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�� ��Empirical Processes: The Main Features

A stochastic process is a collection of random variables {X(t), t ∈ T}
on the same probability space, indexed by an arbitrary index set T .

In general, an Empirical process is a stochastic process based on a

random sample, usually of n i.i.d. random variables X1, . . . , Xn, such as

Fn, where the index set is T = R.
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More generally, an empirical processes has the following features:

• The i.i.d. sample X1, . . . , Xn is drawn from a probability measure P

on an arbitrary sample space X .

• We define the empirical measure to be Pn = n−1
∑n

i=1 δXi , where

δXi is the measure that assigns mass 1 to Xi and mass zero

elsewhere.

• For a measurable function f : X 7→ R, we define

Pnf = n−1
∑n

i=1 f(Xi).

• For any class F of functions f : X 7→ R we can define the empirical

process {Pnf, f ∈ F}, i.e., F becomes the index set.

• This approach leads to a stunningly rich array of empirical processes.
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Setting X = R, we can re-express Fn as the empirical process

{Pnf, f ∈ F} by setting F = {1{x ≤ t}, t ∈ R}.

Recall that the law of large number yields

Fn(t)
as→ F (t), (1)

for each t ∈ R.

The functional perspective invites us to consider uniform results over

t ∈ R, or, more generally, over f ∈ F : this is also called the sample path

perspective.
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Along this line of reasoning, Glivenko (1933) and Cantelli (1933)

strengthened (1) to

sup
t∈R
|Fn(t)− F (t)| as→ 0. (2)

Another way of saying this is that the sample paths of Fn get uniformly

closer to F as n→∞, almost surely.
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For the general empirical process setting, we say that a class of

measurable functions f : X 7→ R is P -Glivenko-Cantelli (or P -GC, or

Glinvenko-Cantelli, or GC) if

sup
f∈F
|Pnf − Pf |

as∗→ 0, (3)

where Pf =
∫
X f(s)P (dx), and

as∗→ is a mode of convergence slightly

stronger than
as→ with the following attributes:

• certain measureability problems that can arise in complicated

empirical processes (including many practical survival analysis

settings) are cleanly resolved;

• the modes of convergence are equivalent in the setting of (2); and

• more details to be described later.
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Returning to Fn, the central limit theorem tells us that for each t ∈ R,

Gn(t) ≡
√
n [Fn(t)− F (t)] ; G(t),

where

• ; denotes convergence in distribution and

• G(t) is a mean zero normal (Gaussian) random variable with variance

F (t)(1− F (t)).
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In fact, we know that for all t in any finite set of the form

Tk = {t1, . . . , tk} ∈ R, Gn will simultaneously converge to a mean

zero Gaussian vector G = {G(t1), . . . , G(tk)}′, where

cov[G(s), G(t)] = E[G(s)G(t)] = F (s ∧ t)− F (s)F (t), (4)

for all s, t ∈ Tk.

Much more can be said.
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Donsker (1952) showed that the sample paths of Gn (as a function on R)

converge in distribution to a certain stochastic process G.

Weak convergence is the generalization of convergence in distribution

from vectors of random variables to sample paths of stochastic processes.
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Donsker’s famous result can be stated succinctly as

Gn ; G in `∞(R), (5)

where, for any index set T , `∞(T ) is the collection of all bounded

functions f : T 7→ R.

`∞(T ) is a metric space with respect to the uniform metric on T and is

used to remind us that we are taking the functional perspective or, more

precisely, that we are thinking of distributional convergence in terms of the

sample paths.
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The limiting process G in (5) is a mean zero Gaussian process with

E[G(s)G(t)] = F (s ∧ t)− F (s)F (t),

as given in (4).

A Gaussian process is a stochastic process {Z(t), t ∈ T}, where

• for every finite Tk ⊂ T , {Z(t), t ∈ Tk} is multivariate normal and

• all (almost all) sample path are continuous in a certain sense to be

defined later.
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The particular Gaussian process G in (5) can be written as

G(t) = B(F (t)), where B is a Brownian bridge process on the unit

interval ([0, 1]).

The process B is a mean zero Gaussian process on [0, 1],

• with covariance s ∧ t− st, for s, t ∈ [0, 1],

• and has the form W(t)− tW(1), for t ∈ [0, 1], where W is a

standard Brownian motion process.

