© 2007 Biometrika Trust

2 Printed in Great Britain

3	Semiparametric Additive Rate Model for Recurrent Events
4	with Informativa Tarminal Evant
5	with informative rerinnar Event
6	BY DONGLIN ZENG AND JIANWEN CAI
7	Department of Biostatistics, CB# 7420, University of North Carolina at Chapel Hill, Chapel
8	Hill, North Carolina 27599-7420, U.S.A.
9	dzeng@bios.unc.edu, cai@bios.unc.edu
10	
11	SUMMARY
12	We propose a semiparametric additive rate model for modelling recurrent events in the pres-
13	ence of the terminal event. The dependence between recurrent events and terminal event is fully
14	nonparametric and is due to some latent process in the baseline rate function. Additionally, a
15	general transformation model is used to model the terminal event given covariates. We construct
16	an estimating equation for parameter estimation. The asymptotic distributions of the proposed
17	estimators are derived. Simulation studies demonstrate that the proposed inference procedure
18	performs well in realistic settings. Application to a medical study is presented.
19	Some key words: Additive rate model; Estimating equation; Recurrent event; Terminal event; Transformation models.
20	
21	1. INTRODUCTION
22	Desument ausste en commen in medical anestice en cridemiale sie studies when each sub-
23	Recurrent events are common in medical practice of epidemiologic studies when each sub-
24	ject experiences a particular event repeatedly over time. Examples of recurrent events include
25	multiple infection episodes, tumor recurrences, and repeated drug use. Interest of recurrent event
26	
27	
28	
29	

DONGLIN ZENG AND JIANWEN CAI

analysis usually focuses on identifying risk factors which may elevate or decrease the frequenciesof recurrent events.

In most practices, recurrent event times are subject to censoring. One typical censoring is 51 52 caused by the termination of the follow-up due to the subject's death. Such terminating censorship is very likely informative about the recurrent events so it should be accounted for in the 53 analysis. In the literature, most of the existing methods on recurrent event analysis (e.g., Ander-54 sen and Gill, 1982; Prentice, Williams and Peterson, 1981; Wei, Lin and Weissfeld, 1989) require 55 non-informative censorship and may yield misleading results when recurrent event times are ac-56 tually informatively censored. Recently, jointly modelling both recurrent events and terminal 57 event through shared frailty or random-effects have been developed. Such joint models attribute 58 59 the association between the two types of events to some latent effects, which are included in the regression models either as frailty or random effects. For example, Wang, Qin and Chiang 60 61 (2001) and Huang and Wang (2004) studied a shared frailty model with proportional intensity 62 and proportional hazards assumptions for recurrent events and the terminal event, respectively. The model allows an unknown distribution for the shared frailty. Liu, Wolfe and Huang (2004) 63 considered the same model but assumed a gamma frailty distribution. In a recent paper, Zeng 64 and Lin (2009) studied the general transformation models in this joint modelling approach. For 65 all these joint modelling approaches, one strong assumption is that the dependence between the 66 recurrent events and the terminal event is modelled via an explicit and parametric latent effect, 67 which may not be true in practice. The computation involved in the joint modelling approach is 68 69 usually intensive.

- Compared to the intensity models used in the joint modelling approaches mentioned above,
 rate models have also been popular in analyzing recurrent events because the regression coefficients reflect the covariate effects on the frequency of the recurrent events which is practically
- 73
- 74
- 76

75

97 more intuitive. Examples include the proportional rate model or its transformed form as proposed by Pepe and Cai (1993), Lawless and Nadeau (1995) and Lin, Wei, Yang and Ying (2000). All 98 these models assume the effect of the covariates to be multiplicative and the non-informative 99 censoring. Work on extension to incorporating the informative terminal event is limited: Cook 100 and Lawless (1997) studied the mean and rate of the recurrent events among survivors at certain 101 time points. Ghosh and Lin (2000) proposed an nonparametric estimator for the rate function of 102 the recurrent event by incorporating the survival probabilities of the terminal event. They fur-103 ther considered the proportional rate model with covariates in Ghosh and Lin (2002), where the 104 inverse probability weighted estimating equation was used to obtain the consistent estimators 105 106 for the regression coefficients. An expanded version of the same type of the inverse weighted 107 estimating equation was adopted to improve the efficiency in Miloslavsky et al (2004) for the proportional rate model. 108

109 A useful and important alternative to the proportional rate model is the additive rate model, where the true underlying covariate effects may add to, rather than multiply, the baseline event 110 111 rate. As pointed out in Schaubel et al (2006), in many practical applications, an additive model may indeed be more appropriate, particularly with respect to continuous covariates. In situations 112 where the additive and multiplicative models fit the data equally well, the additive model may 113 be preferred due to the interpretation of the regression parameter. For the additive rate model as 114 given in Lin and Ying (1994), no work has been done to incorporate the informative terminal 115 event. 116

117 In this paper, we focus on the additive rate model for recurrent events. Only covariates of in-118 terest are parametrically modelled as an additive component in this model. In our additive model, 119 the baseline rate function is nonparametric and depends on some latent random variables which

- 120
- 121
- 122
- 123 124
- 125

	4 DONGLIN ZENG AND JIANWEN CAI
145	are associated with the terminal event. However, such an association is fully nonparametric. A
146	general transformation model (Zeng and Lin, 2006) is used for modelling terminal event.
147	
148	
149	2. MODELS AND INFERENCE
150	2·1. Models
151	Let $N(t)$ denote the counting process associated with recurrent event and let T denote the
152	terminal event time. The covariates of interest are denoted by X . For the terminal event time T ,
153	we assume the following linear transformation model
154	$\Lambda(t X) = G(e^{-X^T\beta}\Lambda(t)) \tag{1}$
155	$\Pi(0 \Omega) = O(C - \Pi(0)), \tag{1}$
156	where $\Lambda(t X)$ is the conditional hazard function of T given $X, \Lambda(\cdot)$ is an unknown and monotone
157	transformation with $\Lambda(0) = 0$ and G is a given transformation function. The usual proportional
158	hazards model and the proportional odds model are both special cases of the linear transformation
159	model with $G(x) = x$ and $G(x) = \log(1 + x)$. Note that model (1) is equivalent to
160	$\log \Lambda(T) = X^T \beta + \epsilon$
161	
162	where ϵ is an independent error following a distribution with cumulative density function
163	$1 - e^{-G(e^{\epsilon})}$. For the recurrent event process, we let ν be subject-specific latent effect which
164	is independent of X and may be associated with the terminal event residual ϵ . For any time t,
165	given ν and $T > t$, we assume that the rate of the recurrent event at time t is independent of T.
166	Furthermore, we model this rate function of the recurrent event process via an additive model by
167	assuming
168	$E[dN(t) X T > t \mu] - I(T > t) \left\{ dR(t \mu) + X^T \gamma dt \right\} $ ⁽²⁾
169	$E[u((v) X, Y > v, v] = I(Y > v) \{u(v, v) + X = juv\}, $ (2)
170	
171	
172	

193 where $R(t, \nu)$ is the subject-specific baseline cumulative rate function and assumed to be un-194 known. Moreover, $R(0, \nu) = 0$ and $R(t, \nu)$ is an increasing function of t for $t \leq T$. Particularly, 195 the parameter γ represents the rate difference for one unit change in X for a given subject-196 specific latent effect ν . The latent effect ν explains the dependence between the recurrent event 197 process and the terminal event.

- 198
- 199

200

201

202

203

204

2.2. Inference Procedure

Suppose that we observed data from n i.i.d subjects subject to right censoring. We denote them as

$$Y_i = T_i \wedge C_i, \ \Delta_i = I(T_i \le C_i)$$

and $(N_i(t), t \le Y_i)$ for i = 1, ..., n, where C_i is censoring time for subject $i, T_i \land C_i$ is the min-205 206 207

Our goal is to estimate β and γ . First, we use the survival data $(Y_i, \Delta_i, X_i), i = 1, ..., n$, to estimate the parameters in model (1). Particularly, the nonparametric maximum likelihood estimation approach (Zeng and Lin, 2006) is used to derive the estimates for β and Λ and we denote the estimates as $\hat{\beta}$ and $\hat{\Lambda}$ respectively. That is, $\hat{\beta}$ and $\hat{\Lambda}$ maximize

212
$$\prod_{i=1}^{n} \left[\left\{ \Lambda\{Y_i\} e^{-X_i^T \beta} G'(\Lambda(Y_i) e^{-X_i^T \beta}) \right\}^{\Delta_i} \exp\left\{ -G(\Lambda(Y_i) e^{-X_i^T \beta}) \right\} \right],$$
213

where $\Lambda\{t\}$ denotes the jump size of Λ at t. The details of computing $\hat{\beta}$ and $\hat{\Lambda}$ can be found in Zeng and Lin (2006).

