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This report contains the proofs for the asymptotic properties of the maximum likelihood

estimators (β̂n, Λ̂n). We conjecture that the results hold generally, but we only provide the

proofs under the following set of conditions:

Condition 1. The function Λ0(t) is strictly increasing and continuously differentiable, and

β0 lies in the interior of a compact set C.

Condition 2. With probability one, Z(.) has bounded total variation in [0, τ ]. In addition,

if there exists a vector γ and a deterministic function γ0(t) such that γ0(t) + γT Z(t) = 0 with

probability one, then γ = 0 and γ0(t) = 0.

Condition 3. With probability one, there exists a positive constant δ such that pr(C ≥
τ |Z) > δ and pr(Y

∗
(τ) = 1|Z) > δ, where Y

∗
(τ) = 1 means that Y ∗(t) = 1 for all t ∈ [0, τ ].

Condition 4. For any positive c0, lim supx→∞{G(c0x)}−1 log{x supy≤x G′(y)} = 0. This

condition is satisfied by G(x) = {(1 + x)ρ − 1}/ρ with ρ > 0.

Consistency. The proof consists of three steps: first, we show that the maximum likelihood

estimators exist or equivalently that the jump sizes of Λ̂n are finite; secondly, we show that,

for almost every sample, Λ̂n is bounded, so that by the Helly selection, along a subsequence,

Λ̂n → Λ∗ weakly and β̂n → β∗; finally, we show that Λ∗ = Λ0 and β∗ = β0.

Step 1. Let (Xi1, . . . , , Xi,ni
) be the ordered observed event times for the ith subject and

define Xi0 = 0. Let M be a constant such that supβ∈C,t∈[0,τ ] |βT Z(t)| ≤ M with probability one.

Condition 2 implies that such a constant exists. Thus, the ith term in (4) satisfies

∫ τ

0
log Λ{t}eβT Zi(t)dNi(t) +

∫ τ

0
log G′(

∫ t

0
Yi(s)e

βT Zi(s)dΛ)dNi(t)−G(
∫ τ

0
Yi(s)e

βT Zi(s)dΛ)

≤ niG(Λ(τ ∧ Ci)e
M)




log
{∫ τ

0 Yi(t)dΛeM supy≤
∫ τ

0
Yi(t)dΛeM G′(y)

}

G(
∫ τ
0 Yi(t)dΛe−M)

− 1

ni


 .
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Under Condition 4, this quantity diverges to −∞ if Λ{Xij} tends to ∞ for some Xij. Thus,

the jump sizes of Λ must be finite.

Step 2. We show that supn Λ̂n(τ) < ∞ with probability one. Since ln(Λ, β) achieves its

maximum at (Λ̂n, β̂n), the following inequality holds

1

n

{
ln(ξnΛn, β̂n)− ln(Λn, β̂n)

}
≥ 0, (A.1)

where ξn = Λ̂n(τ) and Λn = Λ̂n/ξn. To show that supn Λ̂n(τ) < ∞ with probability one,

it suffices to show that ξn is bounded almost surely. We prove this result by contradiction.

Suppose that, for every sample in a probability set with positive probability, ξn →∞ for some

subsequence, which we still denote by ξn. From (A.1), we obtain

1

n

n∑

i=1

∫ τ

0
log

{
ξnG

′(ξn

∫ t

0
Yi(t)e

β̂T
n Zi(s)dΛn)

}
dNi(t)− 1

n

n∑

i=1

G(ξn

∫ τ

0
Yi(s)e

β̂T
n Zi(s)dΛn)

≥ 1

n

n∑

i=1

∫ τ

0
log G′(

∫ t

0
Yi(s)e

β̂T
n Zi(s)dΛn)dNi(t)− 1

n

n∑

i=1

G(
∫ τ

0
Yi(s)e

β̂T
n Zi(s)dΛn).

Note that the right-hand side is bounded from below by

log min
y≤eM

G′(y)

{
1

n

n∑

i=1

Ni(τ)

}
−G(eM) > −∞.

However, the left-hand side is bounded from above by

1

n

n∑

i=1

∫ τ∧Ci

0
dNi(t) log ξn sup

y≤ξneM

G′(y)− 1

n

n∑

i=1

I(Y
∗
i (τ) = 1, Ci ≥ τ)G(e−Mξn).