• B can be generalized in a very important manner which we will

discuss shortly.
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The Brownian motion W is a mean zero Gaussian process on [0,∞) with

• continuous sample paths (almost surely);

• W(0) = 0; and

• with covariance s ∧ t.

Both the Brownian bridge and Brownian motion are very important

stochastic processes that arise frequently in statistics and probability.
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Returning again to general empirical processes, define the random

measure

Gn =
√
n(Pn − P ),

and define G to be a mean zero Gaussian process indexed by F ,

• with covariance E [f(X)g(X)]− E [f(X)]E [g(X)], for all

f, g ∈ F ,

• and having appropriately continuous sample paths (almost surely).

Both Gn and G can be thought of as being indexed by F and are

completely defined once we specify F .
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We say that F is P -Donsker if

Gn ; G in `∞(F).

The P or F may be dropped if the context is clear.
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Donsker’s (1952) theorem tells us that F = {1{x ≤ t}, t ∈ R} is

Donsker for all probability measures defined by a real distribution function

F .

With f(x) = 1{x ≤ t} and g(x) = 1{x ≤ s},

E [f(X)g(X)]− E [f(X)]E [g(X)] = F (s ∧ t)− F (s)F (t).

For this reason, G is referred to as a Brownian bridge (or generalized

Brownian bridge).

The range of possibilities for Gn and G, as defined through classes of

function F , is stunningly vast.
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Suppose we are interesting in forming simultaneous confidence bands for

F over some subset H ∈ R.

Since F = {1{x ≤ t}, t ∈ R} is Glivenko-Cantelli, we can uniformly

consistently estimate the covariance

σ(s, t) = F (s ∧ t)− F (s)F (t)

with

σ̂(s, t) = Fn(s ∧ t)− Fn(s)Fn(t).

Is it possible to use this to generate the desired confidence bands?
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While knowledge of the covariance is sufficient to generate simultaneous

confidence bands when H is finite via the chi-square distribution (for

example), it is not sufficient when H is infinite (e.g., when H is a

subinterval of R).

When H is infinite, and more generally, it is useful to make use of the

Donsker result for Gn.

In particular, let Un = supt∈H |Gn(t)|, and note that the distribution of

Un can be used to construct the desired confidence bands.
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The continuous mapping theorem tells us that whenever a process

{Zn(t), t ∈ H} converges weakly to a tight limiting process

{Z(t), t ∈ H} in `∞(H), then

h(Zn) ; h(Z) in h(`∞(H))

for any continuous map h.

In our setting, Un = h(Gn), where g 7→ h(g) = supt∈H |g(t)|, for any

g ∈ `∞(R), is a continuous real valued function.

Thus Un ; U = supt∈H |G(t)| by the continuous mapping theorem.
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Note that

U = sup
t∈H
|G(t)| = sup

t∈H
|B(F (t))| = sup

u∈[0,1]
|B(u)|

is distribution free and has a known distribution.

In particular, for s > 0,

P [U ≤ s] = 1 + 2

∞∑
k=1

(−1)ke−2k
2s2

(Billingsly, 1968, Page 85); e.g., a 95% confidence band is

Fn(·)± 1.92√
n
.
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An alternative approach is to use bootstraps of F.

These bootstraps have the form

F̂n(t) = n−1
n∑
i=1

Wni1{Xi ≤ t},

where (Wn1, . . . ,Wnn) is a multinomial random n-vector with

• probabilities (1/n, . . . , 1/n),

• number of trials n,

• independence from the data X1, . . . , Xn.
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More general weights (Wn1, . . . ,Wnn) are possible (and useful), and it

can be shown that

Ĝn =
√
n
(
F̂n − Fn

)
converges weakly, conditional on the data X1, . . . , Xn, to G in `∞(R).

Thus the bootstrap provides valid confidence bands for F .
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Consider now the more general setting, where F is a Donsker class and

we wish to construct confidence band for Ef(X) for all f ∈ H ⊂ F .

Under minimal (moment) conditions on F ,

σ̂(f, g) = Pn [f(X)g(X)]− Pnf(X)Png(X)

is uniformly consistent for

σ(f, g) = P [f(X)g(X)]− Pf(X)Pg(X).

WheneverH is infinite, knowledge of σ is not enough to form confidence

bands.
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Fortunately, the bootstrap is always valid when F is Donsker and can thus

be used for arbitrary and/or infiniteH.

