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SUMMARY

We propose a semiparametric additive rate model for modelling recurrent events in the pres-

ence of the terminal event. The dependence between recurrent events and terminal event is fully

nonparametric and is due to some latent process in the baseline rate function. Additionally, a

general transformation model is used to model the terminal event given covariates. We construct

an estimating equation for parameter estimation. The asymptotic distributions of the proposed

estimators are derived. Simulation studies demonstrate that the proposed inference procedure

performs well in realistic settings. Application to a medical study is presented.

Some key words: Additive rate model; Estimating equation; Recurrent event; Terminal event; Transformation models.

1. INTRODUCTION

Recurrent events are common in medical practice or epidemiologic studies when each sub-

ject experiences a particular event repeatedly over time. Examples of recurrent events include

multiple infection episodes, tumor recurrences, and repeated drug use. Interest of recurrent event
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2 DONGLIN ZENG AND JIANWEN CAI

analysis usually focuses on identifying risk factors which may elevate or decrease the frequencies

of recurrent events.

In most practices, recurrent event times are subject to censoring. One typical censoring is

caused by the termination of the follow-up due to the subject’s death. Such terminating censor-

ship is very likely informative about the recurrent events so it should be accounted for in the

analysis. In the literature, most of the existing methods on recurrent event analysis (e.g., Ander-

sen and Gill, 1982; Prentice, Williams and Peterson, 1981; Wei, Lin and Weissfeld, 1989) require

non-informative censorship and may yield misleading results when recurrent event times are ac-

tually informatively censored. Recently, jointly modelling both recurrent events and terminal

event through shared frailty or random-effects have been developed. Such joint models attribute

the association between the two types of events to some latent effects, which are included in

the regression models either as frailty or random effects. For example, Wang, Qin and Chiang

(2001) and Huang and Wang (2004) studied a shared frailty model with proportional intensity

and proportional hazards assumptions for recurrent events and the terminal event, respectively.

The model allows an unknown distribution for the shared frailty. Liu, Wolfe and Huang (2004)

considered the same model but assumed a gamma frailty distribution. In a recent paper, Zeng

and Lin (2009) studied the general transformation models in this joint modelling approach. For

all these joint modelling approaches, one strong assumption is that the dependence between the

recurrent events and the terminal event is modelled via an explicit and parametric latent effect,

which may not be true in practice. The computation involved in the joint modelling approach is

usually intensive.

Compared to the intensity models used in the joint modelling approaches mentioned above,

rate models have also been popular in analyzing recurrent events because the regression coeffi-

cients reflect the covariate effects on the frequency of the recurrent events which is practically
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Recurrent Events with Informative Terminal Event 3

more intuitive. Examples include the proportional rate model or its transformed form as proposed

by Pepe and Cai (1993), Lawless and Nadeau (1995) and Lin, Wei, Yang and Ying (2000). All

these models assume the effect of the covariates to be multiplicative and the non-informative

censoring. Work on extension to incorporating the informative terminal event is limited: Cook

and Lawless (1997) studied the mean and rate of the recurrent events among survivors at certain

time points. Ghosh and Lin (2000) proposed an nonparametric estimator for the rate function of

the recurrent event by incorporating the survival probabilities of the terminal event. They fur-

ther considered the proportional rate model with covariates in Ghosh and Lin (2002), where the

inverse probability weighted estimating equation was used to obtain the consistent estimators

for the regression coefficients. An expanded version of the same type of the inverse weighted

estimating equation was adopted to improve the efficiency in Miloslavsky et al (2004) for the

proportional rate model.

A useful and important alternative to the proportional rate model is the additive rate model,

where the true underlying covariate effects may add to, rather than multiply, the baseline event

rate. As pointed out in Schaubel et al (2006), in many practical applications, an additive model

may indeed be more appropriate, particularly with respect to continuous covariates. In situations

where the additive and multiplicative models fit the data equally well, the additive model may

be preferred due to the interpretation of the regression parameter. For the additive rate model as

given in Lin and Ying (1994), no work has been done to incorporate the informative terminal

event.

In this paper, we focus on the additive rate model for recurrent events. Only covariates of in-

terest are parametrically modelled as an additive component in this model. In our additive model,

the baseline rate function is nonparametric and depends on some latent random variables which
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4 DONGLIN ZENG AND JIANWEN CAI

are associated with the terminal event. However, such an association is fully nonparametric. A

general transformation model (Zeng and Lin, 2006) is used for modelling terminal event.

2. MODELS AND INFERENCE

2·1. Models

Let N(t) denote the counting process associated with recurrent event and letT denote the

terminal event time. The covariates of interest are denoted byX. For the terminal event timeT ,

we assume the following linear transformation model

Λ(t|X) = G(e−XT βΛ(t)), (1)

whereΛ(t|X) is the conditional hazard function ofT givenX, Λ(·) is an unknown and monotone

transformation withΛ(0) = 0 andG is a given transformation function. The usual proportional

hazards model and the proportional odds model are both special cases of the linear transformation

model withG(x) = x andG(x) = log(1 + x). Note that model (1) is equivalent to

log Λ(T ) = XT β + ε,

where ε is an independent error following a distribution with cumulative density function

1− e−G(eε). For the recurrent event process, we letν be subject-specific latent effect which

is independent ofX and may be associated with the terminal event residualε. For any timet,

givenν andT > t, we assume that the rate of the recurrent event at timet is independent ofT .

Furthermore, we model this rate function of the recurrent event process via an additive model by

assuming

E[dN(t)|X, T > t, ν] = I(T > t)
{
dR(t, ν) + XT γdt

}
, (2)
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Recurrent Events with Informative Terminal Event 5

whereR(t, ν) is the subject-specific baseline cumulative rate function and assumed to be un-

known. Moreover,R(0, ν) = 0 andR(t, ν) is an increasing function oft for t ≤ T . Particularly,

the parameterγ represents the rate difference for one unit change inX for a given subject-

specific latent effectν. The latent effectν explains the dependence between the recurrent event

process and the terminal event.

