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S

A class of semiparametric transformation models is proposed to characterise the
effects of possibly time-varying covariates on the intensity functions of counting processes.
The class includes the proportional intensity model and linear transformation models
as special cases. Nonparametric maximum likelihood estimators are developed for the
regression parameters and cumulative intensity functions of these models based on
censored data. The estimators are shown to be consistent and asymptotically normal.
The limiting variances for the estimators of the regression parameters achieve the semi-
parametric efficient bounds and can be consistently estimated. The limiting variances for
the estimators of smooth functionals of the cumulative intensity function can also be
consistently estimated. Simulation studies reveal that the proposed inference procedures
perform well in practical settings. Two medical studies are provided.
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1. I

Counting processes have been used extensively to describe event history data. For
example, traditional survival data can be characterised as a counting process with a single
jump at the survival time while recurrent events can be characterised as a counting process
with jumps at recurrent event times. A number of statistical models formulate the effects
of covariates on counting processes (Andersen et al., 1993), the most popular choice being
the proportional intensity model (Andersen & Gill, 1982).
Let N*(t) be the counting process recording the number of events that have occurred

by time t, and let Z(t) be a vector of possibly time-varying covariates. The proportional
intensity model specifies that the intensity function for N*(t) conditional on Z(t) takes
the form

L
Z
(t)=P t

0
Y *(s)ebTZ(s)dL(s), (1)

where Y *( . ) is a predictable process with values 0 and 1, L( . ) is an unspecified increasing
function, and b is a vector of unknown regression parameters. For survival data,
Y *(t)=I(T�t), where T is the survival time and I ( . ) is the indicator function; for
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recurrent events, Y *( . )=1. A large-sample estimation theory for this model based on
the partial likelihood principle (Cox, 1972, 1975) has been established elegantly via the
counting-process martingale theory (Andersen & Gill, 1982).
For survival data, model (1) is equivalent to the classical proportional hazards model

(Cox, 1972). The proportional hazards assumption may be violated in certain applications,
especially in long-term studies of chronic diseases. A useful alternative is the proportional
odds model (Bennett, 1983; Pettitt, 1984), which constrains the ratio of the odds of survival
associated with two sets of covariate values to be constant over time and consequently
the ratio of the hazards to converge to unity as time increases. By contrast, the proportional
hazards model constrains the hazard ratio to be constant while the odds ratio tends to
zero or infinity. Physical and biological rationale for the proportional odds model was
provided by Bennett (1983) among others. Maximum likelihood estimation for this model
was studied by Murphy et al. (1997).
The proportional hazards and proportional odds models belong to the class of semi-

parametric linear transformation models (Dabrowska & Doksum, 1988). General
estimators for this class of models were proposed by Dabrowska & Doksum (1988), Cheng
et al. (1995, 1997) and Chen et al. (2002) among others. None of these estimators is
asymptotically efficient. For a subset of the models called generalised odds-rate models,
maximum likelihood estimation was studied by Scharfstein et al. (1998). The class of linear
transformation models is confined to survival data and does not allow time-varying
covariates.
In the present paper, we consider a broad class of transformation models for general

counting processes, which can accommodate time-varying covariates and recurrent events.
The models incorporate a transformation into the right-hand side of equation (1):

L
Z
(t)=GqP t

0
Y *(s)ebTZ(s)dL(s)r , (2)

where G is a thrice continuously differentiable and strictly increasing function with
G(0)=0, G∞(0)>0 and G(2 )=2. Here and in the sequel, f ∞(x)=d f (x)/dx. Of course,
the choice of G(x)=x yields model (1). When N*( . ) has a single jump at survival time T ,
equation (2) implies that G{∆t

0
ebTZ(s)dL(s)} is a cumulative hazard function so that

P T
0
ebTZ(s)dL(s)=G−1 (−log e

0
),

where e0 has a uniform distribution. If Z is time-invariant, then the above equation
becomes the linear transformation model

log L(T )=−bTZ+ log G−1 (−log e
0
).

It is natural to consider the class of Box–Cox transformations, in which

G(x)={(1+x)r−1}/r (r�0)

with r=0 corresponding to G(x)= log(1+x). Chen et al. (2002) considered a class of
logarithmic transformations:

G(x)= log(1+rx)/r (r�0)

with r=0 corresponding to G(x)=x. The choice of r=1 or r=0 yields the proportional
hazards/intensity model while the choice of r=0 or r=1 yields the proportional odds
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model. Figure 1 shows the patterns of covariate effects over time for these two classes of
transformations. For the first class, covariate effects increase over time if r>1 and decrease
over time if r<1. For the second class, covariate effects always decrease over time, the
rate of decrease being higher for larger r.
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Fig. 1. Plots of the ratios L
z
(t)/L

Z=0
(t) against L(t) with

ebTz=2 under the Box–Cox and logarithmic transformations.