If Ĝn =
√
n(P̂n − Pn), where

P̂nf = n−1
n∑
i=1

Wnif(Xi),

then the conditional distribution of Ĝn given the data X1, . . . , Xn

converges weakly to G in `∞(F), and F can be replaced with any

H ⊂ F .

The bootstrap for Fn is a special case of this.

24



Empirical Processes: Lecture 02 Spring, 2012

Although many statistics do not have the form {Pnf, f ∈ F}, many can

be written as φ(Pn), where φ : `∞(F) 7→ B is continuous and B is a

set (possibly infinite-dimensional).

Consider for example, ξn(p) = F−1n (p) for p ∈ [a, b] ⊂ [0, 1].

ξn(p) is the sample quantile process and can be shown to be expressible,

under reasonable regularity conditions, as φ(Fn), where φ is a

“Hadamard differentiable” functional of Fn.
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In this example, and in general, the “functional delta method” states that
√
n [φ(Pn)− φ(P )] converges weakly in B to φ′(G), whenever F is

Donsker and φ is Hadamard differentiable.

Moreover, the empirical process bootstrap discussed previously is also

automatically valid, i.e.,
√
n
[
φ(P̂n)− φ(Pn)

]
, conditional on the data,

converges weakly to φ′(G).
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Many other statistics can be written as zeros, or approximate-zeros, of

estimating equations based on empirical processes: these are called

“Z-estimators”.

An example is β̂ from linear regression which can be written as a zero of

Un(β) = Pn [X(Y −X ′β)].

Yet other statistics can be written as maxima or minima of objective

functions based on empirical processes: these are called “M-estimators”.

Examples include least-squares, maximum likelihood and minimum

penalized likelihoods such as L̃(β, η) from partly-linear logistic

regression.
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Thus many important statistics can be viewed as involving an empirical

process.

A key asymptotic issue is studying the limiting behavior of these empirical

processes in terms of their samples paths (the functional perspective).

Primary achievements in this direction include:

• Glivenko-Cantelli results which extend the law of large numbers,

• Donsker results which extend the central limit theorem,

• the validity of the bootstrap for Donsker classes, and

• the functional delta method.
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There is always a metric space (D, d) involved, where D is the set of

points and d is a metric satisfying, for all x, y, z ∈ D,

• d(x, y) ≥ 0,

• d(x, y) = d(y, x),

• d(x, z) ≤ d(x, y) + d(y, z), and

• d(x, y) = 0 iff x = y.

Often D = `∞(T ), the set of bounded functions f : T 7→ R, where T is

an index set of interest and d(x, y) = supt∈T |x(t)− y(t)| is the

uniform distance.
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When we speak of Xn converging to X in D, we mean that the samples

paths of Xn behave more and more like the sample paths of X (as points

in D).

When Xn and X are Borel measurable, weak convergence, denoted

Xn ; X , is equivalent to Ef(Xn)→ Ef(X) for every bounded,

continuous f : D 7→ R, which set of functions we denote Cb(D), and

where continuity is in terms of d, i.e., |f(x)− f(y)| → 0 as

d(x, y)→ 0.

We will define Borel measurability of Xn later, but it basically means that

there are certain important subsets A ⊂ D for which P (Xn ∈ A) is not

defined.
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What about when Xn is not Borel measurable?

We need to introduce outer expectation for arbitrary maps (not necessarily

random variables) T : Ω 7→ R[−∞,∞], where Ω is a sample space.

The outer expectation of T , denoted E∗T is the infemum of all EU ,

where

• U : Ω 7→ R is measurable,

• U ≥ T , and

• EU exists.

We analogously define E∗T = −E∗(−T ) as the inner expectation.
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We can show that there exists a minimal measurable majorant T ∗ such

that T ∗ is measurable and ET ∗ = E∗T .

Conversely, the maximal measurable minorant T∗ also exists and satisfies

T∗ = −(−T )∗ and E∗T = ET∗.

We can also define outer probability P ∗(A) as the infemum over all

P (B), where A ⊂ B ⊂ Ω and B is measurable.

P∗(A) = 1− P ∗(Ω−A) is the inner probability.
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Even if Xn is not Borel measurable, we can have weak convergence:

specifically, if E∗f(Xn)→ Ef(X), for all f ∈ Cb(D), then we say

Xn ; X .