2·2. Inference Procedure

Suppose that we observed data fromn i.i.d subjects subject to right censoring. We denote them

as

Yi = Ti ∧ Ci, ∆i = I(Ti ≤ Ci)

and(Ni(t), t ≤ Yi) for i = 1, ..., n, whereCi is censoring time for subjecti, Ti ∧ Ci is the min-

imum of Ti andCi, andI(Ti ≤ Ci) is the failure indicator. We assume that the right-censoring

is noninformative satisfying thatCi is independent ofν, Ni(t) andTi givenXi.

Our goal is to estimateβ andγ. First, we use the survival data(Yi, ∆i, Xi), i = 1, ..., n, to

estimate the parameters in model (1). Particularly, the nonparametric maximum likelihood esti-

mation approach (Zeng and Lin, 2006) is used to derive the estimates forβ andΛ and we denote

the estimates aŝβ andΛ̂ respectively. That is,̂β andΛ̂ maximize

n∏

i=1

[{
Λ{Yi}e−XT

i βG′(Λ(Yi)e−XT
i β)

}∆i
exp

{
−G(Λ(Yi)e−XT

i β)
}]

,

whereΛ{t} denotes the jump size ofΛ at t. The details of computinĝβ andΛ̂ can be found in

Zeng and Lin (2006).

To estimateγ, sinceT can be censored, we may not be able to estimate the rate function given

T directly; instead, we need to consider the observed rate function given the observed end point
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6 DONGLIN ZENG AND JIANWEN CAI

Y . From model (2), we have

E[dN(t)|X, Y > t] = I(Y > t)
{
dE[R(t, ν)|X, Y > t] + XT γdt

}
.

SinceC is independent ofν andT givenX,

E[R(t, ν)|X,Y > t] = E[R(t, ν)|X,T > t] = E[R(t, ν)|X, ε > log Λ(t)−XT β].

Following the assumption that(ε, ν) are independent ofX, we obtain

E[dN(t)|X, Y > t] = I(Y > t)
{

dE[R(t, ν)|ε > s]
∣∣∣
s=log Λ(t)−XT β

+ XT γdt

}
. (3)

Thus, if definedH(t, s) asE[dR(t, ν)|ε > s], then it is necessary to be able to estimatedH(t, s)

using the observed data. Note that from the fact(ν, ε) is independent ofX andC, we have

E[dR(t, ν)|ε > s] =
E[dR(t, ν)I(ε > s)]

E[I(ε > s)]
=

E[dR(t, ν)I(Λ(Y )e−XT β > es)g(X)]
E[I(Λ(Y )e−XT β > es)g(X)]

for any integrable functiong(X). Particularly, we chooseg(X) to be of the formI(XT β ≥

log Λ(t)− s) so that bothΛ(Y )e−XT β > es andXT β ≥ log Λ(t)− s impliesY > t. Then,

E[dR(t, ν)|ε > s] =
E[(dN(t)−XT γdt)I(Λ(Y )e−XT β > es, XT β ≥ log Λ(t)− s)]

E[I(Λ(Y )e−XT β > es, XT β ≥ log Λ(t)− s)]
.

Hence, we can estimatedH(t, s) using the empirical observations as

dĤ(t, s) ≡
∑n

j=1(dNj(t)−XT
j γdt)I(Λ̂(Yj)e

−XT
j β̂ > es, XT

j β̂ ≥ log Λ̂(t)− s)
∑n

j=1 I(Λ̂(Yj)e
−XT

j β̂ > es, XT
j β̂ ≥ log Λ̂(t)− s)

.

From (3), this implies that the following term

I(Yi > t)
{
dNi(t)− dĤ(t, log Λ̂(t)−XT

i β̂)−XT
i γdt

}
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Recurrent Events with Informative Terminal Event 7

has mean approximating zero givenXi; equivalently, if define

dN i(t) =
∑n

j=1 dNj(t)I(Λ̂(Yj)e
−XT

j β̂ > Λ̂(t)e−XT
i β̂, XT

j β̂ ≥ XT
i β̂)

∑n
j=1 I(Λ̂(Yj)e

−XT
j β̂ > Λ̂(t)e−XT

i β̂, XT
j β̂ ≥ XT

i β̂)

and

Xi(t) =
∑n

j=1 XjI(Λ̂(Yj)e
−XT

j β̂ > Λ̂(t)e−XT
i β̂, XT

j β̂ ≥ XT
i β̂)

∑n
j=1 I(Λ̂(Yj)e

−XT
j β̂ > Λ̂(t)e−XT

i β̂, XT
j β̂ ≥ XT

i β̂)
,

then

I(Yi > t)
{
dNi(t)− dN i(t)− (Xi −Xi(t))T γdt

}

is approximately zero for givenXi.

Hence, to estimateγ, we propose the following estimating equation for inference:

n∑

i=1

∫
ω(t)I(Yi > t)(Xi −Xi(t))

{
dNi(t)− dN i(t)− (Xi −Xi(t))T γdt

}
= 0,

whereω(t) is any deterministic weight function. Equivalently, the estimator forγ, denoted aŝγ,

is given as

[
n∑

i=1

∫
I(Yi > t)ω(t)(Xi −Xi(t))⊗2dt

]−1 [
n∑

i=1

∫
I(Yi ≥ t)ω(t)(Xi −Xi(t))

{
dNi(t)− dN i(t)

}]
.

(4)

Note that there is some possibility that the denominator in the calculation ofdN i(t) andXi(t),

i.e.,

n∑

j=1

I(Λ̂(Yj)e
−XT

j β̂ > Λ̂(t)e−XT
i β̂, XT

j β̂ ≥ XT
i β̂),

could be zero. In this case, we define0/0 as zero so that the correspondingdN i(t) andXi(t) are

zeros.
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8 DONGLIN ZENG AND JIANWEN CAI

2·3. Extension to time-dependent covariates

Our model and inference method can be extended to incorporate external time-dependent co-

variatesX(t) in the above formulation. Particularly, whenX(t) is time-dependent, the transfor-

mation model (1) for the terminal event becomes

Λ(t|X) = G(
∫ t

0
e−X(s)T βdΛ(s)),

whereΛ(t|X) is the conditional hazard function ofT givenX. The above model is also equiva-

lent to

log
∫ T

0
e−X(s)T βdΛ(s) = ε,

whereε is independent ofX with cumulative density function1− exp{−G(eε)}. Thus, if we

re-definedN i(t) as

∑n
j=1 dNj(t)I(

∫ Yj

0 e−Xj(s)
T β̂dΛ̂(s) >

∫ t
0 e−Xi(s)