215 216

214

211

To estimate γ , since T can be censored, we may not be able to estimate the rate function given T directly; instead, we need to consider the observed rate function given the observed end point

218

217

219

220

DONGLIN ZENG AND JIANWEN CAI

- Y. From model (2), we have

$$E[dN(t)|X, Y > t] = I(Y > t) \left\{ dE[R(t, \nu)|X, Y > t] + X^T \gamma dt \right\}$$

Since C is independent of ν and T given X,

$$E[R(t,\nu)|X,Y>t] = E[R(t,\nu)|X,T>t] = E[R(t,\nu)|X,\epsilon > \log \Lambda(t) - X^T\beta]$$

Following the assumption that (ϵ, ν) are independent of X, we obtain

248

$$E[dN(t)|X,Y>t] = I(Y>t) \left\{ dE[R(t,\nu)|\epsilon>s] \Big|_{s=\log\Lambda(t)-X^T\beta} + X^T\gamma dt \right\}.$$
(3)

Thus, if define dH(t,s) as $E[dR(t,\nu)|\epsilon > s]$, then it is necessary to be able to estimate dH(t,s)using the observed data. Note that from the fact (ν, ϵ) is independent of X and C, we have

$$E[dR(t,\nu)|\epsilon > s] = \frac{E[dR(t,\nu)I(\epsilon > s)]}{E[I(\epsilon > s)]} = \frac{E[dR(t,\nu)I(\Lambda(Y)e^{-X^T\beta} > e^s)g(X)]}{E[I(\Lambda(Y)e^{-X^T\beta} > e^s)g(X)]}$$

for any integrable function g(X). Particularly, we choose g(X) to be of the form $I(X^T\beta \geq$

255
$$\log \Lambda(t) - s$$
 so that both $\Lambda(Y)e^{-X^T\beta} > e^s$ and $X^T\beta \ge \log \Lambda(t) - s$ implies $Y > t$. Then

 $E[dR(t,\nu)|\epsilon>s] = \frac{E[(dN(t) - X^T\gamma dt)I(\Lambda(Y)e^{-X^T\beta} > e^s, X^T\beta \ge \log \Lambda(t) - s)]}{E[I(\Lambda(Y)e^{-X^T\beta} > e^s, X^T\beta \ge \log \Lambda(t) - s)]}.$

Hence, we can estimate dH(t, s) using the empirical observations as

From (3), this implies that the following term

259
260
$$d\widehat{H}(t,s) \equiv \frac{\sum_{j=1}^{n} (dN_{j}(t) - X_{j}^{T}\gamma dt) I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > e^{s}, X_{j}^{T}\widehat{\beta} \ge \log\widehat{\Lambda}(t) - s)}{\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > e^{s}, X_{j}^{T}\widehat{\beta} \ge \log\widehat{\Lambda}(t) - s)}.$$

 $I(Y_i > t) \left\{ dN_i(t) - d\widehat{H}(t, \log \widehat{\Lambda}(t) - X_i^T \widehat{\beta}) - X_i^T \gamma dt \right\}$

Recurrent Events with Informative Terminal Event

has mean approximating zero given X_i ; equivalently, if define

290
291
$$d\overline{N}_{i}(t) = \frac{\sum_{j=1}^{n} dN_{j}(t) I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})}{\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})}$$

292 and

$$\overline{X}_{i}(t) = \frac{\sum_{j=1}^{n} X_{j} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})}{\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})},$$

then 295

296
$$I(Y_i > t) \left\{ dN_i(t) - d\overline{N}_i(t) - (X_i - \overline{X}_i(t))^T \gamma dt \right\}$$
297

is approximately zero for given X_i .

299 Hence, to estimate γ , we propose the following estimating equation for inference:

$$\sum_{i=1}^{n} \int \omega(t) I(Y_i > t) (X_i - \overline{X}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) - (X_i - \overline{X}_i(t))^T \gamma dt \right\} = 0,$$
301

302 where $\omega(t)$ is any deterministic weight function. Equivalently, the estimator for γ , denoted as $\hat{\gamma}$, 303 is given as

$$\begin{cases}
304 \\
305
\end{cases}
\left[\sum_{i=1}^{n} \int I(Y_i > t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^{n} \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) \right\} \right].$$

$$(4)$$

Note that there is some possibility that the denominator in the calculation of $d\overline{N}_i(t)$ and $\overline{X}_i(t)$,

i.e.,

306

307

308

309

310

311

312

313

314

315

$$\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_j)e^{-X_j^T\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_i^T\widehat{\beta}}, X_j^T\widehat{\beta} \ge X_i^T\widehat{\beta}),$$

could be zero. In this case, we define 0/0 as zero so that the corresponding $d\overline{N}_i(t)$ and $\overline{X}_i(t)$ are zeros.

316

DONGLIN ZENG AND JIANWEN CAI

Our model and inference method can be extended to incorporate external time-dependent co-

variates X(t) in the above formulation. Particularly, when X(t) is time-dependent, the transfor-

2.3. Extension to time-dependent covariates

mation model (1) for the terminal event becomes $\Lambda(t|X) = G(\int_0^t e^{-X(s)^T\beta} d\Lambda(s)),$ where $\Lambda(t|X)$ is the conditional hazard function of T given X. The above model is also equiva-lent to $\log \int_0^T e^{-X(s)^T \beta} d\Lambda(s) = \epsilon,$ where ϵ is independent of X with cumulative density function $1 - \exp\{-G(e^{\epsilon})\}$. Thus, if we re-define $d\overline{N}_i(t)$ as $\frac{\sum_{j=1}^{n} dN_{j}(t) I(\int_{0}^{Y_{j}} e^{-X_{j}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s) > \int_{0}^{t} e^{-X_{i}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s), \int_{0}^{t} e^{-X_{j}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s) \le \int_{0}^{t} e^{-X_{i}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s))}{\sum_{j=1}^{n} I(\int_{0}^{Y_{j}} e^{-X_{j}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s) > \int_{0}^{t} e^{-X_{i}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s), \int_{0}^{t} e^{-X_{j}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s) \le \int_{0}^{t} e^{-X_{i}(s)^{T}\widehat{\beta}} d\widehat{\Lambda}(s))}$ and redefine $\overline{X}_i(t)$ as

$$\frac{\sum_{j=1}^{n} X_j(t) I(\int_0^{Y_j} e^{-X_j(s)^T \widehat{\beta}} d\widehat{\Lambda}(s) > \int_0^t e^{-X_i(s)^T \widehat{\beta}} d\widehat{\Lambda}(s), \int_0^t e^{-X_j(s)^T \widehat{\beta}} d\widehat{\Lambda}(s) \le \int_0^t e^{-X_i(s)^T \widehat{\beta}} d\widehat{\Lambda}(s))}{\sum_{j=1}^{n} I(\int_0^{Y_j} e^{-X_j(s)^T \widehat{\beta}} d\widehat{\Lambda}(s) > \int_0^t e^{-X_i(s)^T \widehat{\beta}} d\widehat{\Lambda}(s), \int_0^t e^{-X_j(s)^T \widehat{\beta}} d\widehat{\Lambda}(s) \le \int_0^t e^{-X_i(s)^T \widehat{\beta}} d\widehat{\Lambda}(s))},$$

354 then an estimator for γ is given similar to (4) as

$$\sum_{i=1}^{n} \int I(Y_i > t) \omega(t) (X_i(t) - \overline{X}_i(t))^{\otimes 2} dt \Big]^{-1} \left[\sum_{i=1}^{n} \int I(Y_i \ge t) \omega(t) (X_i(t) - \overline{X}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) \right\} \right].$$

3. Asymptotic Results

We provide the asymptotic results for the estimators $(\hat{\beta}, \hat{\Lambda})$ and $\hat{\gamma}$, assuming X and its effect to be time-independent. The same results apply to the case when X contains time-dependent

- 385 components. We need the following assumptions.
- 386 (C.1) The true parameter β_0 belongs to a known compact set and the hazards function $\Lambda_0(t)$ is 387 continuously differentiable and strictly increasing in $[0, \tau]$, where τ is the study duration and 388 assumed to be finite.
- 389 (C.2) Covariates X are bounded and satisfy the following condition: if $\alpha_0 + \alpha_1^T X = 0$ with 390 probability one, then $\alpha_0 = 0$ and $\alpha_1 = 0$.
- 391 (C.3) Transformation function G(x) is three-times continuously differentiable and strictly in-392 creasing. Moreover, there exists a positive constant ρ_0 such that
- 393

$$\lim_{x \to \infty} \sup_{x \to \infty} (1+x)^{\rho_0} e^{-G(x)} < \infty, \quad \lim_{x \to \infty} \sup_{x \to \infty} (1+x)^{1+\rho_0} G'(x) e^{-G(x)} < \infty.$$

- 395
- 396 (C.4) There exists some positive constant δ_0 such that $P(C \ge \tau | X) > \delta_0$.