Such weak convergence carries with it the following implicit measurability

requirements:

• X is Borel measurable and

• E∗f(Xn)− E∗f(Xn)→ 0, for every f ∈ Cb(D).

A sequence Xn satisfying the second requirement above is called

asymptotically measurable.
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We can define outer measurable forms of weak and strong convergence in

probability:

convergence in probability: Xn
P→ X if P{d(Xn, X)∗ > ε} → 0 for

every ε > 0.

outer almost sure convergence: Xn
as∗→ X if there exists a sequence

∆n of measurable random variables such that

• d(Xn, X) ≤ ∆n and

• P{lim supn→∞∆n = 0} = 1.

While these modes of convergence are slightly different than the usual

ones, they are identical when all the random quantities involved are

measurable.
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For most settings we will study, the limiting quantity X will be tight (related

to smoothness) in addition to being Borel measurable.

Moreover, the most common choice for D will be `∞(T ) with the uniform

metric d.

Let ρ(s, t) be a semimetric on T : a semimetric ρ satisfies all of the

requirements of a metric except that ρ(s, t) = 0 does not necessarily

imply s = t.
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We say that the semimetric space (T, ρ) is totally bounded if, for every

ε > 0, there exists a finite subset Tk = {t1, . . . , tk} ⊂ T such that for

all t ∈ T , we have ρ(s, t) ≤ ε for some s ∈ Tk.

Define UC(T, ρ) to be the subset of `∞(T ) consisting of functions x for

which

lim
δ↓0

sup
s,t∈T with ρ(s,t)≤δ

|x(t)− x(s)| = 0.

The functions of UC(T, ρ) are also called the ρ-equicontinuous functions.

The “UC” refers to uniform continuity, and UC(T, ρ) is a very important

metric space.

36



Empirical Processes: Lecture 02 Spring, 2012

A Borel measurable stochastic process X in `∞(T ) is tight if

X ∈ UC(T, ρ) almost surely for some ρ making T totally bounded.

If X is a Gaussian process, then ρ can be chosen without loss of

generality to be ρ(s, t) = (var[X(s)−X(t)])1/2.

Tight Gaussian processes will be the most important limiting processes we

will consider.
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Theorem 2.1. Xn converges weakly to a tight X in `∞(T ) if and only if:

(i) For all finite {t1, . . . , tk} ⊂ T , the multivariate distribution of

{Xn(t1), . . . , Xn(tk)} converges to that of {X(t1), . . . , X(tk)}.

(ii) There exists a semimetric ρ for which T is totally bounded and

lim
δ↓0

lim sup
n→∞

P ∗

{
sup

s,t∈T with ρ(s,t)<δ
|Xn(s)−Xn(t)| > ε

}
= 0,

for all ε > 0.
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Usually, establishing Condition (i) is easy, while establishing Condition (ii)

is hard.

For empirical processes from i.i.d. data, we want to show Gn ; G in

`∞(F), where

• F is a class of measurable functions f : X 7→ R,

• X is the sample space, and

• Ef2(X) <∞ for all f ∈ F .

Thus Condition (i) is automatic by the standard central limit theorem.
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Establishing Condition (ii) is much harder.

When F is Donsker:

• The limiting process G is always a tight Gaussian process,

• F is totally bounded w.r.t. ρ(f, g) = {var[f(X)− g(X)]}1/2, and

• Condition (ii) is satisfied with T = F , Xn(f) = Gnf , and

X(f) = Gf , for all f ∈ F .

Of course, the hard part is showing F is Donsker.
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Theorem (continuous mapping). Suppose g : D 7→ E is continuous at

every point of D0 ⊂ D and Xn ; X , where X takes its values almost

surely on D0. Then g(Xn) ; g(X).

Example. Let g : `∞(F) 7→ R be g(x) = ‖x(f)‖F ≡ supf∈F |x(f)|:

• The continuous mapping theorem now implies that

‖Gn‖F ; ‖G‖F .

• This can be used for confidence bands for Pf .
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�
�

�
Entropy for Glivenko-Cantelli and Donsker

Theorems
In order to obtain Glivenko-Cantelli and Donsker results for F , we need to

evaluate the complexity (or entropy) of F .

The easiest way is with entropy with bracketing (also called bracketing

entropy), which we now introduce.