T β̂dΛ̂(s),
∫ t
0 e−Xj(s)

T β̂dΛ̂(s) ≤ ∫ t
0 e−Xi(s)

T β̂dΛ̂(s))
∑n

j=1 I(
∫ Yj

0 e−Xj(s)T β̂dΛ̂(s) >
∫ t
0 e−Xi(s)T β̂dΛ̂(s),

∫ t
0 e−Xj(s)T β̂dΛ̂(s) ≤ ∫ t

0 e−Xi(s)T β̂dΛ̂(s))

and redefineXi(t) as

∑n
j=1 Xj(t)I(

∫ Yj

0 e−Xj(s)
T β̂dΛ̂(s) >

∫ t
0 e−Xi(s)

T β̂dΛ̂(s),
∫ t
0 e−Xj(s)

T β̂dΛ̂(s) ≤ ∫ t
0 e−Xi(s)

T β̂dΛ̂(s))
∑n

j=1 I(
∫ Yj

0 e−Xj(s)T β̂dΛ̂(s) >
∫ t
0 e−Xi(s)T β̂dΛ̂(s),

∫ t
0 e−Xj(s)T β̂dΛ̂(s) ≤ ∫ t

0 e−Xi(s)T β̂dΛ̂(s))
,

then an estimator forγ is given similar to (4) as

[
n∑

i=1

∫
I(Yi > t)ω(t)(Xi(t)−Xi(t))⊗2dt

]−1 [
n∑

i=1

∫
I(Yi ≥ t)ω(t)(Xi(t)−Xi(t))

{
dNi(t)− dN i(t)

}]
.

3. ASYMPTOTIC RESULTS

We provide the asymptotic results for the estimators(β̂, Λ̂) andγ̂, assumingX and its effect

to be time-independent. The same results apply to the case whenX contains time-dependent
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Recurrent Events with Informative Terminal Event 9

components. We need the following assumptions.

(C.1) The true parameterβ0 belongs to a known compact set and the hazards functionΛ0(t) is

continuously differentiable and strictly increasing in[0, τ ], whereτ is the study duration and

assumed to be finite.

(C.2) CovariatesX are bounded and satisfy the following condition: ifα0 + αT
1 X = 0 with

probability one, thenα0 = 0 andα1 = 0.

(C.3) Transformation functionG(x) is three-times continuously differentiable and strictly in-

creasing. Moreover, there exists a positive constantρ0 such that

lim sup
x→∞

(1 + x)ρ0e−G(x) < ∞, lim sup
x→∞

(1 + x)1+ρ0G′(x)e−G(x) < ∞.

(C.4) There exists some positive constantδ0 such thatP (C ≥ τ |X) > δ0.

The conditions in both (C.1) and (C.4) are standard in the practice of survival analysis con-

text. Condition (C.2) is equivalent to saying that the design matrix[1, X] is full rank with some

positive probability. Condition (C.3) stipulates the tail behavior of the transformation func-

tion G(x). It is easy to check that transformationsG(x) = ρ−1 {(1 + x)ρ − 1} for ρ ≥ 0 and

G(x) = r−1 log(1 + rx) for r ≥ 0 satisfy this condition. The same condition is used in Zeng

and Lin (2006) for transformation models.

The first result concerns the asymptotic distribution of(β̂, Λ̂), which has been given in Zeng

and Lin (2006). We quote this result in the following theorem.

Theorem 1 (from Zeng and Lin, 2006). Under conditions (C.1)-(C.4),(β̂, Λ̂) are strongly con-

sistent in the sense

|β̂ − β0|+ sup
t∈[0,τ ]

|Λ̂(t)− Λ0(t)| →a.s. 0;
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10 DONGLIN ZENG AND JIANWEN CAI

moreover,n1/2(β̂ − β0, Λ̂− Λ0) converges in distribution to a tight Gaussian process in the

metric spaceRd × l∞[0, τ ], whered is the dimension ofβ0 andl∞[0, τ ] consists all the bounded

function in[0, τ ] equipped with the supreme norm.

Furthermore, according to Zeng and Lin (2006), we have the following asymptotic linear ex-

pansion forβ̂ andΛ̂:

n1/2(β̂ − β0) = GnSβ(Y, ∆, X;β0, Λ0) + op(1),

n1/2(Λ̂(t)− Λ0(t)) = GnSΛ(Y,∆, X, t; β0,Λ0) + op(1), (5)

whereSβ andSΛ are the respective influence function forβ̂ andΛ̂, Gn is the empirical process

defined asn1/2(Pn − P) with Pn being the empirical measure andP being its expectation,

andop(1) denotes the random element converging to zero in probability in the metric space of

Theorem 1. Moreover, using the consistent estimator of the information matrix forβ̂ andΛ̂ as

given in Zeng and Lin (2006), we can estimateSβ andSΛ consistently in the uniform sense of

(Y,∆, X) andt ∈ [0, τ ]; so we denote such estimators asŜβ andŜΛ respectively.

The following theorem gives the asymptotic distribution forγ̂.

Theorem 2. Under conditions (C.1)-(C.4),

n1/2(γ̂ − γ0) = GnSγ(N, Y,∆, X; β0, γ0, Λ0) + op(1),

whereSγ is the mean-zero influence function forγ̂ and is given in the appendix. As the result,

n1/2(γ̂ − γ0) converges in distribution to a mean-zero Gaussian distribution with varianceΣγ =

V ar(Sγ).

We need to estimate the asymptotic covariance ofγ̂. However, sinceSγ is complicated and

involves the Hadamard derivatives in the metric space of Theorem 1, direct estimation ofSγ is not
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Recurrent Events with Informative Terminal Event 11

feasible. Therefore, we propose the following Monte-Carlo method: from the proof of Theorem

2, we note that in the expression (4),γ̂’s variation only comes from the termNi(t)−N i(t) and

the variation in the empirical summations in the numerator and denominator ofN i(t), as well as

the plug-in estimator(β̂, Λ̂). Therefore, we wish to use the Monte-Carlo method to capture all

these variations.