Under Condition 4, log ξn supy≤ξneM G′(y) ≤ εG(ξne−M) for any ε when n is large enough. Thus,

{
ε

n

n∑

i=1

Ni(τ)− 1

n

n∑

i=1

I(Y
∗
i (τ) = 1, Ci ≥ τ)

}
G(ξne−M) > −∞.

If we choose ε such that εE[N(τ)] ≤ pr(Y
∗
(τ) = 1, C ≥ τ)/2, the left-hand side diverges to

−∞ when ξn → ∞. This is a contradiction. Therefore, Λ̂n is bounded with probability one.

By the Helly selection, along a subsequence, we assume that Λ̂n → Λ∗ weakly and β̂n → β∗.

Step 3. We show that Λ∗ = Λ0 and β∗ = β0. By differentiating ln(Λ, β) with respect to

Λ{Xij} and setting the derivative be zero, we obtain

1

nΛ̂n{Xij}
= φn(Xij; Λ̂n, β̂n),

where

φn(s; Λ̂n, β̂n) =
1

n

n∑

k=1

G′(
∫ τ

0
Yk(t)e

β̂T
n Zk(t)dΛ̂n)eβ̂T

n Zk(s)Yk(s)
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− 1

n

n∑

k=1

∫ τ

0

I(t ≥ s)Yk(s)e
β̂T Zk(s)G′′(

∫ t
0 Yk(s̃)e

β̂T Zk(s̃)dΛ̂n)

G′(
∫ t
0 Yk(s̃)eβ̂T Zk(s̃)dΛ̂n)

dNk(t).

It follows immediately that

Λ̂n(t) =
∫ t

0

∑n
i=1 dNi(s)/n

|φn(s; Λ̂n, β̂n)| . (A.2)

By the Glivenko-Cantelli theorem, φn(t; Λ̂n, β̂n) uniformly converges to a continuously differ-

entiable function φ∗(s; Λ∗, β∗). We show that mins∈[0,τ ] |φ∗(s; Λ∗, β∗)| ≥ 2ε0 for some positive

constant ε0 by contradiction. If this inequality does not hold, then φ∗(s0; Λ
∗; β∗) = 0 for some

s0 ∈ [0, τ ]. It follows from (A.2) that, for any ε > 0,

Λ̂n(τ) ≥
∫ τ

0

∑n
i=1 dNi(s)/n

|φn(s; Λ̂n, β̂n)|+ ε
→ E

[∫ τ

0

dN(s)

|φ∗(s; Λ∗, β∗)|+ ε

]
.

Letting ε decrease to zero, we obtain

E

[∫ τ

0

dN(s)

|φ∗(s; Λ∗, β∗)|

]
< ∞.

However, |φ∗(s; Λ∗, β∗)| = |φ∗(s; Λ∗, β∗) − φ∗(s0; Λ
∗, β∗)| ≤ c1|s − s0| for some constant c1

and
∫ τ
0 |s − s0|−1E[dN(s)] = ∞. This is a contradiction. Thus, when n is large enough,

|φn(t; Λ̂n, β̂n)| > ε0 > 0 for some constant ε0.

By replacing Λ̂n and β̂n in (A.2) with Λ0 and β0, we obtain

Λ̃n(t) =
∫ t

0

∑n
i=1 dNi(s)/n

|φn(s; Λ0, β0)| . (A.3)

If follows from the Glivenko-Cantelli theorem together with simple algebra that the right-hand

side of (A.3) uniformly converges to Λ0 almost surely. By (A.2) and (A.3) and the lower

bound of |φn|, Λ̂n(t) is absolutely continuous respect to Λ̃n(t) and dΛ̂n/dΛ̃n converges to a

bounded measurable function ψ(t). That is, Λ∗(t) =
∫ t
0 ψ(s)dΛ0(t). Thus, Λ∗(t) is absolutely

continuous with respect to the Lebsgue measure and we denote its derivative as λ∗(t). In

addition, ψ(t) = λ∗(t)/λ0(t). Finally, since ln(Λ, β) is maximized at (Λ̂n, β̂n),

1

n

n∑

i=1

[∫ τ

0
log

Λ̂n{t}
Λ̃n(t)

dNi(t)−G(
∫ τ

0
Yi(t)e

β̂T
n Zi(t)dΛ̂n) + G(

∫ τ

0
Yi(t)e

βT
0 Zi(t)dΛ̃n)

