergence rates

Consistency

Assume that the following identifiability condition holds: For some $\theta_0 \in \Theta$, $\liminf_{n \to \infty} M(\theta_n) \ge M(\theta_0)$ implies $d(\theta_n, \theta_0) \to 0$.

Theorem 2.12. Let $\hat{\theta}_n$ be a sequence of estimators. Then

1. If
$$M_n(\hat{\theta}_n) - \sup_{\theta \in \Theta} M_n(\theta) \xrightarrow{\mathsf{P}} 0$$
, and
 $\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \xrightarrow{\mathsf{P}} 0$, then $d(\hat{\theta}_n, \theta_0) \xrightarrow{\mathsf{P}} 0$.

2. If $M_n(\hat{\theta}_n) - \sup_{\theta \in \Theta} M_n(\theta) \xrightarrow{as*} 0$, and $\sup_{\theta \in \Theta} |M_n(\theta) - M(\theta)| \xrightarrow{as*} 0$, then $d(\hat{\theta}_n, \theta_0) \xrightarrow{as*} 0$.

Partly Linear Regression

Suppose we observe the random triplet X = (Y, Z, U), where $Z \in \mathbb{R}^p$ and $U \in \mathbb{R}$ are covariates that are not linearly dependent, and Y is a dichotomous outcome with

$$E\{Y|Z, U\} = \nu[\beta'Z + \eta(U)],$$

where $\beta \in \mathbb{R}^p$, Z is restricted to a bounded set, and $U \in [0, 1]$, $\nu(t) = 1/(1 + e^{-t})$, and $\eta : [0, 1] \mapsto \mathbb{R}$ is an unknown smooth function.

We assume that the first k-1 derivatives of η exist and are absolutely continuous, with

$$J^{2}(\eta) \equiv \int_{0}^{1} \left[\eta^{(k)}(t) \right]^{2} dt < \infty$$

We defined the the penalized log-likelihood

$$\tilde{L}_n(\beta, \eta) = n^{-1} \sum_{i=1}^n \log p_{\beta,\eta}(X_i) - \hat{\lambda}_n^2 J^2(\eta).$$

It can be shown that when the smoothing parameter $\hat{\lambda}_n$ is chosen wisely

- $\sqrt{n}(\hat{\beta} \beta)$ converges to a mean zero Gaussian vector.
- $\sup_{u \in [0,1]} |\hat{\eta}(u) \eta(u)| \xrightarrow{\mathsf{P}} 0.$
- $n^{k/(2k+1)}P\left[\left(\hat{\eta}(U) \eta(U)\right)^2\right] \xrightarrow{\mathsf{P}} 0.$