The conditions in both (C.1) and (C.4) are standard in the practice of survival analysis context. Condition (C.2) is equivalent to saying that the design matrix [1, X] is full rank with some positive probability. Condition (C.3) stipulates the tail behavior of the transformation function G(x). It is easy to check that transformations $G(x) = \rho^{-1} \{(1+x)^{\rho} - 1\}$ for $\rho \ge 0$ and $G(x) = r^{-1} \log(1 + rx)$ for $r \ge 0$ satisfy this condition. The same condition is used in Zeng and Lin (2006) for transformation models.

- 403 The first result concerns the asymptotic distribution of $(\hat{\beta}, \hat{\Lambda})$, which has been given in Zeng 404 and Lin (2006). We quote this result in the following theorem.
- 405 **Theorem 1 (from Zeng and Lin, 2006)**. Under conditions (C.1)-(C.4), $(\hat{\beta}, \hat{\Lambda})$ are strongly con-406 sistent in the sense

 $|\widehat{\beta} - \beta_0| + \sup_{t \in [0,\tau]} |\widehat{\Lambda}(t) - \Lambda_0(t)| \to_{a.s.} 0;$

- 407
- 408
- 409
- 410
- 411412
- 413

DONGLIN ZENG AND JIANWEN CAI

433 moreover, $n^{1/2}(\hat{\beta} - \beta_0, \hat{\Lambda} - \Lambda_0)$ converges in distribution to a tight Gaussian process in the 434 metric space $R^d \times l^{\infty}[0, \tau]$, where *d* is the dimension of β_0 and $l^{\infty}[0, \tau]$ consists all the bounded 435 function in $[0, \tau]$ equipped with the supreme norm.

436 Furthermore, according to Zeng and Lin (2006), we have the following asymptotic linear ex-437 pansion for $\hat{\beta}$ and $\hat{\Lambda}$:

438

$$n^{1/2}(\widehat{\beta} - \beta_0) = \mathcal{G}_n S_\beta(Y, \Delta, X; \beta_0, \Lambda_0) + o_p(1),$$
439

440

 $n^{1/2}(\widehat{\Lambda}(t) - \Lambda_0(t)) = \mathcal{G}_n S_\Lambda(Y, \Delta, X, t; \beta_0, \Lambda_0) + o_p(1), \tag{5}$

442 where S_{β} and S_{Λ} are the respective influence function for $\hat{\beta}$ and $\hat{\Lambda}$, \mathcal{G}_n is the empirical process 443 defined as $n^{1/2}(\mathcal{P}_n - \mathcal{P})$ with \mathcal{P}_n being the empirical measure and \mathcal{P} being its expectation, 444 and $o_p(1)$ denotes the random element converging to zero in probability in the metric space of 445 Theorem 1. Moreover, using the consistent estimator of the information matrix for $\hat{\beta}$ and $\hat{\Lambda}$ as 446 given in Zeng and Lin (2006), we can estimate S_{β} and S_{Λ} consistently in the uniform sense of 447 (Y, Δ, X) and $t \in [0, \tau]$; so we denote such estimators as \hat{S}_{β} and \hat{S}_{Λ} respectively.

448 The following theorem gives the asymptotic distribution for $\hat{\gamma}$.

449 **Theorem 2**. Under conditions (C.1)-(C.4),

450

451 $n^{1/2}(\widehat{\gamma} - \gamma_0) = \mathcal{G}_n S_\gamma(N, Y, \Delta, X; \beta_0, \gamma_0, \Lambda_0) + o_p(1),$

452 where S_{γ} is the mean-zero influence function for $\hat{\gamma}$ and is given in the appendix. As the result, 453 $n^{1/2}(\hat{\gamma} - \gamma_0)$ converges in distribution to a mean-zero Gaussian distribution with variance $\Sigma_{\gamma} =$ 454 $Var(S_{\gamma})$.

455 We need to estimate the asymptotic covariance of $\hat{\gamma}$. However, since S_{γ} is complicated and 456 involves the Hadamard derivatives in the metric space of Theorem 1, direct estimation of S_{γ} is not 457 458 459

- 481 feasible. Therefore, we propose the following Monte-Carlo method: from the proof of Theorem 482 2, we note that in the expression (4), $\hat{\gamma}$'s variation only comes from the term $N_i(t) - \overline{N}_i(t)$ and 483 the variation in the empirical summations in the numerator and denominator of $\overline{N}_i(t)$, as well as 484 the plug-in estimator ($\hat{\beta}, \hat{\Lambda}$). Therefore, we wish to use the Monte-Carlo method to capture all 485 these variations.
- 486 Specifically, we generate n i.i.d random variables $Z_1, ..., Z_n$ from the standard normal distri-487 bution. Then the contribution to $\hat{\gamma}$'s variation due to $N_i(t) - \overline{N}_i(t)$ in expression (4) is equivalent 488 to the variation of the following function of $(Z_1, ..., Z_n)$,

$$\Omega_1 = \left[\sum_{i=1}^n \int I(Y_i > t) \omega(t) (X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \times$$

492
$$\left[\sum_{i=1}^{n} \mathcal{Z}_{i} \int I(Y_{i} \geq t) \omega(t) (X_{i} - \overline{X}_{i}(t)) \left\{ dN_{i}(t) - d\overline{N}_{i}(t) \right\} \right],$$

given the observed data. The contribution due to the numerator and denominator of $\overline{N}_i(t)$ is equivalent to

$$\Omega_2 = \left[\sum_{i=1}^n \int I(Y_i > t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t)) \times \frac{1}{2} \int I(Y_i > t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \ge t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \otimes t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \otimes t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^n \int I(Y_i \otimes t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \left[\sum_{i=1}^$$

498
499
$$\begin{cases}
-\frac{\sum_{j=1}^{n} \mathcal{Z}_{j}(dN_{j}(t) - X_{j}^{T}\widehat{\gamma}dt)I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})}{\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})}
\end{cases}$$

$$+ \frac{\sum_{j=1}^{n} (dN_{j}(t) - X_{j}^{T} \widehat{\gamma} dt) I(\widehat{\Lambda}(Y_{j}) e^{-X_{j}^{T} \widehat{\beta}} > \widehat{\Lambda}(t) e^{-X_{i}^{T} \widehat{\beta}}, X_{j}^{T} \widehat{\beta} \ge X_{i}^{T} \widehat{\beta})}{\left(\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_{j}) e^{-X_{j}^{T} \widehat{\beta}} > \widehat{\Lambda}(t) e^{-X_{i}^{T} \widehat{\beta}}, X_{j}^{T} \widehat{\beta} \ge X_{i}^{T} \widehat{\beta})\right)^{2} }$$

503
504
$$\left(\sum_{j=1}^{n} \mathcal{Z}_{j} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > \widehat{\Lambda}(t)e^{-X_{i}^{T}\widehat{\beta}}, X_{j}^{T}\widehat{\beta} \ge X_{i}^{T}\widehat{\beta})\right)\right\}\right].$$

DONGLIN ZENG AND JIANWEN CAI

529 Finally, to account for the variation in estimating β and Λ , we generate

530

$$\widetilde{\beta} = \widehat{\beta} + \frac{1}{n} \sum_{i=1}^{n} \mathcal{Z}_{i} \widehat{S}_{\beta}(Y_{i}, \Delta_{i}, X_{i}), \quad \widetilde{\Lambda}(t) = \widehat{\Lambda}(t) + \frac{1}{n} \sum_{i=1}^{n} \mathcal{Z}_{i} \widehat{S}_{\Lambda}(Y_{i}, \Delta_{i}, X_{i}, t).$$
531

532 We then obtain

533
534
$$\Omega_3 = \left[\sum_{i=1}^n \int I(Y_i > t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1}$$

535

536
$$\times \left[\sum_{i=1}^{n} \int I(Y_i \ge t) \omega(t) (X_i - \overline{X}_i(t)) \left\{ dN_i(t) - d\widetilde{N}_i(t) \right\} \right],$$

537 where $\tilde{N}_i(t)$ is defined the same way as $\overline{N}_i(t)$ except that $(\hat{\beta}, \hat{\Lambda})$ is replaced with $(\tilde{\beta}, \tilde{\Lambda})$. Thus, 538 intuitively, the pure variation due to $(\hat{\beta}, \hat{\Lambda})$ is reflected in $\Omega_3 - \hat{\gamma}$.