Specifically, we generaten i.i.d random variablesZ1, ...,Zn from the standard normal distri-

bution. Then the contribution tôγ’s variation due toNi(t)−N i(t) in expression (4) is equivalent

to the variation of the following function of(Z1, ...,Zn),

Ω1 =

[
n∑

i=1

∫
I(Yi > t)ω(t)(Xi −Xi(t))⊗2dt

]−1

×

[
n∑

i=1

Zi

∫
I(Yi ≥ t)ω(t)(Xi −Xi(t))

{
dNi(t)− dN i(t)

}]
,

given the observed data. The contribution due to the numerator and denominator ofN i(t) is

equivalent to

Ω2 =

[
n∑

i=1

∫
I(Yi > t)ω(t)(Xi −Xi(t))⊗2dt

]−1 [
n∑

i=1

∫
I(Yi ≥ t)ω(t)(Xi −Xi(t)) ×



−

∑n
j=1Zj(dNj(t)−XT

j γ̂dt)I(Λ̂(Yj)e
−XT

j β̂ > Λ̂(t)e−XT
i β̂, XT

j β̂ ≥ XT
i β̂)

∑n
j=1 I(Λ̂(Yj)e

−XT
j β̂ > Λ̂(t)e−XT

i β̂, XT
j β̂ ≥ XT

i β̂)

+
∑n

j=1(dNj(t)−XT
j γ̂dt)I(Λ̂(Yj)e

−XT
j β̂ > Λ̂(t)e−XT

i β̂, XT
j β̂ ≥ XT

i β̂)
(∑n

j=1 I(Λ̂(Yj)e
−XT

j β̂ > Λ̂(t)e−XT
i β̂, XT

j β̂ ≥ XT
i β̂)

)2




n∑

j=1

ZjI(Λ̂(Yj)e
−XT

j β̂ > Λ̂(t)e−XT
i β̂, XT

j β̂ ≥ XT
i β̂)









 .
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Finally, to account for the variation in estimatingβ andΛ, we generate

β̃ = β̂ +
1
n

n∑

i=1

ZiŜβ(Yi, ∆i, Xi), Λ̃(t) = Λ̂(t) +
1
n

n∑

i=1

ZiŜΛ(Yi, ∆i, Xi, t).

We then obtain

Ω3 =

[
n∑

i=1

∫
I(Yi > t)ω(t)(Xi −Xi(t))⊗2dt

]−1

×
[

n∑

i=1

∫
I(Yi ≥ t)ω(t)(Xi −Xi(t))

{
dNi(t)− dÑi(t)

}]
,

whereÑi(t) is defined the same way asN i(t) except that(β̂, Λ̂) is replaced with(β̃, Λ̃). Thus,

intuitively, the pure variation due to(β̂, Λ̂) is reflected inΩ3 − γ̂.

We combine all these together and obtain one statistic

γ̃ = Ω1 + Ω2 + Ω3.

We repeat such Monte-Carlo method a number of times. The sample variation of these generated

statistics{γ̃} is considered as an estimator for the asymptotic covariance ofγ̂.

The following theorem justifies the validity of the above Monte-Carlo method, whose proof is

given in the appendix.

Theorem 3. Let EZ denote the conditional expectation with respect toZ1, ...,Zn given the

observed data. Then

EZ
[
(γ̃ − γ̂)⊗2

]
→p Σγ .

The proof of Theorem 2 utilizes the theory of empirical process and Theorem 1. Particularly,

we expandn1/2(γ̂ − γ0) linearly as the summation of independent components. The proof of

Theorem 3 is in the same spirit as of Theorem 2. All the details are given in the appendix.
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4. PARTLY L INEAR ADDITIVE RISK MODEL

In this section, we consider an even more general model for the recurrent events called partly

parametric additive risk model. In this model, we allow some covariates to have time-dependent

effects but other covariates to have linear effects. Specifically, letW andZ denote those covari-

ates whose effects are time-dependent and linear respectively andX = (W,Z). Then a partly

linear additive risk model for the recurrent events assumes

E[dN(t)|X,T > t, ν] = I(T > t)
{
dR(t, ν) + W T α(t)dt + ZT θdt

}

where the parameterα(t) is an unknown function oft. Such a model is similar to the partly

parametric additive model proposed in McKeague and Sasieni (1994) but we allow the baseline

function to depend on an unknown latent effect which is also associated with the terminal event

T .

We can apply the same idea as in Section 2 to estimateα(t) and θ. Particularly, a similar

equation to (3) holds:

E[dN(t)|X,Y > t] = I(Y > t)
{
dH(t, log Λ(t)−XT β) + W T α(t)dt + ZT θdt

}
.

Again,dH(t, s) can be estimated using the empirical observations as

dĤ(t, s) ≡
∑n

j=1(dNj(t)−W T
j α(t)dt− ZT

j θdt)I(Λ̂(Yj)e
−XT

j β̂ > es, XT
j β̂ ≥ log Λ̂(t)− s)

∑n
j=1 I(Λ̂(Yj)e

−XT
j β̂ > es, XT

j β̂ ≥ log Λ̂(t)− s)
.

Therefore, this implies that

I(Yi > t)
{
dNi(t)− dĤ(t, log Λ̂(t)−XT

i β̂)−W T
i α(t)dt− ZT

i θdt
}
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has mean approximating zero givenXi. If defineN i(t), W i(t) andZi(t) similarly as before, we

conclude that

I(Yi > t)
{
dNi(t)− dN i(t)− (Wi −W i(t))T α(t)dt− (Zi − Zi(t))T θdt

}

is approximately zero for givenXi.