+
∫ τ

0
log G′(

∫ t

0
Yi(s)e

β̂T
n Zi(s)dΛ̂n)dNi(t) +

∫ τ

0
eβ̂T

n Zi(t)dNi(t)

−
∫ τ

0
log G′(

∫ t

0
Yi(s)e

βT
0 Zi(s)dΛ̃n)dNi(t)−

∫ τ

0
eβT

0 Zi(t)dNi(t)
]
≥ 0.
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We take the limits on both sides. By the Glivenko-Cantelli theorem and the fact that Λ̂n{t}/Λ̃{t}
converges uniformly to λ∗(t)/λ0(t), the Kullback-Leibler information between the density in-

dexed by (Λ∗, β∗) and the true density is negative. Therefore, with probability one,

∫ τ

0
log

{
Y (t)λ∗(t)eβ∗T Z(t)G′(

∫ t

0
Y (s)eβ∗T Z(s)dΛ∗)

}
dN(t)−G(

∫ τ

0
Y (t)eβ∗T Z(t)dΛ)

=
∫ τ

0
log

{
Y (t)λ0(t)e

βT
0 Z(t)G′(

∫ t

0
Y (s)eβT

0 Z(s)dΛ0)
}

dN(t)−G(
∫ τ

0
Y (t)eβT

0 Z(t)dΛ0).

This equality holds for the case in which Y
∗
(τ) = 1, N∗(τ) = 0 and C ≥ τ and also holds for

the case in which Y
∗
(τ) = 1, N∗(t−) = 0, N∗(τ) = 1 and C ≥ τ . The difference between the

equalities from these two cases entails that

λ∗(t)eβ∗T Z(t)G′(
∫ t

0
eβ∗T Z(s)dΛ∗) = λ0(t)e

βT
0 Z(t)G′(

∫ t

0
eβT

0 Z(s)dΛ0).

Integrating from 0 to t yields

G(
∫ t

0
eβ∗T Z(s)dΛ∗) = G(

∫ t

0
eβT

0 Z(s)dΛ0).

Thus, ∫ t

0
eβ∗T Z(s)dΛ∗ =

∫ t

0
eβT

0 Z(s)dΛ0.

If then follows from Condition 2 that β∗ = β0 and Λ∗ = Λ0.

Hence, we have proved that β̂n → β0 and Λ̂n(t) → Λ0(t) almost surely. The latter can be

strengthened to uniform convergence in t ∈ [0, τ ] by the continuity of Λ0.

Asymptotic distribution. We denote the empirical measure determined by n i.i.d. observations

as Pn and denote its expectation as P . Let Gn be the empirical process given by
√

n(Pn −P).

In addition, we define l(Λ, β) as the logarithm of the observed likelihood function from a single

subject and define its derivative with respect to Λ as

lΛ(Λ, β)[∆Λ] = lim
ε→0

l(Λ + ε∆Λ, β)− l(Λ, β)

ε
.

We also define

lΛΛ(Λ, β)[∆1Λ, ∆2Λ] = lim
ε→0

lΛ(Λ + ε∆2Λ, β)[∆1Λ]− lΛ(Λ, β)[∆1Λ]

ε
.

Likewise, lβ(Λ, β) denotes the score vector for β and lββ(Λ, β) the Hessian matrix of l(Λ, β)

with respect to β. For convenience, we define

Ψ(t; Λ, β) = G′′(
∫ t

0
Y (s)eβT Z(s)dΛ)/G′(

∫ t

0
Y (s)eβT Z(s)dΛ),
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Ψ̃(Λ, β) = G′′(
∫ τ

0
Y (t)eβT Z(t)dΛ).

We choose ε0 small enough and define a map Wn := (Wn1,Wn2) from {(Λ, β) : ‖Λ −
Λ0‖l∞[0,τ ] < ε0, |β − β0| < ε0} ⊂ l∞(Q)×Rp to l∞(Q)×Rp as follows: for any q(t) ∈ Q,

Wn1(Λ, β)[q] =
d

dδ
Pn

{
l(Λ(t) + δ

∫ t

0
q(s)dΛ, β)

} ∣∣∣
δ=0

= Pn

{∫ τ

0
q(t)dN(t) +

∫ τ

0
Ψ(t; Λ, β)

∫ t

0
Y (s)q(s)eβT Z(s)dΛdN(t)

−
∫ τ

0
Y (t)eβT Z(t)q(t)dΛG′(

∫ τ

0
Y (t)eβT Z(t)dΛ)

}
,

and

Wn2(Λ, β) = ∇βPn {l(Λ, β)}
= Pn

{∫ τ

0
Ψ(t; Λ, β)

∫ t

0
Y (s)eβT Z(s)Z(s)dΛdN(t) +

∫ τ

0
Z(t)dN(t)

−G′(
∫ τ

0
Y (t)eβT Z(t)dΛ)

∫ τ

0
Y (t)eβT Z(t)Z(t)dΛ

}
.