539 We combine all these together and obtain one statistic

540

541

 $\widetilde{\gamma} = \Omega_1 + \Omega_2 + \Omega_3.$

542 We repeat such Monte-Carlo method a number of times. The sample variation of these generated 543 statistics $\{\tilde{\gamma}\}$ is considered as an estimator for the asymptotic covariance of $\hat{\gamma}$.

The following theorem justifies the validity of the above Monte-Carlo method, whose proof is given in the appendix.

Theorem 3. Let $E_{\mathcal{Z}}$ denote the conditional expectation with respect to $\mathcal{Z}_1, ..., \mathcal{Z}_n$ given the observed data. Then

548

 $E_{\mathcal{Z}}\left[(\widetilde{\gamma}-\widehat{\gamma})^{\otimes 2}\right] \to_p \Sigma_{\gamma}.$

550

549

The proof of Theorem 2 utilizes the theory of empirical process and Theorem 1. Particularly, we expand $n^{1/2}(\hat{\gamma} - \gamma_0)$ linearly as the summation of independent components. The proof of Theorem 3 is in the same spirit as of Theorem 2. All the details are given in the appendix.

- 554
- 555

556

*Recurrent Events with Informative Terminal Event*4. PARTLY LINEAR ADDITIVE RISK MODEL

577

In this section, we consider an even more general model for the recurrent events called partly parametric additive risk model. In this model, we allow some covariates to have time-dependent effects but other covariates to have linear effects. Specifically, let W and Z denote those covariates whose effects are time-dependent and linear respectively and X = (W, Z). Then a partly linear additive risk model for the recurrent events assumes

583

584

$$E[dN(t)|X, T > t, \nu] = I(T > t) \left\{ dR(t, \nu) + W^T \alpha(t) dt + Z^T \theta dt \right\}$$

where the parameter $\alpha(t)$ is an unknown function of t. Such a model is similar to the partly parametric additive model proposed in McKeague and Sasieni (1994) but we allow the baseline function to depend on an unknown latent effect which is also associated with the terminal event T.

589 We can apply the same idea as in Section 2 to estimate $\alpha(t)$ and θ . Particularly, a similar 590 equation to (3) holds:

591

592

 $E[dN(t)|X,Y>t] = I(Y>t) \left\{ dH(t,\log\Lambda(t) - X^T\beta) + W^T\alpha(t)dt + Z^T\theta dt \right\}.$

 $I(Y_i > t) \left\{ dN_i(t) - d\widehat{H}(t, \log \widehat{\Lambda}(t) - X_i^T \widehat{\beta}) - W_i^T \alpha(t) dt - Z_i^T \theta dt \right\}$

593 Again, dH(t, s) can be estimated using the empirical observations as

594
595
$$d\widehat{H}(t,s) \equiv \frac{\sum_{j=1}^{n} (dN_{j}(t) - W_{j}^{T}\alpha(t)dt - Z_{j}^{T}\theta dt)I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > e^{s}, X_{j}^{T}\widehat{\beta} \ge \log\widehat{\Lambda}(t) - s)}{\sum_{j=1}^{n} I(\widehat{\Lambda}(Y_{j})e^{-X_{j}^{T}\widehat{\beta}} > e^{s}, X_{j}^{T}\widehat{\beta} \ge \log\widehat{\Lambda}(t) - s)}$$

596 Therefore, this implies that

- 597
- 598
- 070
- 599
- 600
- 601
- 602
- 603
- 604
- 605

DONGLIN ZENG AND JIANWEN CAI

has mean approximating zero given X_i . If define $\overline{N}_i(t)$, $\overline{W}_i(t)$ and $\overline{Z}_i(t)$ similarly as before, we conclude that

$$I(Y_i > t) \left\{ dN_i(t) - d\overline{N}_i(t) - (W_i - \overline{W}_i(t))^T \alpha(t) dt - (Z_i - \overline{Z}_i(t))^T \theta dt \right\}$$

629 is approximately zero for given X_i .

630 Hence, we propose the following estimating equations to estimate $\alpha(t_0)$ for any t_0 and θ :

$$\sum_{i=1}^{n} \int K_{a_n}(t-t_0) I(Y_i > t) (W_i - \overline{W}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) - (W_i - \overline{W}_i(t))^T \alpha(t_0) dt \right\}$$

 $-(Z_i - \overline{Z}_i(t))^T \theta dt \Big\} = 0,$

(6)

635 and

$$\sum_{i=1}^{n} \int I(Y_i > t) (Z_i - \overline{Z}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) - (W_i - \overline{W}_i(t))^T \alpha(t) dt - (Z_i - \overline{Z}_i(t))^T \theta dt \right\} = 0,$$
(7)

where $K_{a_n}(t) = a_n^{-1} K(t/a_n)$ with $K(\cdot)$ being a symmetric kernel function and a_n being a bandwidth. Solving (6) yields

641
$$\hat{\alpha}(t_0;\theta) = \Sigma_{WW}(t_0)^{-1} \left\{ \Sigma_{WN}(t_0) - \Sigma_{WZ}(t_0)\theta \right\},$$

where

644
$$\Sigma_{WW}(t_0) = \sum_{i=1}^n \int K_{a_n}(t-t_0) I(Y_i > t) (W_i - \overline{W}_i(t))^{\otimes 2} dt,$$

$$\Sigma_{WN}(t_0) = \sum_{i=1}^n \int K_{a_n}(t-t_0) I(Y_i \ge t) (W_i - \overline{W}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) \right\},$$

and

674
675
$$\Sigma_{WZ}(t_0) = \sum_{i=1}^n \int K_{a_n}(t-t_0) I(Y_i \ge t) (W_i - \overline{W}_i(t)) (Z_i - \overline{Z}_i(t))^T dt.$$

After substituting this into equation (7), we obtain that the estimator for θ is given as

$$\hat{\theta} = \left[\sum_{i=1}^{n} \int I(Y_i \ge t) \left\{ (Z_i - \overline{Z}_i(t))^{\otimes 2} - (Z_i - \overline{Z}_i(t))(W_i - \overline{W}_i(t))^T \Sigma_{WW}(t)^{-1} \Sigma_{WZ}(t) \right\} dt \right]^{-1}$$

679

676

677

678

$$\times \left[\sum_{i=1}^{n} \int I(Y_i \ge t) (Z_i - \overline{Z}_i(t)) \left\{ dN_i(t) - d\overline{N}_i(t) - (W_i - \overline{W}_i(t))^T \Sigma_{WW}(t)^{-1} \Sigma_{WN}(t) dt \right\} \right]$$

681 The estimator for
$$\alpha(t)$$
 is then given as $\hat{\alpha}(t; \hat{\theta})$.

Notice that the expression of $\hat{\theta}$ takes a similar expression as $\hat{\gamma}$ in (4), except that additional projections on the covariate W-space are subtracted from both Z and dN(t). Therefore, under some regularity conditions and assuming $na_n \to \infty$ and $na_n^4 \to 0$, following the similar arguments as proving Theorem 2, we can show that $\hat{\theta}$ is consistent and $n^{1/2}(\hat{\theta} - \theta_0)$ converges in distribution to a mean-zero normal distribution. Moreover, the estimator for $\alpha(t)$ can be shown to be point-wise consistent and asymptotically normal.