Hence, we propose the following estimating equations to estimateα(t0) for anyt0 andθ:

n∑

i=1

∫
Kan(t− t0)I(Yi > t)(Wi −W i(t))

{
dNi(t)− dN i(t)− (Wi −W i(t))T α(t0)dt

−(Zi − Zi(t))T θdt
}

= 0, (6)

and

n∑

i=1

∫
I(Yi > t)(Zi − Zi(t))

{
dNi(t)− dN i(t)− (Wi −W i(t))T α(t)dt− (Zi − Zi(t))T θdt

}
= 0,

(7)

whereKan(t) = a−1
n K(t/an) with K(·) being a symmetric kernel function andan being a band-

width. Solving (6) yields

α̂(t0; θ) = ΣWW (t0)−1 {ΣWN (t0)− ΣWZ(t0)θ} ,

where

ΣWW (t0) =
n∑

i=1

∫
Kan(t− t0)I(Yi > t)(Wi −W i(t))⊗2dt,

ΣWN (t0) =
n∑

i=1

∫
Kan(t− t0)I(Yi ≥ t)(Wi −W i(t))

{
dNi(t)− dN i(t)

}
,
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and

ΣWZ(t0) =
n∑

i=1

∫
Kan(t− t0)I(Yi ≥ t)(Wi −W i(t))(Zi − Zi(t))T dt.

After substituting this into equation (7), we obtain that the estimator forθ is given as

θ̂ =

[
n∑

i=1

∫
I(Yi ≥ t)

{
(Zi − Zi(t))⊗2 − (Zi − Zi(t))(Wi −W i(t))T ΣWW (t)−1ΣWZ(t)

}
dt

]−1

×
[

n∑

i=1

∫
I(Yi ≥ t)(Zi − Zi(t))

{
dNi(t)− dN i(t)− (Wi −W i(t))T ΣWW (t)−1ΣWN (t)dt

}]
.

The estimator forα(t) is then given aŝα(t; θ̂).

Notice that the expression of̂θ takes a similar expression asγ̂ in (4), except that additional

projections on the covariateW -space are subtracted from bothZ anddN(t). Therefore, under

some regularity conditions and assumingnan →∞ andna4
n → 0, following the similar argu-

ments as proving Theorem 2, we can show thatθ̂ is consistent andn1/2(θ̂ − θ0) converges in

distribution to a mean-zero normal distribution. Moreover, the estimator forα(t) can be shown

to be point-wise consistent and asymptotically normal.

5. SIMULATION STUDIES

We conduct simulation studies to examine the performance of the proposed method. In the

simulation studies, for each subjecti, we generate two covariates withX1i from a Bernoulli dis-

tribution with success probability 0.5 andX2i from the uniform distribution in[0, 1]. To generate

the terminal event, we use the transformation model

log
Ti

2
= X1i − 0.5X2i + εi.
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Thus, the true cumulative hazards functionΛ0(t) = t/2 and the correspondingβ0 = (1,−0.5)T .

Furthermore, we generateε from the extreme-value distribution so the model for the terminal

event is the proportional hazards model.

To generate the recurrent events, we use the following intensity model:

λi(t) = ξiI(Ti > t) {0.5− ψ0 exp(νi)/ log εi + 0.5X1i + 0.8X2i} ,

whereλi(t) denotes the intensity function at timet for subjecti, ξi is generated independently

from a Gamma-distribution with mean 1 and variance 0.5, andνi is independently generated from

the uniform distribution in[0, 1]. Additionally, the coefficientψ0 is a given constant. Clearly, this

intensity model implies the following rate model

E[dNi(t)|X1i, X2i, νi, εi] = I(Ti > t) {0.5− ψ0 exp(νi)/ log εi + 0.5X1i + 0.8X2i} dt.

Thus, the corresponding coefficientγ0 = (0.5, 0.8)T . The first component−ψ0 exp(νi)/ log εi

reflects the dependence between the rate of the recurrent events and the terminal event. Partic-

ularly, whenψ0 = 0, we obtain the situation when the terminal event is non-informative of the

recurrent events; whenψ0 is non-zero, this implies the informativeness of the terminal event. For

the latter, we chooseψ0 = 1 in the simulations. Finally, the right-censoring time is generated

from the minimum of the uniform distribution in[1.5, 8] and 3, which yields 35% censoring. The

average number of the recurrent events per subjects is around 3 to 3.5.

For each simulated data, we first implement the algorithm in Zeng and Lin (2006) to estimate

β andΛ as well as their influence functions. The estimator forγ is obtained using the formula

(4). The procedure based on the Monte-Carlo resampling method, which was given in the previ-

ous section, is used to estimate the asymptotic covariance. Particularly, we use 100 Monte-Carlo

samples and find the variance estimation to be fairly accurate. The following two tables sum-
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marize the results from sample sizesn = 100, 200 and400, with Table 1 from the simulations

corresponding toψ0 = 1 and Table 2 from the simulations corresponding toψ0 = 0. In the tables,

column “Bias” is the average bias from 1000 repetitions; “SE” is the sample standard deviation

of the empirical estimates; “ESE” is the average value of the estimated standard errors obtained

from the resampling approach; “CP” is the coverage probability of the 95% confidence interval

based on the normal approximation. The results indicate that the biases of the estimators are

small and decrease quickly with the increasing sample sizes; the estimated standard errors are

reasonably close to the empirical standard errors; the confidence intervals all have reasonable

nominal levels.

For comparison, we also report the results by treating the terminal event as non-informative;

that is, we estimate the effects of the covariates on the recurrent event rate by fitting a simple

additive rate model as follows:

E[dN(t)|T > t, X] = I(T > t)(dR(t) + XT γdt).