Likewise, we can define the limit version of Wn as W := (W1,W2) by replacing Pn with P in

the above two definitions. Clearly, Wn(Λ̂n, β̂n) = 0 and W (Λ0, β0) = 0. By Conditions 1-2 and

the Donsker theorem,
√

n(Wn−W )(Λ̂n, β̂n)−√n(Wn−W )(Λ0, β0) = op(1) in the metric space

l∞(Q)×Rp. In light of Theorem 3.3.1 of van der Vaart and Wellner (1996), it remains to verify

that W is Fréchet-differentiable at (Λ0, β0) and that the derivative is continuously invertible in

the set A = {(Λ−Λ0, β−β0) : ‖Λ−Λ0‖l∞[0,τ ] < ε0, |β−β0| < ε0}. The Fréchet-differentiability

of W can be checked directly.

To verify the invertibility of the derivative, we note that the derivative of W maps A to

l∞(Q)×Rp and has the form

(
W11 W12

W21 W22

) (
Λ− Λ0

β − β0

) [(
q
b

)]
=

(
W11(Λ− Λ0)[q] + W12(β − β0)[q]
W21(Λ− Λ0)

T b + W22(β − β0)
T b

)
.

In addition,

W11(Λ− Λ0)[q] =
∫

(−p(t)I + K)[q]d(Λ− Λ0),

W12(β − β0)[q] = A[
∫

qdΛ0](β − β0),

W21(Λ− Λ0) = A∗[Λ− Λ0],

W22(β − β0) = B(β − β0),
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where p(t) > 0, I is identity operator, A and K are both linear operators, A∗ is the dual

operator of A, and B is p× p matrix. Specifically,

p(t) = E
{
Y (t)eβT

0 Z(t)G′(
∫ τ

0
Y (s)eβT

0 Z(s)dΛ0)
}

−E

{
Y (t)eβT

0 Z(t)
∫ τ∧C

t
Ψ(s; Λ0, β0)dN(s)

}

= E
{
Y (t)eβT

0 Z(t)G′(
∫ t

0
Y (s)eβT

0 Z(s)dΛ0)
}

,

K[q] = −E
{
Y (t)eβT

0 Z(t)Ψ̃(Λ0, β0)
∫ τ

0
Y (s)eβT

0 Z(s)q(s)dΛ0

}

+E

{
Y (t)eβT

0 Z(t)
∫ τ∧C

t
Ψ′(s; Λ0, β0)

∫ s

0
q(s̃)Y (s̃)eβT

0 Z(s̃)dΛ0dN(s)

}
,

A[
∫

qdΛ0] = E
[∫ τ

0
Ψ′(t; Λ0, β0)

∫ t

0
Y (s)eβT

0 Z(s)q(s)dΛ0

∫ t

0
Y (s)eβT

0 Z(s)Z(s)dΛ0

]

+E
[∫ τ

0
Ψ(t; Λ0, β0)

∫ t

0
Y (s)eβT

0 Z(s)q(s)Z(s)dΛ0

]

−E
[∫ τ

0
Y (t)eβT

0 Z(t)q(t)dΛ0

∫ τ

0
Y (t)eβT

0 Z(t)Z(t)dΛ0Ψ̃(Λ0, β0)
]

−E
[∫ τ

0
Y (t)eβT

0 Z(t)q(t)Z(t)dΛ0G
′(

∫ τ

0
Y (t)eβT

0 Z(t)dΛ0)
]
,

B = E
[∫ τ

0
Ψ(t; Λ0, β0)

∫ t

0
Y (s)eβ0

T Z(s)Z(s)Z(s)T dΛ0dN(t)
]

+E

[∫ τ

0
Ψ′(t; Λ0, β0)

{∫ t

0
Y (s)eβ0

T Z(s)Z(s)dΛ0

}⊗2

dN(t)

]

−E
[
G′(

∫ τ

0
Y (t)eβT

0 Z(t)dΛ0)
∫ τ

0
Y (t)eβ0

T Z(t)Z(t)Z(t)T dΛ0

]

−E

[
Ψ̃(Λ0, β0)

{∫ τ

0
Y (t)eβ0

T Z(t)Z(t)dΛ0

}⊗2
]
.