We propose to estimate the parameters b and L( . ) in (2) by the nonparametric maximum
likelihood method (Andersen et al., 1993, § IV.1.5; Bickel et al., 1993, pp. 339–44), the
theoretical development relying on modern empirical process theory (van der Vaart &
Wellner, 1996) and semiparametric efficiency theory (Bickel et al., 1993).

2. I 

Counting processes are commonly subject to right censoring. Let C denote the censor-
ing time, which is assumed to be independent of N*( . ) conditional on Z ( . ). For a random
sample of n subjects, the data consist of

{N
i
(t), Y

i
(t), Z

i
(t); tµ[0, t]} (i=1, . . . , n),

where Y
i
(t)=I(C

i
�t)Y *

i
(t), N

i
(t)=N*

i
(t9C

i
), a9b=min (a, b), and t denotes the dur-

ation of the study. For general censoring/truncation patterns, we define N
i
(t) to be the

number of events observed by time t on the ith subject, and Y
i
(t) the indicator of whether

or not the ith subject is at risk at time t.
Under model (2), the intensity for N

i
(t) is Y

i
(t)ebTZ

i
(t)l(t)G∞{∆t

0
Y
i
(s)ebTZ

i
(s)dL(s)}, where

l(t)=L∞(t). Thus, the loglikelihood function concerning the parameters L( . ) and b can be
written as

∑
n

i=1
CP t
0
log l(t)dN

i
(t)+P t

0
log G∞qP t

0
Y
i
(s)ebTZ

i
(s)dL(s)r dNi (t)

+P t
0

bTZ
i
(t)dN

i
(t)−GqP t

0
Y
i
(t)ebTZ

i
(t)dL(t)rD . (3)
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The maximum of this function does not exist if L( . ) is restricted to be absolutely
continuous. Thus, we allow L( . ) to be discrete and replace l(t) in (3) with the jump size
of L at time t, denoted by L{t}. The modified loglikelihood function takes the form

l
n
(L, b)= ∑

n

i=1
CP t
0
log L{t}dN

i
(t)+P t

0
log G∞qP t

0
Y
i
(s)ebTZ

i
(s)dL(s)r dNi (t)

+P t
0

bTZ
i
(t)dN

i
(t)−GqP t

0
Y
i
(t)ebTZ

i
(t)dL(t)rD . (4)

We maximise (4) over L( . ) and b, restricting L( . ) to be a step function with jumps
at the observed event times X

ij
(i=1, . . . , n; j=1, . . . , n

i
), where n

i
is the number of

observed events on the ith subject. This is tantamount to maximising (4) over L{X
ij
}

(i=1, . . . , n; j=1, . . . , n
i
) and b. The resulting estimators are referred to as the non-

parametric maximum likelihood estimators. In the special case of the proportional
hazards/intensity model, these estimators are identical to the maximum partial likelihood
estimators (Andersen et al., 1993, pp. 481–3).
The proposed estimators can be obtained by the quasi-Newton method with an optimal

search along the gradients of (4). The search algorithm is a subspace trust region procedure
based on the interior-reflective Newton method of Coleman & Li (1994, 1996). In each
iteration of the search, a large linear system is approximately solved by using the method
of preconditioned conjugate gradients. The algorithm is deemed convergent when the
search step size and the norms of the search gradients are smaller than certain thresholds.
This algorithm has been implemented in  and other commercial software packages.
Although the search does not guarantee the global maximum, our experience shows that
the algorithm works very well provided that the starting values are not far from the
maximisers. We recommend using b=0 and L{X

ij
}=n−1 (i=1, . . . , n; j=1, . . . , n

i
) as

the starting values.
Denote the true values of b and L by b0 and L0 and their nonparametric maximum

likelihood estimators by b@
n
and LC

n
. In the Appendix, we show that b@

n
is strongly consistent

and LC
n
( . ) uniformly converges to L0 ( . ) with probability one. In addition, the random

element nD{LC
n
( . )−L0 ( . ), b

@
n
−b0} converges weakly to a zero-mean Gaussian process,

and b@
n
is an asymptotically efficient estimator for b0 .