- 688
- 689
- 690

691

5. SIMULATION STUDIES

 $\log \frac{T_i}{2} = X_{1i} - 0.5X_{2i} + \epsilon_i.$

We conduct simulation studies to examine the performance of the proposed method. In the simulation studies, for each subject *i*, we generate two covariates with X_{1i} from a Bernoulli distribution with success probability 0.5 and X_{2i} from the uniform distribution in [0, 1]. To generate the terminal event, we use the transformation model

- 696
- 697
- 698

- 700
- 701

16 DONGLIN ZENG AND JIANWEN CAI 721 Thus, the true cumulative hazards function $\Lambda_0(t) = t/2$ and the corresponding $\beta_0 = (1, -0.5)^T$. 722 Furthermore, we generate ϵ from the extreme-value distribution so the model for the terminal 723 event is the proportional hazards model. 724 To generate the recurrent events, we use the following intensity model: 725 $\lambda_i(t) = \xi_i I(T_i > t) \left\{ 0.5 - \psi_0 \exp(\nu_i) / \log \epsilon_i + 0.5 X_{1i} + 0.8 X_{2i} \right\},\$ 726 727 where $\lambda_i(t)$ denotes the intensity function at time t for subject i, ξ_i is generated independently 728 from a Gamma-distribution with mean 1 and variance 0.5, and ν_i is independently generated from 729 the uniform distribution in [0, 1]. Additionally, the coefficient ψ_0 is a given constant. Clearly, this 730 intensity model implies the following rate model 731 $E[dN_i(t)|X_{1i}, X_{2i}, \nu_i, \epsilon_i] = I(T_i > t) \{0.5 - \psi_0 \exp(\nu_i) / \log \epsilon_i + 0.5X_{1i} + 0.8X_{2i}\} dt.$ 732 Thus, the corresponding coefficient $\gamma_0 = (0.5, 0.8)^T$. The first component $-\psi_0 \exp(\nu_i) / \log \epsilon_i$ 733 734 reflects the dependence between the rate of the recurrent events and the terminal event. Partic-735

valuarly, when $\psi_0 = 0$, we obtain the situation when the terminal event is non-informative of the recurrent events; when ψ_0 is non-zero, this implies the informativeness of the terminal event. For the latter, we choose $\psi_0 = 1$ in the simulations. Finally, the right-censoring time is generated from the minimum of the uniform distribution in [1.5, 8] and 3, which yields 35% censoring. The average number of the recurrent events per subjects is around 3 to 3.5.

For each simulated data, we first implement the algorithm in Zeng and Lin (2006) to estimate β and Λ as well as their influence functions. The estimator for γ is obtained using the formula (4). The procedure based on the Monte-Carlo resampling method, which was given in the previous section, is used to estimate the asymptotic covariance. Particularly, we use 100 Monte-Carlo samples and find the variance estimation to be fairly accurate. The following two tables sum-

- 745
- 746
- 747 748
- 749

769 marize the results from sample sizes n = 100,200 and 400, with Table 1 from the simulations 770 corresponding to $\psi_0 = 1$ and Table 2 from the simulations corresponding to $\psi_0 = 0$. In the tables, 771 column "Bias" is the average bias from 1000 repetitions; "SE" is the sample standard deviation 772 of the empirical estimates; "ESE" is the average value of the estimated standard errors obtained from the resampling approach; "CP" is the coverage probability of the 95% confidence interval 773 based on the normal approximation. The results indicate that the biases of the estimators are 774 small and decrease quickly with the increasing sample sizes; the estimated standard errors are 775 reasonably close to the empirical standard errors; the confidence intervals all have reasonable 776 nominal levels. 777

For comparison, we also report the results by treating the terminal event as non-informative; that is, we estimate the effects of the covariates on the recurrent event rate by fitting a simple additive rate model as follows:

781

782

$$E[dN(t)|T > t, X] = I(T > t)(dR(t) + X^T \gamma dt).$$

Such naive estimators can be obtained using the same expression (4) except that we set $\hat{\beta} = 0$ and 783 $\hat{\Lambda}(Y) = Y$. Note that our model (2) does not reduce to this model. As expected, the naive estima-784 tors treating the terminal event as non-informative can have very large bias when the recurrent 785 events and the terminal event are actually dependent due to some latent process (i.e., $\psi_0 = 1$) 786 while its bias is small when there are no such dependence (i.e., $\psi_0 = 0$). From the simulation 787 studies, when the recurrent event is independent of the terminal event, our estimators generally 788 have larger variance than the naive estimators, mainly because the latter utilizes the indepen-789 dence information in estimation. However, under the situation when the two types of events are 790 791 actually dependent ($\psi_0 = 1$), the naive estimator produce large bias while our estimator is still 792 approximately unbiased. The ratios between the mean square errors from our method and the

- 793
- 794
- 795 796
- 797

817

DONGLIN ZENG AND JIANWEN CAI

818	14010			counts grown 1	Our ap	proach		Na	ive
819	n	Par.	True	Bias $(\times 10^{-2})$	SE (×10 ⁻²)	ESE (×10 ⁻²)	CP (×10 ⁻²)	Bias $(\times 10^{-2})$	$SE_{(\times 10^{-2})}$
820				(/10)	(/10)	(/10)	(×10)	(×10)	(/10)
821	100	$egin{array}{c} eta_1\ eta_2 \end{array}$	1.0 -0.5	2.6 -0.7	26.2 45.4	26.3 43.6	94.6 94.8	-	-
822		$\gamma_1 \ \gamma_2$	0.5 0.8	2.5 2.9	24.5 40.2	26.8 41.1	96.2 95.0	0.5 0.9	20.4 40.5
823	200	$egin{array}{c} eta_1 \ eta_2 \end{array}$	1.0 -0.5	0.1 -0.8	18.2 31.9	18.4 30.4	94.7 94.0	-	-
824		$\gamma_1 \ \gamma_2$	0.5 0.8	1.4 0.7	17.0 28.1	19.3 29.2	98.3 95.6	0.3 0.1	14.3 27.8
825	400	$egin{array}{c} eta_1\ eta_2 \end{array}$	1.0 -0.5	-1.2 -0.0	13.5 20.9	13.0 21.4	93.4 95.1	-	-
826		$\gamma_1 \ \gamma_2$	0.5 0.8	0.5 0.3	12.3 19.5	13.8 20.7	96.7 95.8	-0.3 -0.4	10.4 19.2
827									
828	native	estima	tors deci	rease from 90	0% to 40%	in estimatir	ng γ_1 when	the sample si	ze increases
829	from 10	00 to 4	00. Thes	se ratios are cl	lose to 1 in e	estimating γ	γ_2 but also de	crease signifi	cantly when
830	the sam	ple siz	ze increa	uses.					
831	We r	epeat	the same	simulation st	udy using th	he same sett	ing except th	hat ϵ is genera	ted from the
832	logistic	distri	bution, t	hat is, the term	minal event	follows the	proportiona	l odds model	. The results
833	and cor	and conclusions are similar (results not shown).							
834									
835									
836					6. REA	l Exampli	E		
837	We a	annly a	our meth	od to analyze	the data fr	om a subor	oun in the A	IDS Links to	Intravenous
838	Experie	ences	(ALIVE)) cohort study	/ (Vlahov e	t al 1991)	In this stud	v a group of	intravenous
839	drug us	ers wi	th HIV i	nfections wei	re followed	between Ar	1001st 1 1993	and Decemb	ner 31 1997
840	where t	the col	llected d	ata included	their in-nati	ent admissi	ons and othe	er variables	The terminal
841	where				inen m-pau			er variables.	
842									
843									
844									
845									

Table 1. Simulation Results from 1000 Repetitions with Non-informative Terminal Events