Thus, to show the invertibility of
(

W11 W12

W21 W22

)
, it suffices to show that W22 and V := W11 −

W12W
−1
22 W21 are continuously invertible.

We first show that W22 is invertible. Note that −W22 is the information at β0 for the

densities with parameters (Λ0, β), so that it is non-negative. If there exists some b ∈ Rp such

that bT W22b = 0, then the score for β along the direction b should be zero with probability one,

or

0 =
{∫ τ

0
Ψ(t; Λ0, β0)

∫ t

0
Y (s)eβ0

T Z(s)Z(s)dΛ0dN(t)

+
∫ τ

0
Z(t)dN(t)−G′(

∫ τ

0
Y (t)eβ0

T Z(t)dΛ0)
∫ τ

0
Y (t)eβ0

T Z(t)Z(t)dΛ0

}T

b.

The equality holds when Y
∗
(τ) = 1, N(τ) = 0 and C ≥ τ , and also holds when Y

∗
(τ) = 1,

C ≥ τ and N(·) has only one jump at t. The comparison of the equalities from these two cases
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yields

Z(t)T b = −
∫ t

0
eβT

0 Z(s)Z(s)T bdΛ0Ψ(t; Λ0, β0).

This can be regarded as a homogeneous integral equation for the function Z(t)T b. We thus

conclude Z(t)T b = 0 for all ∈ [0, τ ]. Condition 2 then entails that b = 0.

Next we show that the operator V is invertible. Note that

V [Λ− Λ0](h) =
∫ τ

0

{
−p(t)I + K̃

}
[q]d(Λ− Λ0),

where K̃ is an integral operator of q(t). If we can show that ε̃Q ⊂
{
−p(t)I + K̃

}
(Q) for some

constant ε̃, then V is continuously invertible on its image in l∞(Q). However, K̃ is a compact

operator, so that the previous condition is equivalent to that −p(t)I + K̃ is one to one; that is,

if some function q ∈ Qp satisfies
{
−p(t)I + K̃

}
[q] = 0, then q = 0. To prove this, we note that

the following equality holds for any (Λ, β) and (q, b),
(

W11 W12

W21 W22

) (
Λ− Λ0

β − β0

) [(
q
b

)]
= −P

(
lΛΛ(Λ0, β0) lΛβ(Λ0, β0)
lβΛ(Λ0, β0) lββ(Λ0, β0)

) [(
Λ− Λ0

β − β0

)
,
( ∫

qdΛ0

b

)]
.

Thus, if there exists some q such that
{
−p(t)I + K̃

}
[q] = 0, then in the above equation, we let

Λ(t)− Λ0(t) =
∫ t

0
qdΛ0, b = β − β0 = −W−1

22 W21[
∫ t

0
qdΛ0].

The left-hand side is equal to V [
∫

qdΛ0](q), which is zero. By the fundamental equality E[lθθ] =

−E[lθl
T
θ ], the right-hand side is equal to

E

[{
lΛ(Λ0, β0)[

∫
qdΛ0] + lβ(Λ0, β0)

T b
}2

]
.

Thus, there exists some b ∈ Rp such that the score function along the path (Λ0+δ
∫

qdΛ0, β0+b)

is zero. This gives that

0 =
[∫ τ

0
q(t)dN(t) +

∫ τ

0
Ψ(t; Λ0, β0)

∫ t

0
Y (s)eβ0

T Z(s)q(s)dΛ0dN(t)

−G′(
∫ τ

0
Y (t)eβ0

T Z(t)dΛ0)
∫ τ

0
Y (t)eβ0

T Z(t)q(t)dΛ0

]

+
[∫ τ

0
Ψ(t; Λ0, β0)

∫ t

0
Y (s)eβ0

T Z(s)Z(s)dΛ0dN(t) +
∫ τ

0
Z(t)dN(t)

−G′(
∫ τ

0
Y (t)eβ0

T Z(t)dΛ0)
∫ τ

0
Y (t)eβ0

T Z(t)Z(t)dΛ0

]T

b.