We wish to estimate the covariance function of nD{LC
n
( . )−L0 ( . ), b

@
n
−b0}. It suffices to

obtain a variance estimator for the linear functional

nD P t
0
w(t)d{LC

n
(t)−L

0
(t)}+nDbT (b@

n
−b
0
),

where w is a function with bounded total variation in [0, t] and b is a real vector.
Since L0 ( . ) is estimated at the parametric convergence rate, we may regard L{Xij}
(i=1, . . . , n; j=1, . . . , n

i
) and b as the parameters in (4). By parametric likelihood theory,

the asymptotic covariance matrix for estimators of these parameters can be estimated by
the inverse of the observed information matrix nI

n
, which is the negative Hessian matrix

of l
n
(L, b) evaluated at LC

n
{X
ij
} (i=1, . . . , n; j=1, . . . , n

i
) and b@

n
. Thus, the asymptotic

variance for nD ∆t
0
w(t)d{LC

n
(t)−L

0
(t)}+nDbT (b@

n
−b
0
) is equal to the asymptotic variance

of nD Wn
i=1
Wnij=1

w(X
ij
)LC
n
{X
ij
}+nDbT (b@

n
−b
0
), which can be estimated by

VC
n
= (W T, bT )I−1

n AWb B ,
where W is the vector of w(X

ij
) (i=1, . . . , n; j=1, . . . , n

i
).
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Let F(L, b) be a Hadamard differentiable functional, which is estimated by F(LC
n
, b@
n
).

By the functional delta-method (Andersen et al., 1993, § II.8), nD{F(LC
n
, b@
n
)−F(L0 , b0 )}

converges weakly to a zero-mean Gaussian process whose variance can be estimated
by VC

n
with (W , b) redefined as the gradients of F(LC

n
, b@
n
) with respect to L{X

ij
}

(i=1, . . . , n; j=1, . . . , n
i
) and b.

We may also use the profile likelihood method (Murphy & van der Vaart, 2000)
to estimate the covariance matrix of b@

n
. The estimator is the negative inverse of the

second-order numerical differences of the profile loglikelihood function at b@
n
. This

approach avoids inverting a potentially large matrix; however, it does not provide a
variance estimator for LC

n
( . ). Variance estimation for LC

n
( . ) is important for transformation

models because the prediction of event history may be more interesting than the estimation
of regression parameters for nonproportional hazards models.

3. S 

We generated a covariate Z1 from the Bernoulli distribution with success probability
0·5. Conditional on Z1 , we generated covariate Z2 as Z1+eI(|e|∏3), where e follows
the standard normal distribution. We simulated recurrent event times from the counting
process with cumulative intensity

L
Z
(t)=[{1+L(t)eb

1
Z
1
+b
2
Z
2
}r−1]/r, (5)

where L(t)=t and r=0·5 or 2. We also simulated recurrent event times from the model

L
Z
(t)= log[1+r{L(t)eb

1
Z
1
+b
2
Z
2
}]/r, (6)

where L(t)=t and r=0·5, 1 or 2. In both (5) and (6), we set b1=−1 and b2=0·2.
We simulated the censoring time C from the Un(1·5, 5) distribution and set t=3. We
considered n=100 or 200. In the first set of studies, the average numbers of events per
subject are 1·41 for r=0·5 and 4·38 for r=2; in the second set, the average numbers of
events per subject are 0·76, 1·05 and 1·32 for r=0·5, 1 and 2, respectively.
Table 1 summarises the results of these studies based on 1000 replicates. The proposed

estimators for b0 and L0 ( . ) are virtually unbiased, the variance estimators accurately reflect
the true variances, and the confidence intervals achieve proper coverages. It took less than
three hours on an IBM BladeCenter HS20 machine to complete all the simulation studies.
No convergence problem was encountered in any of the 10 000 simulated datasets,
although there is no theoretical guarantee of convergence to the global maximum.
To compare our approach with that of Chen et al. (2002), we conducted a series of

simulation studies with survival data. The cumulative hazard function for the survival
time is in the form of (6) with L(t)=3t, b1=−1 and b2=0·2. The censoring time is
exponential with a hazard rate chosen to yield a desired level of censoring under t=6.
The results for sample size 100 and 1000 replicates are shown in Table 2. The asymptotic
approximations appear to work well for both approaches. The Chen et al. estimators
are considerably less efficient than the proposed estimators especially when r is large
and censoring is low. Our algorithm always converged, whereas that of Chen et al. failed
to converge in about 2% of the simulated datasets.