866		Our approach						Naive		
867	n	Par.	True	Bias	SE	ESE	CP	Bias	SE	
	100	ß.	1.0	$(\times 10^{-2})$	$(\times 10^{-2})$	$(\times 10^{-2})$	$(\times 10^{-2})$	$(\times 10^{-2})$	$(\times 10^{-2})$	
868	100	β_1 β_2	-0.5	-6.8	20.2 45.4	20.3 43.6	94.0 94.8	-	-	
0.00		γ_1	0.5	13.3	47.1	49.5	96.5	42.3	37.7	
869		γ_2	0.8	1.5	80.4	77.1	95.5	-23.8	73.2	
870	200	β_1	1.0	0.1	18.2	18.4	94.7	-	-	
870		β_2	-0.5	-0.8	31.9	30.4	94.0	-	-	
871		γ_1	0.5	7.8	32.5	35.5	96.5	43.6	26.0	
		γ_2	0.8	0.2	54.2	54.2	95.2	-21.6	49.0	
872	400	β_1	1.0	-1.2	13.5	13.0	93.4	-	-	
		β_2	-0.5	-0.0	20.9	21.4	95.1	-	-	
873		γ_1	0.5	3.1	23.5	25.3	96.4	42.2	19.1	
971		γ_2	0.8	0.4	37.9	38.6	93.9	-21.3	33.8	
0/4										
875	event w	vas dea	ath. For il	lustration, w	e only cons	ider the fen	nale patients	of 471 subjec	cts. On aver-	
876	age, ea	ch pat	ient had 1	.3 hospital a	admissions	and there w	ere 83 deaths	s. The interes	t focuses on	
010	1 00				<i>,</i>		、 .			
877	the effe	ects of	the base	line HIV sta	tus (positiv	e vs negativ	ve) and age o	n both recur	rent hospital	
070	admiss	ions aı	nd death.							
8/8										
879	First	, to de	termine tl	ne survival m	nodel for the	death, we d	consider the c	lass of logari	thmic trans-	
880	formati	ions r^{-}	$^{-1}\log(1 - 1)$	+rx) for $G($	(x) by vary	ing r from	0 to 1. The A	AIC criterion	chooses the	
881	best tra	ansforr	nation to	be the prop	ortional ode	ds model (r	r = 1). We th	en proceed t	o fit the ad-	
882	ditive r	ate mo	odel for t	he recurrent	hospital ad	missions us	sing our appr	oach. The re	sult is given	
883	in the f	first ha	lf of Tabl	e 3, which s	hows that t	he HIV pos	itive patients	tended to die	e earlier and	
884	experie	ence m	ore hospi	tal admission	n, as compa	red to the H	IIV negative	patients; the	patient's age	
885	was sig	gnificat	ntly assoc	iated with th	ne death but	not the hos	pital admissi	on.		
886	To a	ssess t	he goodn	ess of fit usi	ng our mod	el, we exan	nine the follo	wing total su	ummation of	
887	the resi	iduals	for each s	subject						
888				$\int^{Y_i} \{ dN_i(t) \}$	$-d\hat{H}(t)$	$x \widehat{\Lambda}(t) = X'_{\overline{z}}$	$(T\hat{\beta}) = X^T \hat{\gamma} d$	$\{t\}$		
889			J	$0 \lfloor a \mid i \mid l \mid l$	un (t, 10)		\sim	~ J ,		
890										

Table 2. Simulation Results from 1000 Repetitions with Informative Terminal Events

DONGLIN ZENG AND JIANWEN CAI

913	Table 3. Analysis of	f HIV Da	ta						
914	Death Model Recurrent					Event M	odel		
915	Covariates	Est	SE	Z-stat	p-value	Est	SE	Z-stat	p-value
916		1 570	Dat	a contair	n all 471 subj	jects	0.057	2 2 5 0	0.010
917	HIV+ VS HIV- Age	0.057	0.278	5.641 3.179	< 0.001 0.001	0.135 0.004	0.057	2.359 1.431	0.018
918			Data e	exclude 1	1 extreme su	ubjects			
919	HIV+ vs HIV- Age	1.651 0.056	0.356 0.021	4.640 2.718	$< 0.001 \\ 0.007$	$0.105 \\ 0.006$	0.044 0.003	2.408 2.178	0.016 0.029
920	11 subjects are those wh	no had at lea	ast 9 admi	ssions.					
921									
922	equivalently,								
923		\int^{Y_i}		157 (() () () () () () () () () () () () () ($\overline{\mathbf{v}}(\mathbf{v}) T \mathbf{\hat{v}}$,)		
924		\int_{0}	$\left\{aN_{i}(t)\right\}$	$-aN_i$	$(X_i - X_i) = (X_i - X_i)$	$(t)^{-} \gamma a$	$\left\{ t \right\}$.		
925	As shown in Section	n 2, whei	n our mo	del is co	orrect, the ab	ove statist	ics shou	ld have a	an approxi-
926	mate mean zero and	be indep	endent o	of X_i . The	erefore, a gra	phical wa	y to asse	ss the mo	odel fit is to
927	plot the above resid	ual quant	ity agair	nst covar	iate X_i . We	plot in Fig	gure 1 th	e summe	d residuals
928	for each subject versus the patient's age within the HIV positive and negative groups respectively.								
929	Overall, we find that	t the resid	duals flu	ctuate ar	ound zero ar	nd appear	to be rar	dom. Th	e residuals
930	for the subjects in H	HIV+ gro	up appea	ar to be s	lightly more	spread-o	ut than tl	ne ones f	for the sub-
931	jects in HIV- group	. In addit	ion, we	notice th	at there are	11 subject	ts who h	ave resid	luals larger
932	than 5. Interestingly	, these su	bjects a	re all ext	reme cases w	vho experi	enced at	least 9 a	dmissions;
933	thus, their observati	ons can b	be very i	nfluentia	l in the mode	el fitting. I	For insta	nce, afte	r removing
934	these subjects, the a	average n	umber o	f the adr	nission reduc	ces to 1.1	1; morec	ver, the	result from
935	the model fit, as giv	ven in the	second	half of 7	Table 3, show	vs that the	age's ef	fect beco	omes much
936	more significant for the recurrent event model.								

	22 DONGLIN ZENG AND JIANWEN CAI
1009	combine the estimators from our method and the artificial censoring approach in an optimal way,
1010	which will guarantee the efficiency improvement. We will explore this approach in the future.
1011	Although we focused on the additive rate model for the recurrent event, our inference method
1012	also applies to the proportional rate model, where the rate function is given as
1013	$E[dN(t) T > t, \mu, X] - I(T > t)e^{X^T\gamma}dR(t, \mu)$
1014	$E[ar(b) r > b, \nu, R] = r(r > b)c ar(b, \nu).$
1015	The same estimating equation can be constructed as in Section 2. However, the interpretation of
1016	the coefficient γ is different between the additive rate model and the proportional rate model.
1017	Finally, we can model the mean function of the recurrent event instead of the rate function by
1018	assuming
1019	$E[N(t) X T > t \mu] - I(T > t) \left\{ B(t \mu) + X^T \gamma t \right\}$
1020	$E[I, (v)]II, I > v, V] = I(I > v) \left[I(v, V) + II - v \right].$
1021	Note that this model may only imply the rate model if X is time-independent.
1022	
1023	ACKNOWLEDGEMENT
1024	This work was partially supported by the National Institutes of Health grant R01-HL57444.
1025	
1026	Appendix
1027	Proof of Theorem 2
1028	To prove Theorem 2, we define $d\mathcal{R}(t) = dN(t) - X^T \gamma_0 dt$ and
1029	$\sum_{i=1}^{n} d\mathcal{R}_{j}(t) I(\Lambda(Y_{j})e^{-X_{j}^{T}\beta} > \Lambda(t)e^{-X^{T}\beta}, X_{j}^{T}\beta \ge X^{T}\beta)$
1030	$d\mathcal{R}(t,X;\beta,\Lambda) = \frac{1}{\sum_{j=1}^{n} I(\Lambda(Y_j)e^{-X_j^T\beta} > \Lambda(t)e^{-X^T\beta}, X_j^T\beta \ge X^T\beta)}.$
1031	Moreover, based on 2.10.4 of van der Vaart and Wellner, the class
1032	$\{\Lambda(Y): \Lambda \text{ is non-decreasing and right-continuous and bounded by } c_0\}$
1033	
1034	
1035	
1036	
1037	