First, for 1 ≤ r <∞, define Lr(P ) to be the space of measurable

functions f : X 7→ R with ‖f‖P,r ≡ [Pf r(X)]1/r <∞.
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An ε-bracket in Lr(P ) is a pair of functions l, u ∈ Lr(P ) with

l(X) ≤ u(X) P -almost surely and ‖u− l‖P,r ≤ ε.

A function f ∈ F lies in the bracket (l, u) if l(X) ≤ f(X) ≤ u(X)

P -almost surely.

The bracketing number N[](ε,F , Lr(P )) is the minimum number of

ε-brackets in Lr(P ) needed in order to ensure that every f ∈ F is

contained in at least one bracket.

The logarithm of the bracketing number is the entropy with bracketing.
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Theorem 2.2. Let F be a class of measurable functions and suppose

N[](ε,F , Lr(P )) <∞ for every ε > 0. Then F is P -Glivenko-Cantelli.

Example. Let X = R, F = {1{x ≤ t}, t ∈ R}, and P be the

distribution F on X .
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For each ε > 0, there exists a finite set of real numbers with

−∞ = t0 < t1 < · · · < tk =∞ such that F (tj−)− F (tj−1) ≤ ε,
all 1 ≤ j ≤ k, with F (t0) = 0 and F (tk) = 1.

Now consider the brackets {(lj , uj), 1 ≤ j ≤ k}, with

lj(x) = 1{x ≤ tj−1} and uj(x) = 1{x < tj} (note that uj is not in

F ).

Clearly, each f ∈ F is contained in one of these brackets and the number

of such brackets is finite.

This implies that Fn is uniformly consistent for F almost surely.
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For Donsker results, a more refined assessment of entropy is needed.

The bracketing integral (or bracketing entropy integral) is

J[](δ,F , Lr(P )) ≡
∫ δ

0

√
logN[](ε,F , Lr(P )) dε.

This allows the bracketing entropy to go to∞, as ε ↓ 0, but keeps this

from happening too fast.

Theorem 2.3. Let F be a class of measurable functions with

J[](∞,F , L2(P )) <∞. Then F is P -Donsker.
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Example, continued. For each ε > 0, choose the brackets (lj , uj) as

before and note that ‖uj − lj‖P,2 = (‖uj − lj‖P,1)1/2 ≤ ε1/2.

Thus an L2 ε-bracket is an L1 ε
2-bracket, and hance the minimum

number of L2 ε-brackets needed to cover F is 1 + 1/ε2.
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Since log(1 + a) ≤ 1 + log(a) for all a ≥ 1, we now have that

logN[](ε,F , L2(P )) ≤
[
1 + log(1/ε2)

]
1{ε ≤ 1},

and thus

J[](∞,F , L2(P )) ≤
∫ ∞
0

u1/2e−u/2du =
√

2π <∞,

where we used the variable substitution u = 1 + log(1/ε2).

Many other classes of function have bounded bracketing entropy integral,

including many parametric classes of functions and the class F of all

monotone functions f : X = R 7→ [0, 1], for all 1 ≤ r <∞ and any P

on X = R.
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There are many classes F for which bracketing entropy does not work, but

a different kind of entropy, uniform entropy (or just entropy) works.

For a probability measure Q, the covering number N(ε,F , Lr(Q)) is the

minimum number of Lr(Q) ε-balls needed to cover F , where an ε-ball

around a function g ∈ Lr(Q) is the set

{h ∈ Lr(Q) : ‖h− g‖Q,r < ε} :

• For a collection of ε-balls to cover F , all elements of F must be

contained in at least one of the ε-balls.

• It is not necessary that the centers of the balls in the collection be in

F .
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The logarithm of the covering number is the entropy.

What we really need, though, is the uniform covering number:

sup
Q
N(ε‖F‖Q,r,F , Lr(Q)), (6)

where

• F : X 7→ R is an envelope for F , meaning that |f(x)| ≤ F (x) for

all x ∈ X and all f ∈ F , and where

• the supremum is taken over all finitely discrete probability measures Q

with ‖F‖Q,r > 0.
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The logarithm of (6) is the uniform entropy: note that it does not depend on

the probability measure P for the observed data.