Such naive estimators can be obtained using the same expression (4) except that we setβ̂ = 0 and

Λ̂(Y ) = Y . Note that our model (2) does not reduce to this model. As expected, the naive estima-

tors treating the terminal event as non-informative can have very large bias when the recurrent

events and the terminal event are actually dependent due to some latent process (i.e.,ψ0 = 1)

while its bias is small when there are no such dependence (i.e.,ψ0 = 0). From the simulation

studies, when the recurrent event is independent of the terminal event, our estimators generally

have larger variance than the naive estimators, mainly because the latter utilizes the indepen-

dence information in estimation. However, under the situation when the two types of events are

actually dependent (ψ0 = 1), the naive estimator produce large bias while our estimator is still

approximately unbiased. The ratios between the mean square errors from our method and the
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Table 1.Simulation Results from 1000 Repetitions with Non-informative Terminal Events

Our approach Naive

n Par. True Bias SE ESE CP Bias SE
(×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2)

100 β1 1.0 2.6 26.2 26.3 94.6 - -
β2 -0.5 -0.7 45.4 43.6 94.8 - -
γ1 0.5 2.5 24.5 26.8 96.2 0.5 20.4
γ2 0.8 2.9 40.2 41.1 95.0 0.9 40.5

200 β1 1.0 0.1 18.2 18.4 94.7 - -
β2 -0.5 -0.8 31.9 30.4 94.0 - -
γ1 0.5 1.4 17.0 19.3 98.3 0.3 14.3
γ2 0.8 0.7 28.1 29.2 95.6 0.1 27.8

400 β1 1.0 -1.2 13.5 13.0 93.4 - -
β2 -0.5 -0.0 20.9 21.4 95.1 - -
γ1 0.5 0.5 12.3 13.8 96.7 -0.3 10.4
γ2 0.8 0.3 19.5 20.7 95.8 -0.4 19.2

native estimators decrease from 90% to 40% in estimatingγ1 when the sample size increases

from 100 to 400. These ratios are close to 1 in estimatingγ2 but also decrease significantly when

the sample size increases.

We repeat the same simulation study using the same setting except thatε is generated from the

logistic distribution, that is, the terminal event follows the proportional odds model. The results

and conclusions are similar (results not shown).

6. REAL EXAMPLE

We apply our method to analyze the data from a subgroup in the AIDS Links to Intravenous

Experiences (ALIVE) cohort study (Vlahov et al., 1991). In this study, a group of intravenous

drug users with HIV infections were followed between August 1, 1993 and December 31, 1997,

where the collected data included their in-patient admissions and other variables. The terminal
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Table 2.Simulation Results from 1000 Repetitions with Informative Terminal Events

Our approach Naive

n Par. True Bias SE ESE CP Bias SE
(×10−2) (×10−2) (×10−2) (×10−2) (×10−2) (×10−2)

100 β1 1.0 2.6 26.2 26.3 94.6 - -
β2 -0.5 -6.8 45.4 43.6 94.8 - -
γ1 0.5 13.3 47.1 49.5 96.5 42.3 37.7
γ2 0.8 1.5 80.4 77.1 95.5 -23.8 73.2

200 β1 1.0 0.1 18.2 18.4 94.7 - -
β2 -0.5 -0.8 31.9 30.4 94.0 - -
γ1 0.5 7.8 32.5 35.5 96.5 43.6 26.0
γ2 0.8 0.2 54.2 54.2 95.2 -21.6 49.0

400 β1 1.0 -1.2 13.5 13.0 93.4 - -
β2 -0.5 -0.0 20.9 21.4 95.1 - -
γ1 0.5 3.1 23.5 25.3 96.4 42.2 19.1
γ2 0.8 0.4 37.9 38.6 93.9 -21.3 33.8

event was death. For illustration, we only consider the female patients of 471 subjects. On aver-

age, each patient had 1.3 hospital admissions and there were 83 deaths. The interest focuses on

the effects of the baseline HIV status (positive vs negative) and age on both recurrent hospital

admissions and death.

First, to determine the survival model for the death, we consider the class of logarithmic trans-

formationsr−1 log(1 + rx) for G(x) by varyingr from 0 to 1. The AIC criterion chooses the

best transformation to be the proportional odds model (r = 1). We then proceed to fit the ad-

ditive rate model for the recurrent hospital admissions using our approach. The result is given

in the first half of Table 3, which shows that the HIV positive patients tended to die earlier and

experience more hospital admission, as compared to the HIV negative patients; the patient’s age

was significantly associated with the death but not the hospital admission.

To assess the goodness of fit using our model, we examine the following total summation of

the residuals for each subject

∫ Yi

0

{
dNi(t)− dĤ(t, log Λ̂(t)−XT

i β̂)−XT
i γ̂dt

}
,
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Table 3.Analysis of HIV Data

Death Model Recurrent Event Model

Covariates Est SE Z-stat p-value Est SE Z-stat p-value

Data contain all 471 subjects
HIV+ vs HIV- 1.570 0.278 5.641 < 0.001 0.135 0.057 2.359 0.018

Age 0.057 0.018 3.179 0.001 0.004 0.003 1.431 0.152

Data exclude 11 extreme subjects
HIV+ vs HIV- 1.651 0.356 4.640 < 0.001 0.105 0.044 2.408 0.016

Age 0.056 0.021 2.718 0.007 0.006 0.003 2.178 0.029

11 subjects are those who had at least 9 admissions.

equivalently,

∫ Yi

0

{
dNi(t)− dN̄i(t)− (Xi − X̄i(t))T γ̂dt

}
.

As shown in Section 2, when our model is correct, the above statistics should have an approxi-

mate mean zero and be independent ofXi. Therefore, a graphical way to assess the model fit is to

plot the above residual quantity against covariateXi. We plot in Figure 1 the summed residuals

for each subject versus the patient’s age within the HIV positive and negative groups respectively.

Overall, we find that the residuals fluctuate around zero and appear to be random. The residuals

for the subjects in HIV+ group appear to be slightly more spread-out than the ones for the sub-

jects in HIV- group. In addition, we notice that there are 11 subjects who have residuals larger

than 5. Interestingly, these subjects are all extreme cases who experienced at least 9 admissions;

thus, their observations can be very influential in the model fitting. For instance, after removing

these subjects, the average number of the admission reduces to 1.11; moreover, the result from

the model fit, as given in the second half of Table 3, shows that the age’s effect becomes much

more significant for the recurrent event model.
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Fig. 1. The plot of the residuals vs the baseline ages. Plot (a) plots the residuals for
the subjects in HIV+ group (b) plots the residuals for the subjects in HIV- group.

7. DISCUSSION

In this paper, the general transformation models were used to model the terminal event given

covariates. However, such models are not essential in our approach. Other models such as the

accelerated failure time model or the additive hazards model can also be used. The choice of the

model for the terminal event depends on data fitting.

In obtaining the estimating equation forγ, we constructed the risk set at timet based on

the ranks of both the terminal event residualε andXT β and gave each subject in the risk set

equal weights. One possibility is to assign different weights based on each subject’s covariate

information. It is unclear what weight functions can lead to a more efficient estimator forγ.