Recurrent Events with Informative Terminal Event

- is a VC-hull class; the same holds for the finite dimensional space $\{X^T\beta : \beta \in \mathbb{R}^d\}$. Thus,
- $\left\{\Lambda(Y)e^{-X^T\beta}: \|\Lambda - \Lambda_0\| + |\beta - \beta_0| < \delta_0\right\}$

is a universally Donsker class. Therefore, from the Glivenko-Cantelli theorem, it is clear that the asymp-

totic limit of $d\overline{\mathcal{R}}(t, X; \beta, \Lambda)$ is equal to

1062
1063
$$\frac{E\left[d\mathcal{R}_{j}(t)I(\Lambda(Y_{j})e^{-X_{j}^{T}\beta} > \Lambda(t)e^{-X^{T}\beta}, X_{j}^{T}\beta \geq X^{T}\beta)\right]}{E\left[I(\Lambda(Y_{j})e^{-X_{j}^{T}\beta} > \Lambda(t)e^{-X^{T}\beta}, X_{j}^{T}\beta \geq X^{T}\beta)\right]},$$

which is denoted as $d\mathcal{R}_0(t, X; \beta, \Lambda)$. Moreover, such convergence is uniformly in $t \in [0, \tau]$, X, and (β, Λ)

is the neighborhood of (β_0, Λ_0) . Similarly, we define the limit of $\overline{X}_i(t)$ as

1066

$$E_0(X,t;\beta,\Lambda) = \frac{E\left[X_j I(\Lambda(Y_j)e^{-X_j^T\beta} > \Lambda(t)e^{-X^T\beta}, X_j^T\beta \ge X^T\beta)\right]}{E\left[I(\Lambda(Y_j)e^{-X_j^T\beta} > \Lambda(t)e^{-X^T\beta}, X_j^T\beta \ge X^T\beta)\right]}$$
1067

evaluated at $X = X_i, \beta = \widehat{\beta}, \Lambda = \widehat{\Lambda}.$

From expression (4), we have

1070
$$\widehat{\gamma} - \gamma_0 = \left[\sum_{i=1}^n \int \omega(t) I(Y_i > t) (X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1}$$

$$\times \left[\sum_{i=1}^n \int \omega(t) I(Y_i > t) (X_i - \overline{X}_i(t)) d\left\{ \mathcal{R}_i(t) - \overline{\mathcal{R}}_i(t; \widehat{\beta}, \widehat{\Lambda}) \right\} \right].$$

Note that with probability one,

1075
$$\frac{1}{n}\sum_{i=1}^{n}\int\omega(t)I(Y_{i}>t)(X_{i}-\overline{X}_{i}(t))^{\otimes 2}dt \to \Sigma_{X} \equiv E\left[\int\omega(t)I(Y>t)\left(X-E_{0}(X,t;\beta_{0},\Lambda_{0})\right)^{\otimes 2}\right].$$

Since $E_0(X, t; \beta_0, \Lambda_0)$ is a function of ϵ and X and ϵ are independent, from condition (C.2), the above limit must be positive definite. Thus, it holds

1079
$$n^{1/2}(\widehat{\gamma} - \gamma_0) = n^{1/2} \left(\Sigma_X + o(1) \right)^{-1} \left[n^{-1} \sum_{i=1}^n \int \omega(t) I(Y_i > t) (X_i - \overline{X}_i(t)) d\left\{ \mathcal{R}_i(t) - \overline{\mathcal{R}}_i(t; \widehat{\beta}, \widehat{\Lambda}) \right\} \right]$$

DONGLIN ZENG AND JIANWEN CAI

1105

$$= n^{1/2} \left(\Sigma_X + o(1) \right)^{-1} \left[n^{-1} \sum_{i=1}^n \int \omega(t) I(Y_i > t) (X_i - E_0(X_i, t; \widehat{\beta}, \widehat{\Lambda})) d \left\{ \mathcal{R}_i(t) - \overline{\mathcal{R}}_i(t; \widehat{\beta}, \widehat{\Lambda}) \right\} \right]$$
1106

$$-n^{1/2} (\Sigma_X + o(1))^{-1} \left[n^{-1} \sum_{i=1}^n \int \omega(t) I(Y_i > t) (\overline{X}_i(t) - E_0(X_i, t; \widehat{\beta}, \widehat{\Lambda})) d\left\{ \mathcal{R}_i(t) - \overline{\mathcal{R}}_i(t; \widehat{\beta}, \widehat{\Lambda}) \right\} \right].$$
(A.1)

On the other hand, we note

1111
$$\overline{\mathcal{R}}_i(t;\widehat{\beta},\widehat{\Lambda}) - \mathcal{R}_0(X_i,t;\beta_0,\Lambda_0)$$

1113
$$= [\overline{\mathcal{R}}_i(t;\widehat{\beta},\widehat{\Lambda}) - \mathcal{R}_0(X_i,t;\widehat{\beta},\widehat{\Lambda})] + [\mathcal{R}_0(X_i,t;\widehat{\beta},\widehat{\Lambda}) - \mathcal{R}_0(X_i,t;\beta_0,\Lambda_0)].$$
(A.2)

The first term of (A.2) can be rewritten

1115
1116
$$\frac{\left(\mathcal{P}_{n}-\mathcal{P}\right)\left[\mathcal{R}(t)I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-X_{i}^{T}\beta_{0}}, X^{T}\beta_{0} \geq X_{i}^{T}\beta_{0})\right]}{E\left[I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-X_{i}^{T}\beta_{0}}, X^{T}\beta_{0} \geq X_{i}^{T}\beta_{0})\right]}$$

1118
$$-\frac{E\left[\mathcal{R}(t)I(\Lambda_0(Y)e^{-X^T\beta_0} > \Lambda_0(t)e^{-X_i^T\beta_0}, X^T\beta_0 \ge X_i^T\beta_0)\right]}{\Gamma}$$

$$E\left[I(\Lambda_0(Y)e^{-X^T\beta_0} > \Lambda_0(t)e^{-X_i^T\beta_0}, X^T\beta_0 \ge X_i^T\beta_0)\right]^2$$
1119

1120

$$\times (\mathcal{P}_n - \mathcal{P}) \left[I(\Lambda_0(Y)e^{-X^T\beta_0} > \Lambda_0(t)e^{-X_i^T\beta_0}, X^T\beta_0 \ge X_i^T\beta_0) \right] + o_p(n^{-1/2}).$$
(A.3)
1121

Using the mean-value theorem, the second term of (A.2) becomes

1123

$$\nabla_{\beta} \frac{E\left[\mathcal{R}(t)I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-X_{i}^{T}\beta_{0}}, X^{T}\beta_{0} \ge X_{i}^{T}\beta_{0})\right]}{E\left[I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-X_{i}^{T}\beta_{0}}, X^{T}\beta_{0} \ge X_{i}^{T}\beta_{0})\right]}(\widehat{\beta} - \beta_{0})$$
1124

1125
1126
$$+\nabla_{\Lambda} \frac{E\left[\mathcal{R}(t)I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-X_{i}^{T}\beta_{0}}, X^{T}\beta_{0} \ge X_{i}^{T}\beta_{0})\right]}{E\left[I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-X_{i}^{T}\beta_{0}}, X^{T}\beta_{0} \ge X_{i}^{T}\beta_{0})\right]^{2}} [\widehat{\Lambda} - \Lambda_{0}] + o_{p}(n^{-1/2}), \quad (A.4)$$