632 D Z  D. Y. L

Table 1. Simulation studies for recurrent event data

n=100 n=200
Model Parameter Bias    Bias   

r=0·5 b1 −0·015 0·245 0·250 0·955 0·007 0·173 0·175 0·952
b2 0·005 0·109 0·111 0·959 −0·007 0·075 0·077 0·950
L(t/4) −0·004 0·132 0·136 0·961 −0·005 0·095 0·095 0·958
L(t/2) −0·007 0·219 0·229 0·966 −0·004 0·161 0·162 0·949
L(t) 0·000 0·407 0·423 0·954 −0·009 0·299 0·297 0·950

r=2·0 b1 −0·006 0·087 0·086 0·955 −0·002 0·060 0·060 0·955
b2 0·000 0·033 0·032 0·945 0·000 0·023 0·022 0·952
L(t/4) −0·005 0·073 0·071 0·943 −0·002 0·050 0·050 0·947
L(t/2) −0·003 0·084 0·084 0·956 −0·001 0·058 0·059 0·955
L(t) −0·003 0·113 0·110 0·946 0·000 0·079 0·077 0·945

r=0·5 b1 −0·007 0·268 0·277 0·961 −0·006 0·190 0·195 0·951
b2 0·007 0·123 0·125 0·961 −0·001 0·086 0·087 0·945
L(t/4) −0·009 0·141 0·143 0·961 −0·004 0·101 0·101 0·958
L(t/2) −0·001 0·249 0·253 0·955 −0·004 0·175 0·179 0·962
L(t) −0·014 0·471 0·497 0·966 0·010 0·350 0·351 0·950

r=1 b1 −0·008 0·355 0·355 0·955 0·003 0·253 0·249 0·943
b2 0·005 0·161 0·161 0·948 −0·002 0·112 0·112 0·955
L(t/4) −0·007 0·177 0·175 0·948 −0·001 0·125 0·124 0·947
L(t/2) −0·004 0·338 0·331 0·952 0·002 0·237 0·234 0·950
L(t) 0·023 0·710 0·682 0·941 0·009 0·483 0·477 0·940

r=2 b1 0·006 0·467 0·479 0·961 0·003 0·325 0·335 0·949
b2 −0·001 0·227 0·217 0·952 −0·008 0·151 0·151 0·946
L(t/4) −0·011 0·230 0·229 0·952 −0·002 0·171 0·163 0·945
L(t/2) 0·005 0·459 0·462 0·955 0·007 0·341 0·326 0·947
L(t) 0·044 0·975 0·977 0·950 0·026 0·707 0·683 0·951

, standard error; , mean of standard error estimator; , coverage probability of 95%
confidence interval.

Table 2. Simulation studies for survival data

Proposed estimator Chen et al. estimator
Censoring Model Parameter Bias    Bias   

25% r=0·5 b1 −0·026 0·378 0·358 0·937 −0·035 0·393 0·366 0·947
b2 0·005 0·165 0·159 0·949 0·006 0·172 0·164 0·940

r=1 b1 −0·022 0·440 0·420 0·941 −0·032 0·482 0·446 0·941
b2 0·005 0·193 0·187 0·956 0·007 0·210 0·203 0·949

r=2 b1 −0·023 0·545 0·523 0·944 −0·029 0·655 0·602 0·949
b2 0·005 0·242 0·234 0·939 0·005 0·286 0·279 0·943

50% r=0·5 b1 −0·029 0·437 0·413 0·951 −0·051 0·444 0·410 0·945
b2 0·006 0·187 0·183 0·951 0·006 0·191 0·184 0·947

r=1 b1 −0·031 0·488 0·463 0·944 −0·054 0·512 0·469 0·940
b2 0·007 0·213 0·207 0·955 0·008 0·225 0·214 0·948

r=2 b1 −0·025 0·579 0·555 0·942 −0·045 0·644 0·588 0·938
b2 0·006 0·257 0·249 0·956 0·009 0·284 0·274 0·949

, standard error; , mean of standard error estimator; , coverage probability of 95% confidence interval.
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4. E

We first consider survival data from the Veterans’ Administration lung cancer trial
(Prentice, 1973). The subset of data for the 97 patients without prior therapy has been
analysed by many authors, including Bennett (1983), Pettitt (1984), Cheng et al. (1995),
Murphy et al. (1997) and Chen et al. (2002). Chen et al. related the survival time to
the performance status and tumour type through linear transformation models with
G(x)= log(1+rx)/r, where r=0, 1, 1·5 and 2. For comparison, we fitted the same models
and display the results in Table 3. These results differ appreciably from those of Chen
et al. (2002). For r=0, our numbers agree with the standard software output. For r=1,
our results are similar to those of Murphy et al. (1997).