Another possibility to construct the risk set is to adapt the artificial censoring idea which was

used in Lin, Robins and Wei (1996) and Ghosh and Lin (2003) under different contexts and

models. This idea will further trim the risk set we constructed here. It remains unknown how

much efficiency gain/loss the artificial censoring will have. A better alternative approach is to
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combine the estimators from our method and the artificial censoring approach in an optimal way,

which will guarantee the efficiency improvement. We will explore this approach in the future.

Although we focused on the additive rate model for the recurrent event, our inference method

also applies to the proportional rate model, where the rate function is given as

E[dN(t)|T > t, ν, X] = I(T > t)eXT γdR(t, ν).

The same estimating equation can be constructed as in Section 2. However, the interpretation of

the coefficientγ is different between the additive rate model and the proportional rate model.

Finally, we can model the mean function of the recurrent event instead of the rate function by

assuming

E[N(t)|X,T > t, ν] = I(T > t)
{
R(t, ν) + XT γt

}
.

Note that this model may only imply the rate model ifX is time-independent.
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APPENDIX

Proof of Theorem 2

To prove Theorem 2, we definedR(t) = dN(t)−XT γ0dt and

dR(t,X; β, Λ) =

∑n
j=1 dRj(t)I(Λ(Yj)e−XT

j β > Λ(t)e−XT β , XT
j β ≥ XT β)

∑n
j=1 I(Λ(Yj)e−XT

j
β > Λ(t)e−XT β , XT

j β ≥ XT β)
.

Moreover, based on 2.10.4 of van der Vaart and Wellner, the class

{Λ(Y ) : Λ is non-decreasing and right-contiuous and bounded byc0}
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is a VC-hull class; the same holds for the finite dimensional space
{
XT β : β ∈ Rd

}
. Thus,

{
Λ(Y )e−XT β : ‖Λ− Λ0‖+ |β − β0| < δ0

}

is a universally Donsker class. Therefore, from the Glivenko-Cantelli theorem, it is clear that the asymp-

totic limit of dR(t,X;β, Λ) is equal to

E
[
dRj(t)I(Λ(Yj)e−XT

j β > Λ(t)e−XT β , XT
j β ≥ XT β)

]

E
[
I(Λ(Yj)e−XT

j
β > Λ(t)e−XT β , XT

j β ≥ XT β)
] ,

which is denoted asdR0(t,X; β, Λ). Moreover, such convergence is uniformly int ∈ [0, τ ], X, and(β, Λ)

is the neighborhood of(β0,Λ0). Similarly, we define the limit ofXi(t) as

E0(X, t; β, Λ) =
E

[
XjI(Λ(Yj)e−XT

j β > Λ(t)e−XT β , XT
j β ≥ XT β)

]

E
[
I(Λ(Yj)e−XT

j
β > Λ(t)e−XT β , XT

j β ≥ XT β)
]

evaluated atX = Xi, β = β̂, Λ = Λ̂.

From expression (4), we have

γ̂ − γ0 =

[
n∑

i=1

∫
ω(t)I(Yi > t)(Xi −Xi(t))⊗2dt

]−1

×
[

n∑

i=1

∫
ω(t)I(Yi > t)(Xi −Xi(t))d

{
Ri(t)−Ri(t; β̂, Λ̂)

}]
.

Note that with probability one,

1
n

n∑

i=1

∫
ω(t)I(Yi > t)(Xi −Xi(t))⊗2dt → ΣX ≡ E

[∫
ω(t)I(Y > t) (X − E0(X, t; β0, Λ0))

⊗2

]
.

SinceE0(X, t;β0,Λ0) is a function ofε andX andε are independent, from condition (C.2), the above

limit must be positive definite. Thus, it holds

n1/2(γ̂ − γ0) = n1/2 (ΣX + o(1))−1

[
n−1

n∑

i=1

∫
ω(t)I(Yi > t)(Xi −Xi(t))d

{
Ri(t)−Ri(t; β̂, Λ̂)

}]
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= n1/2 (ΣX + o(1))−1

[
n−1

n∑

i=1

∫
ω(t)I(Yi > t)(Xi − E0(Xi, t; β̂, Λ̂))d

{
Ri(t)−Ri(t; β̂, Λ̂)

}]

−n1/2 (ΣX + o(1))−1

[
n−1

n∑

i=1

∫
ω(t)I(Yi > t)(Xi(t)− E0(Xi, t; β̂, Λ̂))d

{
Ri(t)−Ri(t; β̂, Λ̂)

}]
.

(A.1)

On the other hand, we note

Ri(t; β̂, Λ̂)−R0(Xi, t;β0, Λ0)

= [Ri(t; β̂, Λ̂)−R0(Xi, t; β̂, Λ̂)] + [R0(Xi, t; β̂, Λ̂)−R0(Xi, t; β0, Λ0)]. (A.2)

The first term of (A.2) can be rewritten

(Pn − P)
[
R(t)I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i β0 , XT β0 ≥ XT
i β0)

]

E
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i
β0 , XT β0 ≥ XT

i β0)
]

−
E

[
R(t)I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i β0 , XT β0 ≥ XT
i β0)

]

E
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i
β0 , XT β0 ≥ XT

i β0)
]2

×(Pn −P)
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i β0 , XT β0 ≥ XT
i β0)

]
+ op(n−1/2). (A.3)

Using the mean-value theorem, the second term of (A.2) becomes

∇β

E
[
R(t)I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i β0 , XT β0 ≥ XT
i β0)

]

E
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i
β0 , XT β0 ≥ XT

i β0)
] (β̂ − β0)

+∇Λ

E
[
R(t)I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i β0 , XT β0 ≥ XT
i β0)

]

E
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−XT

i
β0 , XT β0 ≥ XT

i β0)
]2 [Λ̂− Λ0] + op(n−1/2), (A.4)
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where∇β denotes the derivative with respect toβ and∇Λ denotes the Hadmard derivative with respect

to Λ. Therefore,

Ri(t)−Ri(t; β̂, Λ̂) = Ri(t)−R0(Xi, t; β0,Λ0)

−(Pn − P)S1(O; β0, Λ0, Xi, t)− I(Xi, t)(β̂ − β0, Λ̂− Λ0) + op(n−1/2),

whereO denotes the observed statistic,S1(O; β0, Λ0, Xi, t) is the influence function given in equation

(A.3), andI is the linear operator as given in equation (A.4).