For the case of Y
∗
(τ) = 1, N(τ) = 0 and C ≥ τ and for the case of Y

∗
(τ) = 1, N(t) = I(t ≥ t0)

and C ≥ τ , we obtain two equalities. By taking the difference, we obtain that

{
q(t0) + Z(t0)

T b
}

+ Ψ(t0; Λ0, β0)
∫ t0

0

{
q(s) + Z(s)T b

}
eβT

0 Z(s)dΛ0 = 0.
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Again, this is a homogeneous equation for q(t) + Z(t)T b with only trivial solutions. Thus,

q(t) + Z(t)T b = 0 for all t ∈ [0, τ ]. It follows from Condition 2 that b = 0 and q(t) = 0.

Therefore, V is invertible.

It now follows from Theorem 3.3.1 of van der Vaart and Wellner (1996) that, in the metric

space l∞(Q)×Rp,
√

n(Λ̂n−Λ0, β̂n− β0) weakly converges to some Gaussian process. Further-

more,
√

n
(

W11 W12

W21 W22

) (
Λ̂n − Λ0

βn − β0

) [(
q
b

)]
= Gn

{
lΛ[

∫
qdΛ0] + lTβ b

}
+ op(1).

The left-hand side of the equation can be written as

√
n

{∫
σ1(q, b)d(Λ̂n − Λ0) + σ2(q, b)

T (β̂n − β0)
}

,

where σ1 is a linear map from Q × Rp to l∞[0, τ ], and σ2 is a linear map from Q × Rp to

Rp. The invertibility of
(

W11 W12

W21 W22

)
implies the invertibility of the map (σ1, σ2). Thus, if we

choose q such that σ1(q, b) = 0 and σ2(q, b) = b, then

√
n(β̂n − β0)

T b = Gn

{
lΛ[

∫
qdΛ0] + lTβ b

}
+ op(1).

We conclude that β̂n is an asymptotically linear estimator for β0 and that its influence function

is on the space spanned by the score functions. Thus, β̂n is semiparametrically efficient.

Consistency of covariance estimators. The above proof implies that

−P
(

lΛΛ(Λ0, β0) lΛβ(Λ0, β0)
lβΛ(Λ0, β0) lββ

) [(√
n(Λ̂n − Λ0)√
n(β̂n − β0)

)
,
( ∫ t

0 qdΛ0

b

)]

= Gn

(
lΛ(Λ0, β0)[

∫ t
0 qdΛ0]

lTβ b

)
+ op(1).

This approximation holds uniformly for q with bounded variation and b with bounded norm.

We define a function Λ̃(t) as a step function with jumps at the observed event times Xij and

the jump size at Xij is equal to Λ0(Xij)−maxXkl<Xij
Λ0(Xkl). Clearly, Λ̃(Xij) = Λ0(Xij). For

any bounded vector {pij, i = 1, . . . , , n, j = 1, . . . , , ni} and bounded vector b ∈ Rp, we define a

step function p(t) such that it only jumps at Xij and p(Xij) = pij and define ~∆ as the vector

consisting of pijΛ̂n{Xij}. By the definition of In,

(~∆, b)′In

(
~∆
b

)
= −Pn

(
lΛΛ(Λ̂n, β̂n) lΛβ(Λ̂n, β̂n)

lβΛ(Λ̂n, β̂n) lββ

) [( ∫ t
0 pdΛ̂n

b

)
,
( ∫ t

0 pdΛ̂n

b

)]
.

The right-hand side approximates

−P
(

lΛΛ(Λ0, β0) lΛβ(Λ0, β0)
lβΛ(Λ0, β0) lββ

) [( ∫ t
0 pdΛ0

b

)
,
( ∫ t

0 pdΛ0

b

)]
> 0
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uniformly in any bounded function p(t) and b. It follows immediately that In is positive definite

when n is large.