Table 3. Estimates of regression parameters for the Veteran’s Administration lung
cancer data, with standard error estimates shown in parentheses

r=0 r=1 r=1·5 r=2

Performance status −0·024 (0·006) −0·053 (0·010) −0·063 (0·012) −0·072 (0·014)
Adeno vs large tumour 0·851 (0·348) 1·314 (0·554) 1·497 (0·636) 1·679 (0·712)
Small vs large tumour 0·547 (0·321) 1·383 (0·524) 1·605 (0·596) 1·814 (0·661)
Squam vs large tumour −0·215 (0·347) −0·181 (0·588) −0·075 (0·675) 0·045 (0·749)

To determine which model best fits the data, we plot in Fig. 2 the observed values of the
loglikelihood functions for the Box–Cox and logarithmic transformations. The likelihood
is maximised at r=0·83. Since the likelihood at r=1 is only slightly smaller, one would
choose r=1 to obtain the familiar proportional odds model. The prediction of the
subject-specific survival experience under the proportional odds model is illustrated in
Fig. 3.
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Fig. 2. The observed values of the loglikelihood functions for the
lung cancer data: (a) pertains to the Box–Cox transformations
G(x)={(1+x)r−1}/r; (b) pertains to the logarithmic transform-

ations G(x)= log(1+rx)/r.
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Fig. 3. Estimated survival curves for the lung cancer patients:
the upper three curves pertain to the point estimate and 95%
confidence limits for a patient with a large tumour and perform-
ance status of 80, and the lower three curves to those of a patient

with a small tumour and performance status of 40.

As a second example, we consider the recurrent bladder tumour data from another
Veterans’ Administration study (Byar, 1980), which has been examined extensively in the
literature of multivariate failure time data, including Wei et al. (1989) and Therneau &
Grambsch (2000). The data contain information about tumour recurrence times, in
months, for 86 patients who were on the placebo or thiotepa. Figure 4 displays the log-
likelihood functions for the two classes of transformations, while Table 4 shows the
estimates of regression parameters for selected transformations. The results under r=0
are identical to those obtained from standard software. Figure 4 seems to suggest a model
with a large value of r. It would suffice to choose r=2 or even r=1.
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Fig. 4. The observed values of the loglikelihood functions for the
bladder tumour data: (a) pertains to the Box–Cox transformations
G(x)={(1+x)r−1}/r; (b) pertains to the logarithmic transform-

ations G(x)= log(1+rx)/r.
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Table 4. Estimates of regression parameters for the bladder tumour data,
with standard error estimates shown in parentheses

r=2 r=1 r=0·5 r=1

Treatment −0·369 (0·136) −0·524 (0·187) −0·701 (0·244) −0·974 (0·358)
No. tumours 0·141 (0·030) 0·201 (0·044) 0·269 (0·061) 0·352 (0·101)
Tumour size −0·035 (0·048) −0·040 (0·065) −0·041 (0·084) −0·013 (0·123)

Suppose that we are interested in the conditional survival function of the second
recurrence time X2 given the first recurrence time x1 for subjects with covariate values z.
This probability function can be estimated by exp[G{LC

n
(x1 )eb

@T
n
z}−G{LC

n
(t)eb@T
n
z}] for any

t>x1 . Figure 5 shows the estimated curves for two sets of covariate values under x1=20
and r=2.
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Fig. 5. Estimated conditional survival curves for the bladder
tumour patients: the upper three curves correspond to the point
estimate and 95% confidence limits for a thiotepa patient with
one initial tumour, and the lower three curves to those of a

placebo patient with four initial tumours.

5. R

In the special case of linear transformation models for survival data, there exist a number
of estimators based on ad hoc estimating equations. We may construct martingale-based
estimating functions similar to those of Chen et al. (2002) for the general class of models
given in (2). The estimators developed in the present paper have the advantage of being
asymptotically efficient. Another attraction of this approach is that likelihood-based model
selection methods, such as the Akaike (1985) information criterion, , can be used.
Figures 2 and 4 are special examples of .
For recurrent events, intensity models impose a Poisson structure. This assumption may

be relaxed by characterising the dependence of recurrent event times through appropriate
time-varying covariates. Another approach, which we are currently pursuing, is to
incorporate subject-specific random effects into the model. We are also exploring
methods for handling clustered failure times, interval censoring and missing/mismeasured
covariates.
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For recurrent events with time-invariate covariates, Lin et al. (2001) studied the
following class of transformation models for the mean frequency functions:

E{N*(t)|Z}=g{m
0
(t)ebTZ},

where g ( . ) is a known transformation, and m0 (t) is an arbitrary increasing function. The
estimators they proposed are inefficient. An attractive feature of this modelling approach
is that the dependence structure of recurrent event times is unspecified. However, such
models cannot be used for the kind of prediction shown in Fig. 5.
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A

Asymptotic properties

Let d .d
l2[0,t]

denote the supremum norm in [0, t], and dwd
BV[0,t]

the total variation of w(t) in
[0, t]. Also, define Q={w(t) : dwd

BV[0,t]
∏ 1}. Then LC

n
(t) can be regarded as a bounded linear

functional in l2(Q), and {LC
n
( . )−L0 ( . ), b

@
n
−b0} a random element in the metric space l2 (Q)×Rp,

where p is the dimension of b0 . We claim the following results: dL
C
n
(t)−L0 (t)dl2[0,t]� 0 and

|b@
n
−b0 |� 0 almost surely; the random element n1/2{L

C
n
( . )−L0 ( . ), b

@
n
−b0} converges weakly

to a zero-mean Gaussian process in the metric space l2 (Q)×Rp ; and the limiting variance of
n1/2 (b@

n
−b0 ) attains the semiparametric efficiency bound (Bickel et al., 1993, Ch. 3).

We shall establish the claims under the following conditions, although the results are expected
to hold generally.

Condition 1. The function L0 (t) is strictly increasing and continuously differentiable, and b0 lies
in the interior of a compact set C.

Condition 2. With probability one, Z( . ) has bounded total variation in [0, t]. In addition, if
there exists a vector c and a deterministic function c0 (t) such that c0 (t)+cTZ(t)=0 with probability
one, then c=0 and c0 (t)=0.

Condition 3. With probability one, there exists a positive constant d such that pr(C�t|Z)>d
and pr(Y9 *(t)=1|Z)>d, where Y9 *(t)=1 means that Y *(t)=1 for all tµ[0, t].

Condition 4. For any positive c0 , lim supx�2 {G(c0x)}−1 log{x supy∏x G∞(y)}=0. This condition
is satisfied by G(x)={(1+x)r−1}/r with r>0.

Our proofs follow essentially the same steps as Murphy (1994, 1995), Parner (1998) and
Scharfstein et al. (1998), although the technical details are different. We outline below our
arguments. The complete proofs are given in a technical report posted on our website.

Consistency. The proof consists of three steps: first we show that the nonparametric maximum
likelihood estimators exist or that the jump sizes of LC

n
are finite; next we show that LC

n
is bounded

almost surely so that, along a subsequence, LC
n
�L* weakly and b@

n
�b*; finally we show that

L*=L0 and b*=b0 .
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Step 1. By Condition 2, sup
bµC,tµ[0,t]

|bTZ(t)|∏M almost surely, where M is a constant. Thus,
the ith term in (4) is bounded above by

n
i
G{L(t9C

i
)eM}C log{∆t0Yi (t)dL(t)eM supy∏∆t0Yi(t)dL(t)eM G∞(y)}G{∆t

0
Y
i
(t)dL(t)e−M}

−n−1
i D .

Under Condition 4, the above quantity diverges to −2 if L{X
ij
} is infinite for some X

ij
.

Step 2. Since l
n
(L, b) is maximised at (LC

n
, b@
n
),

n−1{l
n
(j
n
L9 n , b
@
n
)− l
n
(L9 n , b
@
n
)}�0, (A1)

where j
n
=LC
n
(t) and L9 n=L

C
n
/j
n
. Suppose that j

n
�2 for some subsequence. Algebraic

manipulations of (A1), together with the boundedness of L9 n , yield

n−1 ∑
n

i=1
P t9Ci
0

dN
i
(t) log j

n
sup

y∏j
n
eM
G∞(y)−n−1 ∑

n

i=1
I{Y9 *i (t)=1, Ci�t}G(e−Mj

n
)�O

p
(1).

Condition 4 implies that log j
n
sup
y∏j
n
eM
G∞(y)∏eG(j

n
e−M ) for any e when n is sufficiently large.

Thus,

Cn−1e ∑n
i=1
N
i
(t)−n−1 ∑

n

i=1
I{Y9 *i (t)=1, Ci�t}DG(jne−M )>−2.

