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�� ��Review

Let X1, . . . , Xn be an i.i.d. sample drawn from a probability measure P

on an arbitrary sample space X .

Let F be a class of measurable functions f : X 7→ R.

We define the empirical process as {Pnf, f ∈ F}
where Pn = n−1

∑n
i=1 δXi is the empirical measure.

More specifically, we have the empirical process

{Pnf = n−1
∑n

i=1 f(Xi), f ∈ F}.
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We say that a class F of measurable functions f : X 7→ R is

P -Glivenko-Cantelli if

sup
f∈F
|Pnf − Pf |

as∗→ 0,

where Pf =
∫
X f(s)P (dx).
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The bracketing number N[](ε,F , Lr(P )) is the minimum number of

ε-brackets in Lr(P ) needed in order to ensure that every f ∈ F is

contained in at least one bracket.

If N[](ε,F , L1(P )) <∞ for every ε > 0 then F is P -Glivenko-Cantelli.
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Define the random measure

Gn =
√
n(Pn − P ),

and define G to be a mean zero Gaussian process indexed by F ,

• with covariance E [f(X)g(X)]− E [f(X)]E [g(X)], for all

f, g ∈ F ,

• and having appropriately continuous sample paths (almost surely).

We say that F is P -Donsker if

Gn ; G in `∞(F).
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The bracketing entropy integral is defined as

J[](δ,F , Lr(P )) ≡
∫ δ

0

√
logN[](ε,F , Lr(P )) dε.

We saw that when F is a class of measurable functions with

J[](∞,F , L2(P )) <∞, F is P -Donsker.
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�� ��The Functional Delta Method

Let Xn be a sequence of random vectors such that

√
n(Xn − θ) ; X

where θ ∈ Rp. Let the function φ : Rp 7→ Rq has a derivative φ′(θ).

Then
√
n(φ(Xn)− φ(θ)) ; φ(θ)′X .

This multivariate delta method can be generalized to random processes.
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�� ��Quantile example (or what are we missing?)

Define ξp = F−1(p) ≡ inf{x : F (x) ≥ p} for some p ∈ (0, 1).

ξ(p) is the p-th quantile of the distribution function F .

When F is strictly monotonically increasing and continuous at ξp we have

F (ξp) = p.

Can we use the delta method here?
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�� ��Quantile example (or what are we missing?)

We have
√
n (Fn(t)− F (t)) ; G(t) ≡ B(F (t)).

Define φ(F )(p) = F−1(p) for all p ∈ [a, b] ⊂ (0, 1).

We hope that

√
n
(
φ(Fn)− φ(F )

)
; φ′(B(F )) .

Note that φ : D 7→ E where D is the space of distribution functions, and

E is the space of monotonic functions on [0, 1].
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We need to

• Define derivatives.

• Generalize the delta method.

• Validate the delta method for bootstrapping.
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�� ��Normed spaces

A normed space is a metric space (D, d), where d(x, y) = ‖x− y‖ for

every x, y ∈ D where ‖ · ‖ is a norm. A norm satisfies

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• ‖αx‖ = |α| · ‖x‖

• ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0

for all x, y ∈ D and α ∈ R.

We say that ‖ · ‖ is a semi-norm if ‖x‖ = 0 does not necessarily mean

that x = 0.
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�� ��Normed spaces

Examples of normed spaces:

• For 1 ≤ r <∞, Lr(P ) is a normed space of measurable functions

f : X 7→ R with ‖f‖P,r ≡ [Pf r(X)]1/r <∞.

• `∞(T ) is the collection of all bounded functions f : T 7→ R with the

norm ‖f‖∞ = supt∈T f .

• The cadlag space D[0, 1] with the sup norm, where D[0, 1] is the

space of right continuous with left-hands limits real functions.

• Any linear subspace of a normed space.
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�� ��Differentiability in normed spaces

We say that a map φ : Dφ 7→ E, Dφ ⊂ D, is Gâteaux-differentiable

at θ ∈ Dφ
if for every fixed h ∈ D
with θ + th ∈ Dφ for every t > 0 small enough,

there exists an element φ′θ(h) ∈ E such that

φ(θ + th)− φ(θ)

t
→ φ′θ(h)

as t ↓ 0.
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�� ��Differentiability in normed spaces

We say that a map φ : Dφ ⊂ D 7→ E,

is Hadamard-differentiable at θ ∈ Dφ
tangentially to D0 ⊂ D
if there exists continuous linear map

φ′θ : D0 7→ E such that

φ(θ + tnhn)− φ(θ)

tn
→ φ′θ(h)

for all converging sequences tn ↓ 0 and hn → h ∈ D0

with hn ∈ D and θ + tnhn ∈ Dφ for every n large enough.
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Recall that φ(F )(p) = F−1(p) for all p ∈ [a, b] ⊂ (0, 1).