On the other hand,

−√n

( {
Λ̂n{Xij} − Λ̃{Xij}

}

β̂n − β0

)
In

(
~∆
b
¯

)

= −√nPn

(
lΛΛ(Λ̂n, β̂n) lΛβ(Λ̂n, β̂n)

lβΛ(Λ̂n, β̂n) lββ

) [(
Λ̂n(t)− Λ̃(t)

β̂n − β0

)
,
( ∫ t

0 pdΛ̂n

b

)]

= −√nPn

(
lΛΛ(Λ̂n, β̂n) lΛβ(Λ̂n, β̂n)

lβΛ(Λ̂n, β̂n) lββ

) [(
Λ̂n(t)− Λ0(t)

β̂n − β0

)
,
( ∫ t

0 pdΛ̂n

b

)]

= −√nP
(

lΛΛ(Λ0, β0) lΛβ(Λ0, β0)
lβΛ(Λ0, β0) lββ

) [(
Λ̂n(t)− Λ0(t)

β̂n − β0

)
,
( ∫ t

0 pdΛ0

b

)]
+ op(1)

= Gn

{
lΛ(Λ0, β0)[

∫ t

0
pdΛ0] + lTβ b

}
+ op(1)

= Gn

{
lΛ(Λ0, β0)[

∫ t

0
pdΛ̂n] + lTβ b

}
+ op(1). (A.4)

In the above equations, op(1) means convergence to zero in probability uniformly in pij and b.

Since In is invertible, for any bounded sequence {qij}i=1,...,,n,j=1,...,,ni
and b̃, we can choose

{pij}i=1,...,,n,j=1,...,,ni
and b such that In

(
~∆
b

)
=

(
~q
b̃

)
, where ~∆ = {pijΛ̂n{Xij}} and ~q is the

vector consisting of qij. With such choices, equation (A.4) yields

n∑

i=1

ni∑

j=1

√
n(Λ̂n{Xij} − Λ̃{Xij})qij +

√
n(β̂n − β0)

T b̃

= Gn

{
lΛ(Λ0, β0)[

∫ t

0
pdΛ̂n] + lTβ b

}
+ op(1).

The distribution of the right-hand side approximates a normal distribution with covariance

matrix

P
[{

lΛ(Λ0, β0)[
∫ t

0
pdΛ̂n] + lβ(Λ0, β0)

T b
} {

lΛ(Λ0, β0)[
∫ t

0
pdΛ̂n] + lβ(Λ0, β0)

T b
}T

]

= −P
(

lΛΛ(Λ0, β0) lΛβ(Λ0, β0)
lβΛ(Λ0, β0) lββ

) [( ∫ t
0 pdΛ̂n

b

)
,
( ∫ t

0 pdΛ̂n

b

)]
.

This distribution can be approximated by

−Pn

(
lΛΛ(Λ̂n, β̂n) lΛβ(Λ̂n, β̂n)

lβΛ(Λ̂n, β̂n) lββ

) [( ∫ t
0 pdΛ̂n

b

)
,
( ∫ t

0 pdΛ̂n

b

)]
,

which is equal to (~∆, b)In

(
~∆
b

)
. Thus, the asymptotic variance for

n∑

i=1

ni∑

j=1

√
n(Λ̂n{Xij} − Λ̃{Xij})qij +

√
n(β̂n − β0)

T b̃
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can be approximated by

(~∆, b̃)In

(
~∆
b̃

)
= (~q, b̃)I−1

n

(
~q
b̃

)
.

That is, for any vector b̃ and any bounded function q(t) such that q(Xij) = qij, the asymp-

totic variance for
√

n
∫ τ
0 q(t)d(Λ̂n − Λ0) +

√
n(β̂n − β0)

T b̃ can be consistently estimated by

(~q, b̃)I−1
n

(
~q
b̃

)
. This holds uniformly for any bounded function q(t) and bounded vector b̃.

Some other transformations. Condition 4 rules out such transformations as G(x) = log(1 + x).

However, Condition 4 is only used in the first two steps of the consistency proof. Thus, if we

can verify those two steps for the class of transformations G(x) = % log(1 + rx), where % and r

are positive constants, then all the asymptotic results also hold for such transformations.

To prove Step 1, we rely on the explicit form of G(x). It can be easily shown that the ith

term of (4) is bounded from above. Condition 3 implies that, almost surely, there exist some

subjects with Y
∗
i (τ) = 1, N∗

i (τ) = 0 and Ci ≥ τ . For such a subject, the corresponding term in

(4) is equal to −% log(1 + r
∫ τ
0 eβT Zi(t)dΛ), which is negative infinity if Λ has infinite jump sizes.

Thus, Step 1 is proved.

To verify Step 2, it suffices to show Λ̂n(τ) < ∞. By equation (A.2) and the fact that G′′ < 0,

1

nΛ̂n{Xij}
≥ %r

n

n∑

k=1

∫ τ

0

I(t ≥ Xij)Yk(Xij)e
−M

1 + reM
∫ t
0 Yk(s)dΛ̂n

dNk(t).