The left-hand side diverges to −2 if we choose an e such that eE{N(t)}∏pr{Y9 *(t)=1, C�t}/2.
This is a contradiction. Thus, sup

n
L@
n
(t)<2 almost surely. It then follows from Helly’s selection

theorem that there exists a convergent subsequence such that LC
n
�L* and b@

n
�b*.

Step 3. By setting the derivatives of l
n
(L, b) with respect to the L{X

ij
} to zero, we obtain

LC
n
(t)=n−1 P t

0

Wn
i=1
dN
i
(s)

|w
n
(s; LC
n
, b@
n
)|
, (A2)

where

w
n
(s; LC
n
, b@
n
)=n−1 ∑

n

k=1
G∞qP t

0
Y
k
(t)eb@T
n
Z
k
(t)dLC
n
(t)r eb@TnZk(s)Yk (s)

−n−1 ∑
n

k=1
P t
0

I(t�s)Y
k
(s)eb@TZ

k
(s)G◊{∆t

0
Y
k
(u)eb@TZ

k
(u)dLC
n
(u)}

G∞{∆t
0
Y
k
(u)eb@TZ

k
(u)dLC
n
(u)}

dN
k
(t).

By the Glivenko–Cantelli theorem, w
n
(t; LC
n
, b@
n
) converges uniformly to a continuously differentiable

function w*(t; L*, b*). The quantity min
tµ[0,t]

|w*(t; L*, b*)| must be strictly positive; otherwise, the
continuous differentiability of w* implies that

ECP t
0

dN(t)

|w*(t; L*, b*)|D=2,
which contradicts the boundedness of the limit of (A2). Thus, |w

n
( . ; LC
n
, b@
n
)| is strictly positive for

large n.
Define

LB
n
(t)=n−1 P t

0

Wn
i=1
dN
i
(s)

|w
n
(s; L
0
, b
0
)|
. (A3)

By the Glivenko–Cantelli theorem, LB
n
converges to L0 uniformly. It follows from (A2), (A3) and

the strict positivity of |w
n
| that LC

n
(t) is absolutely continuous with respect to LB

n
(t) and that dLC

n
/dLB
n

converges to a bounded measurable function. Clearly, n−1{l
n
(LC
n
, b@
n
)− l
n
(LB
n
, b0 )}�0. By taking
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the limits on both sides, we conclude that the Kullback–Leibler information between the density
indexed by (L*, b*) and the true density is negative. Thus, with probability one,

P t
0
logCY (t)l*(t)eb*TZ(t)G∞qP t

0
Y (s)eb*TZ(s)dL*(s)rD dN(t)−GqP t

0
Y (t)eb*TZ(t)dL(t)r

=P t
0
logCY (t)l0 (t)ebT0Z(t)G∞qP t

0
Y (s)ebT

0
Z(s)dL

0
(s)rD dN(t)−GqP t

0
Y (t)ebT

0
Z(t)dL

0
(t)r .

This equality holds when Y9 *(t)=1, N*(t)=0 and C�t, and also holds when Y9 *(t)=1,
N*(t−)=0, N*(t)=1 and C�t. By taking the difference between the equalities in these two cases
and applying Condition 2, we obtain b*=b0 and L*=L0 . The convergence of L

C
n
(t)�L0 (t) can

be strengthened to uniform convergence in tµ[0, t] by the continuity of L0 .

Weak convergence. The proof entails the verification of the four conditions in Theorem 3.3.1 of
van der Vaart & Wellner (1996). The random maps Y

n
and Y in the theorem are defined as follows:

for any w(t)µQ and bµRp with |b|∏1,

Y
n
(L, b)[w, b]=P

nqlLCP w(t)dLD+ lTbbr , Y(L, b)[w, b]=PqlLCP w(t)dLD+ lTbbr ,
where P

n
is the empirical measure, P is the probability measure, and l

L
[∆w(t)dL]+ lT

b
b is the

score function along the path (L+e ∆w(t)dL, b+eb). We can show that the score functions for L
and b are P-Donsker so that the first two conditions of the theorem hold. Clearly, Y(L0 , b0 )=
Y
n
(LC
n
, b@
n
)=0. Thus, it remains to show that the Fréchet derivative of Y at (L0 , b0 ), denoted by Ẏ,

is invertible. By direct calculations,

Ẏ(L−L
0
, b−b

0
)[w, b]=P Q1 (w, b)d(L−L0 )+Q2 (w, b)T (b−b

0
),

where (Q1 , Q2 ) is a linear operator mapping Q×Rp into BV [0, t]×Rp and BV [0, t] is the space
of functions with bounded total variation. In addition, (Q1 , Q2 ) is the sum of an invertible operator
and a compact operator. Therefore, Ẏ is invertible if (Q1 , Q2 ) is one-to-one. By the definition of Ẏ,
(Q1[w, b], Q2[w, b])=0 implies that the score function along the path (L0+e ∆w(t)dL

0
, b
0
+eb) is

zero or equivalently that the information along this submodel is zero. Using Condition 2, we can
further show that b=0 and w=0. Hence, n1/2 (LC

n
−L0 , b

@
n
−b0 ) converges weakly to a zero-mean

Gaussian process in l2 (Q)×Rp.