Let [u, v] = [F−1(a)− ε, F−1(b) + ε].

Define D = D[u, v], the space of cadlag functions on [u, v].

Define Dφ, the space of distribution functions restricted to [u, v].

Define D0 = C[u, v], the space of continuous functions on [u, v].

Assume that F has continuous density f such that f(t) > 0 for all

t ∈ [u, v].

Then φ is Hadamard differentiable with derivative

φF (h)′(p) =
−h(F−1(p))

f(F−1(p))
for all p ∈ [a, b] .
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�� ��Weak Convergence

Theorem 2.8.

Let φ : Dφ 7→ E be Hadamard-differentiable at θ ∈ Dφ, tangentially to

D0 ⊂ D.

Assume that

rn(Xn − θ) ; X

for some sequence rn →∞, where Xn takes its values in Dφ, and X is

a tight process taking its values in D0.

Then

rn
(
φ(Xn)− φ(θ)

)
; φ′θ(X) .
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We so that φ is Hadamard differentiable with derivative

φF (h)′(p) =
−h(F−1(p))

f(F−1(p))

By Theorem 2.8,
√
n
(
F−1
n (p)− F−1(p)

)
=
√
n (φ(Fn)(p)− φ(F )(p))

=
−B(F (F−1(p)))

f(F−1(p))
+ oP (1)

=
−
√
n
(
Fn(F−1(p))− F (F−1(p))

)
f(F−1(p))

+ oP (1)

= − 1√
n

n∑
i=1

1{Xi ≤ F−1(p)} − p
f(F−1(p))

+ oP (1)

17



Empirical Processes: Lecture 03 Spring, 2012

�� ��Bootstrapping

Define P̂n(f) = 1
n

∑n
i=1Wnif(Xi), where the weights

(Wn1, . . . ,Wnn) are independent of Xi.

We saw that whenever F is P -Donsker

Ĝn =
√
nc
(
P̂n − Pn

)
P
;
W

G .

Theorem 2.9. Let φ : Dφ 7→ E be Hadamard-differentiable at θ ∈ Dφ
tangentially to D0 ⊂ D with derivative φ′θ. If P̂n and Pn take values at Dφ
and G takes values at D0, then

√
nc
(
φ(P̂n)− φ(Pn)

)
P
;
W
φ′θ(G) .
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�� ��Z-estimators

Many statistics can be written as zero, or approximate-zeros, of estimating

equations based on empirical processes: these are called “Z-estimators”.

An example is β̂ from linear regression which can be written as a zero of

Un(β) = Pn [X(Y −X ′β)].
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We would like to generalize Z-estimator results to processes.

Let Ψn : Θ 7→ L be data-dependent functions where Θ and L are

normed spaces.

We say that θ̂n is a Z-estimator if ‖Ψn(θ̂n)‖ P→ 0.

The main statistical issues for Z-estimators are

• consistency

• asymptotic normality

• the validity of the bootstrap
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�� ��A non-trivial example

Let (U1, δ1), . . . , (Un, δn) be a sample of right-censored failure time

observations where

Ui = Ti ∧ Ci, δi = 1{Ti ≤ Ci}
where Ti are failure times and Ci are censoring times.

The Kaplan-Meier estimator of the survival function S ≡ 1− F is

Sn(t) =
∏
i:Ui≤t

(
1− δi

#{Uj ≥ Ui}

)
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Let Θ be the space of all survival functions S restricted to the segment

[0, τ ].

Efron (1967) showed that the Kaplan-Meier estimator is the solution of

Ψn(Ŝn) = 0 where Ψn : Θ 7→ Θ is defined as

Ψn(S)(t) = PnψS,t

where

ψS,t = 1{U > t}+ (1− δ)1{U ≤ t}1{S(U) > 0} S(t)

S(U)
− S(t) .
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�� ��Consistency

Usually Ψn : Θ 7→ L which can be data-dependent is an estimator of a

fixed function Ψ : Θ 7→ L for which Ψ(θ0) = 0.

Theorem 2.10. Let Ψ(θ0) = 0. Assume that if ‖Ψ(θn)‖ P→ 0 then

‖θn − θ0‖ → 0. Then

1. If ‖Ψn(θ̂n)‖ P→ 0, and supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ P→ 0, then

‖θ̂n − θ0‖
P→ 0.