The uniform entropy integral is

J(δ,F , Lr) =

∫ δ

0

√
log sup

Q
N(ε‖F‖Q,r,F , Lr(Q)) dε,

where the supremum is taken over the same set used in (6).
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The following two theorems are the Glivenko-Cantelli and Donsker

theorems for uniform entropy:

Theorem 2.4. Let F be an appropriately measurable class of measurable

functions with supQN(ε‖F‖Q,1,F , L1(Q)) <∞ for every ε > 0,

where the supremum is taken over the same set used in (6). If

P ∗F <∞, then F is P -Glivenko-Cantelli.

Theorem 2.5. Let F be an appropriately measurable class of measurable

functions with J(1,F , L2) <∞. If P ∗F 2 <∞, then F is P -Donsker.
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An important class of functions F for which J(1,F , L2) <∞ are the

Vapnik-C̆ervonenkis (VC) classes:

• these include the indicator function class example from above;

• classes that can be expressed as finite-dimensional vector spaces;

and

• many other classes.

There are preservation theorems for building VC classes from other VC

classes as well as preservation theorems for Donsker, Glivenko-Cantelli,

and other classes: we will go into this in depth in Chapter 9.
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�� ��Bootstrapping Empirical Processes
We mentioned earlier that measurability in weak convergence can be

tricky.

This is even more the case with the bootstrap, since there are two sources

of randomness:

• the data and

• the random weights (resampling) used in the bootstrap.

For this reason, we have to assess convergence of conditional laws (the

bootstrap given the data) differently than regular weak convergence.
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An important result is that Xn ; X in the metric space (D, d) if and only

if

sup
f∈BL1

|E∗f(Xn)− Ef(X)| → 0, (7)

where BL1 is the space of functions f : D 7→ R with Lipschitz norm

bounded by 1, i.e.

• ‖f‖D ≤ 1 and

• |f(x)− f(y)| ≤ d(x, y) for all x, y ∈ D.

We can now define bootstrap weak convergence.
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Let X̂n be a sequence of bootstrapped processes in D with random

weights which we denote by M .

For some tight process X in D, we use the notation X̂n
P
;
M
X to:

• mean that suph∈BL1

∣∣∣EMh(X̂n)− Eh(X)
∣∣∣ P→ 0 and

• EMh(X̂n)∗ − EMh(X̂n)∗
P→ 0, for all h ∈ BL1,

• where subscript M denotes conditional expectation over M given the

data,

• and where h(X̂n)∗ and h(X̂n)∗ are the measurable majorants and

minorants with respect to the joint data (include M ).
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In addition to using the multinomial weights mentioned previously which

correspond to the nonparametric bootstrap, we have a useful alternative

that performs better in some settings.

Let ~ξ = (ξ1, ξ2, . . .) be an infinite sequence of nonnegative i.i.d. random

variables, also independent of the data ~X , which have

• mean 0 < µ <∞ and

• variance 0 < τ2 <∞,

• and which satisfy ‖ξ‖2,1 <∞, where

‖ξ‖2,1 =

∫ ∞
0

√
P (‖ξ‖ > x) dx.
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We can now define the multiplier bootstrap empirical measure

P̃n = n−1
∑n

i=1(ξi/ξ̄n)f(Xi), where P̃n is defined to be zero if

ξ̄n = 0.

Note that the weights involved add up to n for both the multiplier and

nonparametric bootstraps.

When ξ has a standard exponential distribution, for example, the moment

conditions are easily satisfied and the resulting multiplier bootstrap has

Dirichlet weights.

Let Ĝn =
√
n(P̂n − Pn), G̃n =

√
n(µ/τ)(P̃n − Pn), and G be the

Brownian bridge in `∞(F).
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Theorem 2.6. The following are equivalent:

1. F is P -Donsker.

2. Ĝn
P
;
W

G and the sequence Ĝn is asymptotically measurable.

3. G̃n
P
;
ξ
G and the sequence G̃n is asymptotically measurable.

Theorem 2.7. The following are equivalent:

1. F is P -Donsker and P ∗
[
supf∈F (f(X)− Pf)2

]
<∞.

2. Ĝn
as∗
;
W

G.

3. G̃n
P
;
ξ
G.
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A few comments:

• Note that most other bootstrap results use conditional almost sure

consistency; however, convergence in probability is sufficient for

almost all statistical applications.

• We can use these reasults for many complicated inference settings.

• There are continuous mapping results for the bootstrap.

• There are also Glivenko-Cantelli type results which are needed for

some applications.

• More on the bootstrap will be discussed in Chapter 10.
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