Thus,

0 ≤ 1

n

{
ln(Λ̂n, β̂n)− ln(Λ̃n, β0)

}
≤ O(1)

− 1

n

n∑

i=1

∫ τ

0
log

{
1

n

n∑

k=1

∫ τ

0

I(t ≥ s)Yk(s)e
−M

1 + reM
∫ t
0 Yk(s)dΛ̂n

dNk(t)

}
dNi(s)− %

n

n∑

i=1

log(1+re−M
∫ τ

0
Yi(s)dΛ̂n).

(A.5)

For simplicity, assume that Y (·) is non-increasing. We introduce a sequence s0 = τ > s1 >

s2 > . . . , > sQ = 0. Then the right-hand side of the above inequality can be bounded from

above by

O(1)− 1

n

n∑

i=1

Q∑

q=1

I(Yi(sq−1) = 0, Yi(sq) = 1)

×
∫ τ

0
log

{
1

n

n∑

k=1

∫ τ

0

I(t ≥ s, t ∈ [sq, sq−1])

1 + reM Λ̂n(sq−1)
dNk(t)

}
dNi(s)

−%

n

n∑

i=1

Q∑

q=1

I(Yi(sq−1) = 0, Yi(sq) = 1) log(1+re−M Λ̂n(sq))−%

n

n∑

i=1

I(Yi(s0) = 1) log(1+re−M Λ̂n(τ)).
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Rearranging this expression, we obtain that the right-hand side of (A.5) is bounded by

O(1)− %

2n

n∑

i=1

I(Yi(s0) = 1) log(1 + re−M Λ̂n(τ))

+

[
1

n

n∑

i=1

I(Yi(s0) = 0, Yi(s1) = 1)Ni(τ) log(1 + reM Λ̂n(τ))

− %

2n

n∑

i=1

I(Yi(s0 = 1)) log(1 + re−M Λ̂n(τ))

]

+
Q−1∑

q=1

[
1

n

n∑

i=1

I(Yi(sq) = 0, Yi(sq+1) = 1)Ni(τ) log(1 + reM Λ̂n(sq))

−%

n

n∑

i=1

I(Yi(sq−1) = 0, Yi(sq) = 1) log(1 + re−M Λ̂n(sq))

]
. (A.6)

Therefore, if we can choose the sequence s0 = 0 > s1 > . . . , > sQ = 0 such that

1

n

n∑

i=1

I(Yi(s0) = 0, Yi(s1) = 1)Ni(τ) <
%

2n

n∑

i=1

I(Yi(s0 = 1))

and
1

n

n∑

i=1

I(Yi(sq) = 0, Yi(sq+1) = 1)Ni(τ) <
%

n

n∑

i=1

I(Yi(sq−1) = 0, Yi(sq) = 1),

then the first term in (A.6) diverges to negative infinity when Λ̂n(τ) →∞ but the second and

third terms in (A.6) do not diverge. Thus, the right-hand side of (A.5) goes to negative infinity.

This is a contradiction, so that Step 2 is verified.

The sequence s0 > s1 > . . . , can be chosen sequentially as follows: first, s1 is defined as

s1 = inf
0≤s<τ

{s : E[I(Y (s0) = 0, Y (s) = 1)N(τ)] < ε0E[I(Y (s0) = 1)]} ;

then given sq, sq+1 is defined as

sq+1 = inf
0≤s<sq

{s : E[I(Y (sq) = 0, Y (s) = 1)N(τ)] < ε0E[I(Y (sq−1) = 0, Y (sq) = 1)]} ,

where ε0 is a constant less than %/2 and is to be determined later. Clearly, such a sequence

is well defined. We show that eventually sQ = 0 for some finite Q. Otherwise, we obtain

s0 > s1 > . . . ,→ s∗ ≥ 0. Since

E[I(Y (s0) = 0, Y (s1) = 1)N(τ)] = ε0E[I(Y (s0) = 1)],

E[I(Y (sq) = 0, Y (sq+1) = 1)N(τ)] = ε0E[I(Y (sq−1) = 0, Y (sq = 1))]

for q ≥ 1, the summation of all these equalities yields

E[N(τ)I(Y (s0) = 0, Y (s∗) = 1)] = ε0E[I(Y (s∗) = 1)].

This cannot be true if we choose ε0 small enough. Thus, sQ must be zero for some finite Q.
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