Consequently, sincesupi,t |Xi(t)− E0(Xi, t; β̂, Λ̂)| → 0, (A.1) gives

n1/2(γ̂ − γ0)

= n1/2 (ΣX + o(1))−1

[
n−1

n∑

i=1

∫
ω(t)I(Yi > t)(Xi − E0(Xi, t; β̂, Λ̂))d {Ri(t)−R0(Xi, t; β0,Λ0)

−(Pn − P)S1(O; β0, Λ0, Xi, t)− I(Xi)(β̂ − β0, Λ̂− Λ0)
}]

+ op(1)

= n1/2Σ−1
X (Pn −P)

[∫
ω(t)I(Y > t)(X − E0(X, t;β0, Λ0))d(R(t)−R0(X, t; β0, Λ0))

]

−n1/2Σ−1
X (Pn − P)Ẽ

[∫
ω(t)I(Ỹ > t)(X̃ − E0(X̃, t; β0, Λ0))dS1(O;β0, Λ0, X̃, t)

]

−n1/2Σ−1
X (Pn − P)Ẽ

[∫
ω(t)I(Ỹ > t)(X̃ − E0(X̃, t; β0, Λ0))dI(X̃, t)[Sβ , SΛ]

]

+op(1).

Here,Ẽ is the expectation with respect to(Ỹ , X̃).

The asymptotic distribution forn1/2(β̂ − β0, Λ̂− Λ0, γ̂ − γ0) thus follows from the above expansion

and the expansions in (5).

Proof of Theorem 3

.
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We examineΩ1, Ω2 andΩ3 − γ̂ separately. Clearly, using the same notation as in the proof of Theorem

2,

Ω1 =

[
n−1

n∑

i=1

∫
I(Yi > t)ω(t)(Xi −Xi(t))⊗2dt

]−1

×

n−1

[
n∑

i=1

Zi

∫
I(Yi ≥ t)ω(t)(Xi −Xi(t))

{
dRi(t)− dRi(t; β̂, Λ̂)

}]
.

Since the first term converges toΣX almost surely andRi(t; β̂, Λ̂) converges toR0(Xi, t;β0,Λ0) and

belongs to some Donsker class, we use Theorem 3.6.13 in van der Vaart and Wellner (1996) and conclude

that conditional on data,

Ω1 = Σ−1
X n−1

[
n∑

i=1

Zi

∫
I(Yi > t)ω(t)(Xi − E0(Xi, t;β0,Λ0)) {dRi(t)− dR0(Xi, t;β0,Λ0)}

]

+op(n−1/2).

Similarly, we have

Ω2 = − 1
n

Σ−1
X

n∑

j=1

ZjẼ

[∫
I(Ỹ > t)ω(t)(X̃ − E0(X̃, t; β0,Λ0))

× (dNj(t)−XT
j γ)I(Λ0(Yj)e−XT

j β0 > Λ0(t)e−X̃T β0 , XT
j β0 ≥ X̃T β0)

E
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−X̃T β0 , XT β0 ≥ X̃T β0)

]



+
1
n

Σ−1
X

n∑

j=1

ZjẼ

[∫
ω(t)I(Ỹ > t)(X̃ − E0(X̃, t; β0,Λ0))

×I(Λ0(Yj)e−XT
j β0 > Λ0(t)e−X̃T β0 , XT

j β0 ≥ X̃T β0)

×
E

[
(dN(t)−XT γ0dt)I(Λ0(Y )e−XT β0 > Λ0(t)e−X̃T β0 , XT β0 ≥ X̃T β0)

]

E
[
I(Λ0(Y )e−XT β0 > Λ0(t)e−X̃T β0 , XT β0 ≥ X̃T β0)

]2




+op(n−1/2)

=
1
n

Σ−1
X

n∑

i=1

ZiẼ

[∫
ω(t)I(Ỹ > t)(X̃ − E0(X̃, t; β0, λ0))dS1(Oi;β0, Λ0, X̃, t)

]
+ op(n−1/2).
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Finally,

Ω3 − γ̂ =

[
n∑

i=1

∫
I(Yi > t)ω(t)(Xi −Xi(t))⊗2dt

]−1

×

[
n∑

i=1

Zi

∫
I(Yi ≥ t)ω(t)(Xi −Xi(t))

{
d(Ri(t; β̃, Λ̃)−Ri(t; β̂, Λ̂))

}]
.

On the other hand,

Ri(t; β̃, Λ̃)−Ri(X, t; β̂, Λ̂) = Ri(t; β̃, Λ̃)−R0(Xi, t; β̃, Λ̃)−
{
Ri(t; β̂, Λ̂)−R0(Xi, t; β̂, Λ̂)

}

+{R0(Xi, t; β̃, Λ̃)−R0(Xi, t; β̂, Λ̂)}. (A.5)

Note that

Ri(t; β̃, Λ̃)−R0(Xi, t; β̃, Λ̃)−
{
Ri(t; β̂, Λ̂)−R0(Xi, t; β̂, Λ̂)

}

= (Pn − P)
[
S1(O; β̃, Λ̃, Xi, t)− S1(O; β̂, Λ̂, Xi, t)

]
= op(n−1/2)

and that the last term in (A.5), by the Taylor expansion, is equal to

1
n

n∑

i=1

I(Xi, t)[β̃ − β̂, Λ̃− Λ̂] + op(n−1/2)

=
1
n

n∑

i=1

ZiI(Xi, t)[Sβ , SΛ] + op(n−1/2).

Hence, from the influence function for̂γ as derived in proving Theorem 2, we obtain

Ω1 + Ω2 + (Ω3 − γ̂) =
1
n

n∑

i=1

ZiSγ(Ni, Yi,∆i, Xi; β0, Λ0) + op(n−1/2).

Theorem 3 thus holds from Theorem 3.6.13 in van der Vaart and Wellner (1996).
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