2. If ‖Ψn(θ̂n)‖ as∗→ 0, and supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ as∗→ 0, then

‖θ̂n − θ0‖
as∗→ 0.
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Back to the Kaplan-Meier example.

Ψn(S)(t) = Pn (1{U > t}

+(1− δ)1{U ≤ t}1{S(U) > 0} S(t)

S(U)
− S(t)

)
Ψ(S)(t) = P (1{U > t}

+(1− δ)1{U ≤ t}1{S(U) > 0} S(t)

S(U)
− S(t)

)
= 0

We need to show that the identifiability condition

‖Ψ(θn)‖ → 0 then ‖θn − θ0‖ → 0 holds.
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We also need to show that supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ as∗→ 0.
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�� ��Weak Convergence

Let Ψ(θ0) = 0 for some θ0 in the interior of θ.

Let θ̂n be a sequence of estimators such that
√
n‖Ψn(θ̂n)‖ P→ 0 and ‖θ̂n − θ0‖

P→ 0 .

Let Gn(θ) =
√
n (Ψn(θ)−Ψ(θ)).
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Theorem 2.11 If

1. θ̂n
P→ θ0.

2. Gn ; G where G is a tight process.

3. (1 +
√
n‖θ̂n − θ0‖)−1‖Gn(θ̂n)−Gn(θ0)‖ P→ 0

4. Ψ is Fréchet-differentiable at θ0 with continuous inverse Ψ̇−1
θ0

.

Then
√
n(θ̂n − θ0) ; −Ψ̇−1

θ0
(G).

When Ψn(θ) = Pnψθ and Ψ(θ) = Pψθ, then under some conditions

on the class {ψθ}, a bootstrap version of this theorem can be proved.
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�� ��Differentiability in normed spaces

We say that a map φ : Dφ 7→ E is Fréchet-differentiable at θ ∈ Dφ if

there exists a continuous linear map φ′θ : D 7→ E such that

‖φ(θ + hn)− φ(θ)− φ′θ(hn)‖
‖hn‖

→ 0

for all sequences hn such that ‖hn‖ → 0 and θ + hn ∈ Dφ for every

n ≥ 1
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Many statistics can be written as maxima or minima of objective functions

based on empirical processes. These are called “M-estimators”.

Let Mn : Θ 7→ R be data-dependent functions where (Θ, d) is a metric

space.

We say that θ̂n is an M-estimator if

Mn(θ̂n)− supθ∈ΘMn(θ)
P→ 0.

Examples include least-squares, maximum likelihood and minimum

penalized likelihoods.
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The main statistical issues for M-estimators are

• consistency

• asymptotic normality,

• the validity of the bootstrap, and

• convergence rates
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�� ��Consistency

Assume that the following identifiability condition holds:

For some θ0 ∈ Θ, lim infn→∞M(θn) ≥M(θ0)

implies d(θn, θ0)→ 0.

Theorem 2.12. Let θ̂n be a sequence of estimators. Then

1. If Mn(θ̂n)− supθ∈ΘMn(θ)
P→ 0, and

supθ∈Θ |Mn(θ)−M(θ)| P→ 0, then d(θ̂n, θ0)
P→ 0.

2. If Mn(θ̂n)− supθ∈ΘMn(θ)
as∗→ 0, and

supθ∈Θ |Mn(θ)−M(θ)| as∗→ 0, then d(θ̂n, θ0)
as∗→ 0.
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Suppose we observe the random triplet X = (Y,Z, U), where Z ∈ Rp

and U ∈ R are covariates that are not linearly dependent, and Y is a

dichotomous outcome with

E{Y |Z,U} = ν[β′Z + η(U)] ,

where β ∈ Rp, Z is restricted to a bounded set, and U ∈ [0, 1],

ν(t) = 1/(1 + e−t), and η : [0, 1] 7→ R is an unknown smooth function.

We assume that the first k − 1 derivatives of η exist and are absolutely

continuous, with

J2(η) ≡
∫ 1

0

[
η(k)(t)

]2
dt <∞
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We defined the the penalized log-likelihood

L̃n(β, η) = n−1
n∑
i=1

log pβ,η(Xi)− λ̂2
nJ

2(η) .

It can be shown that when the smoothing parameter λ̂n is chosen wisely

•
√
n(β̂ − β) converges to a mean zero Gaussian vector.

• supu∈[0,1] |η̂(u)− η(u)| P→ 0.

• nk/(2k+1)P
[
(η̂(U)− η(U))2

]
P→ 0.

33