Asymptotic eYciency. The above proof implies that b@
n
is an asymptotically linear estimator

for b0 and its influence function lies on the linear space spanned by the score functions. Thus, it
follows from Proposition 1 of Bickel et al. (1993, p. 65) that b@

n
is asymptotically efficient in the

semiparametric sense.

Consistency of variance estimators. This can be justified along the lines of Parner (1998). The
key is to show that the linear operator constructed from the negative Hessian matrix of the
loglikelihood function approximates the information operator.

Relaxing Condition 4. Condition 4 rules out the logarithmic transformations; however, this
condition is only used in the first two steps of the consistency proof. Thus, if we can verify those
two steps for G(x)=r log(1+rx), where r and r are positive constants, then all the asymptotic
results will hold for such transformations. The first step can be directly checked by using the explicit
form of G(x). To verify the second step, it suffices to show that LC

n
(t)<2. By equation (A2) and

the fact that G◊<0,

1

nLC
n
{X
ij
}
�n−1rr ∑

n

k=1
P t
0

I(t�X
ij
)Y
k
(X
ij
)e−M

1+reM ∆t
0
Y
k
(s)dLC

n
(s)
dN
k
(t).
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Thus, it follows from (A1) that

−n−1 ∑
n

i=1
P t
0
logqn−1 ∑n

k=1
P t
0

I(t�s)Y
k
(s)e−M

1+reM ∆t
0
Y
k
(u)dLC

n
(u)
dN
k
(t)r dNi (s)

−n−1r ∑
n

i=1
logq1+re−M P t

0
Y
i
(s)dLC

n
(s)r>−2. (A4)

For simplicity, assume that Y ( . ) is nonincreasing. We partition the time axis at

s0=t>s1>s2> . . .>sQ=0.

Then the left-hand side of (A4) can be bounded by

−(2n)−1r ∑
n

i=1
I{Y
i
(s
0
)=1} log{1+re−MLC

n
(t)}

+Cn−1 ∑n
i=1
I{Y
i
(s
0
)=0, Y

i
(s
1
)=1}N

i
(t) log{1+reMLC

n
(t)}

−(2n)−1r ∑
n

i=1
I{Y
i
(s
0
=1)} log{1+re−MLC

n
(t)}D

+ ∑
Q−1

q=1
Cn−1 ∑n

i=1
I{Y
i
(s
q
)=0, Y

i
(s
q+1
)=1}N

i
(t) log{1+reMLC

n
(s
q
)}

−n−1r ∑
n

i=1
I{Y
i
(s
q−1
)=0, Y

i
(s
q
)=1} log{1+re−MLC

n
(s
q
)}D+Op (1). (A5)

With the choice of (s0 , s1 , . . . , sQ ) such that

n−1 ∑
n

i=1
I{Y
i
(s
0
)=0, Y

i
(s
1
)=1}N

i
(t)< (2n)−1r ∑

n

i=1
I{Y
i
(s
0
=1)},

n−1 ∑
n

i=1
I{Y
i
(s
q
)=0, Y

i
(s
q+1
)=1}N

i
(t)<n−1r ∑

n

i=1
I{Y
i
(s
q−1
)=0, Y

i
(s
q
)=1},

the first term in (A5) diverges to −2 when LC
n
(t)�2 while the second and third terms do not

diverge. Thus, the left-hand side of (A4) goes to −2, which is a contradiction. Such a sequence
can be constructed along the lines of Murphy (1994).
It can be shown that the desired asymptotic results hold if Condition 4 is replaced by the
following condition: for any sequence 0<x1< . . .<xm∏y,

a
m

l=1
{(1+x

l
)G∞(x

l
)} exp{−G(y)}∏mm

0
(1+y)−a

0
,

where m0 and a0 are positive constants. Both the class of Box–Cox transformations and the class
of logarithmic transformations satisfy the above inequality.
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