where ∇_{β} denotes the derivative with respect to β and ∇_{Λ} denotes the Hadmard derivative with respect to Λ . Therefore, $\mathcal{R}_{i}(t) - \overline{\mathcal{R}}_{i}(t;\widehat{\beta},\widehat{\Lambda}) = \mathcal{R}_{i}(t) - \mathcal{R}_{0}(X_{i},t;\beta_{0},\Lambda_{0})$ $-(\mathcal{P}_n-\mathcal{P})S_1(O;\beta_0,\Lambda_0,X_i,t)-\mathcal{I}(X_i,t)(\widehat{\beta}-\beta_0,\widehat{\Lambda}-\Lambda_0)+o_n(n^{-1/2}),$ where O denotes the observed statistic, $S_1(O; \beta_0, \Lambda_0, X_i, t)$ is the influence function given in equation (A.3), and \mathcal{I} is the linear operator as given in equation (A.4). Consequently, since $\sup_{i,t} |\overline{X}_i(t) - E_0(X_i, t; \widehat{\beta}, \widehat{\Lambda})| \to 0$, (A.1) gives $n^{1/2}(\widehat{\gamma}-\gamma_0)$ $= n^{1/2} \left(\Sigma_X + o(1) \right)^{-1} \left| n^{-1} \sum_{i=1}^n \int \omega(t) I(Y_i > t) (X_i - E_0(X_i, t; \hat{\beta}, \widehat{\Lambda})) d\left\{ R_i(t) - \mathcal{R}_0(X_i, t; \beta_0, \Lambda_0) \right\} \right|$ $-(\mathcal{P}_n-\mathcal{P})S_1(O;\beta_0,\Lambda_0,X_i,t)-\mathcal{I}(X_i)(\widehat{\beta}-\beta_0,\widehat{\Lambda}-\Lambda_0)\Big\}\Big]+o_p(1)$ $= n^{1/2} \Sigma_X^{-1}(\mathcal{P}_n - \mathcal{P}) \left[\int \omega(t) I(Y > t) (X - E_0(X, t; \beta_0, \Lambda_0)) d(R(t) - \mathcal{R}_0(X, t; \beta_0, \Lambda_0)) \right]$ $-n^{1/2}\Sigma_X^{-1}(\mathcal{P}_n-\mathcal{P})\widetilde{E}\left[\int \omega(t)I(\widetilde{Y}>t)(\widetilde{X}-E_0(\widetilde{X},t;\beta_0,\Lambda_0))dS_1(O;\beta_0,\Lambda_0,\widetilde{X},t)\right]$ $-n^{1/2}\Sigma_X^{-1}(\mathcal{P}_n-\mathcal{P})\widetilde{E}\left[\int \omega(t)I(\widetilde{Y}>t)(\widetilde{X}-E_0(\widetilde{X},t;\beta_0,\Lambda_0))d\mathcal{I}(\widetilde{X},t)[S_\beta,S_\Lambda]\right]$ $+o_p(1).$ Here, \widetilde{E} is the expectation with respect to $(\widetilde{Y}, \widetilde{X})$. The asymptotic distribution for $n^{1/2}(\widehat{\beta} - \beta_0, \widehat{\Lambda} - \Lambda_0, \widehat{\gamma} - \gamma_0)$ thus follows from the above expansion and the expansions in (5). Proof of Theorem 3

DONGLIN ZENG AND JIANWEN CAI

We examine Ω_1, Ω_2 and $\Omega_3 - \hat{\gamma}$ separately. Clearly, using the same notation as in the proof of Theorem 2,

1203
1204
$$\Omega_1 = \left[n^{-1} \sum_{i=1}^n \int I(Y_i > t) \omega(t) (X_i - \overline{X}_i(t))^{\otimes 2} dt \right]^{-1} \times$$

1205
1206
$$n^{-1}\left[\sum_{i=1}^{n} \mathcal{Z}_{i} \int I(Y_{i} \ge t)\omega(t)(X_{i} - \overline{X}_{i}(t)) \left\{ dR_{i}(t) - d\overline{R}_{i}(t;\widehat{\beta},\widehat{\Lambda}) \right\} \right].$$

Since the first term converges to Σ_X almost surely and $\overline{R}_i(t; \hat{\beta}, \hat{\Lambda})$ converges to $\mathcal{R}_0(X_i, t; \beta_0, \Lambda_0)$ and belongs to some Donsker class, we use Theorem 3.6.13 in van der Vaart and Wellner (1996) and conclude that conditional on data,

1210

$$\Omega_{1} = \Sigma_{X}^{-1} n^{-1} \left[\sum_{i=1}^{n} \mathcal{Z}_{i} \int I(Y_{i} > t) \omega(t) (X_{i} - E_{0}(X_{i}, t; \beta_{0}, \Lambda_{0})) \left\{ d\mathcal{R}_{i}(t) - d\mathcal{R}_{0}(X_{i}, t; \beta_{0}, \Lambda_{0}) \right\} \right]$$
1211

1212
$$+o_p(n^{-1/2}).$$

Similarly, we have

1215
$$\Omega_2 = -\frac{1}{n} \Sigma_X^{-1} \sum_{j=1}^n \mathcal{Z}_j \widetilde{E} \left[\int I(\widetilde{Y} > t) \omega(t) (\widetilde{X} - E_0(\widetilde{X}, t; \beta_0, \Lambda_0)) \right]$$

1216
1217
$$\times \frac{(dN_j(t) - X_j^T \gamma) I(\Lambda_0(Y_j) e^{-X_j^T \beta_0} > \Lambda_0(t) e^{-\widetilde{X}^T \beta_0}, X_j^T \beta_0 \ge \widetilde{X}^T \beta_0)}{E\left[I(\Lambda_0(Y) e^{-X^T \beta_0} > \Lambda_0(t) e^{-\widetilde{X}^T \beta_0}, X^T \beta_0 \ge \widetilde{X}^T \beta_0)\right]}$$

1218
$$+\frac{1}{n}\sum_{X}^{-1}\sum_{j=1}^{n}\mathcal{Z}_{j}\widetilde{E}\left[\int\omega(t)I(\widetilde{Y}>t)(\widetilde{X}-E_{0}(\widetilde{X},t;\beta_{0},\Lambda_{0}))\right]$$

1219
$$\times I(\Lambda_0(Y_j)e^{-X_j^T\beta_0} > \Lambda_0(t)e^{-\widetilde{X}^T\beta_0}, X_j^T\beta_0 \ge \widetilde{X}^T\beta_0)$$

1220
1220
$$\times \frac{E\left[(dN(t) - X^{T}\gamma_{0}dt)I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-\widetilde{X}^{T}\beta_{0}}, X^{T}\beta_{0} \ge \widetilde{X}^{T}\beta_{0})\right]}{E\left[I(\Lambda_{0}(Y)e^{-X^{T}\beta_{0}} > \Lambda_{0}(t)e^{-\widetilde{X}^{T}\beta_{0}}, X^{T}\beta_{0} \ge \widetilde{X}^{T}\beta_{0})\right]^{2}}$$

$$+o_{p}(n^{-1/2})$$

$$+o_p(n^{-1})$$

1222
1223
$$= \frac{1}{n} \Sigma_X^{-1} \sum_{i=1}^n \mathcal{Z}_i \tilde{E} \left[\int \omega(t) I(\tilde{Y} > t) (\tilde{X} - E_0(\tilde{X}, t; \beta_0, \lambda_0)) dS_1(O_i; \beta_0, \Lambda_0, \tilde{X}, t) \right] + o_p(n^{-1/2}).$$

1249 Finally,

1250
1251
$$\Omega_3 - \widehat{\gamma} = \left[\sum_{i=1}^n \int I(Y_i > t)\omega(t)(X_i - \overline{X}_i(t))^{\otimes 2} dt\right]^{-1} \times$$

1252
1253
$$\left[\sum_{i=1}^{n} \mathcal{Z}_{i} \int I(Y_{i} \geq t) \omega(t)(X_{i} - \overline{X}_{i}(t)) \left\{ d(\overline{R}_{i}(t; \widetilde{\beta}, \widetilde{\Lambda}) - \overline{R}_{i}(t; \widehat{\beta}, \widehat{\Lambda})) \right\} \right].$$

On the other hand,

Note that

$$\overline{\mathcal{R}}_i(t;\widetilde{\beta},\widetilde{\Lambda}) - \overline{\mathcal{R}}_i(X,t;\widehat{\beta},\widehat{\Lambda}) = \overline{\mathcal{R}}_i(t;\widetilde{\beta},\widetilde{\Lambda}) - \mathcal{R}_0(X_i,t;\widetilde{\beta},\widetilde{\Lambda}) - \left\{\overline{\mathcal{R}}_i(t;\widehat{\beta},\widehat{\Lambda}) - \mathcal{R}_0(X_i,t;\widehat{\beta},\widehat{\Lambda})\right\}$$

 $+\{\mathcal{R}_0(X_i,t;\widetilde{\beta},\widetilde{\Lambda}) - \mathcal{R}_0(X_i,t;\widehat{\beta},\widehat{\Lambda})\}.$ (A.5)

1260
$$\overline{\mathcal{R}}_{i}(t;\widetilde{\beta},\widetilde{\Lambda}) - \mathcal{R}_{0}(X_{i},t;\widetilde{\beta},\widetilde{\Lambda}) - \left\{\overline{\mathcal{R}}_{i}(t;\widehat{\beta},\widehat{\Lambda}) - \mathcal{R}_{0}(X_{i},t;\widehat{\beta},\widehat{\Lambda})\right\}$$

1262
$$= (\mathcal{P}_n - \mathcal{P}) \left[S_1(O; \widetilde{\beta}, \widetilde{\Lambda}, X_i, t) - S_1(O; \widehat{\beta}, \widehat{\Lambda}, X_i, t) \right] = o_p(n^{-1/2})$$

and that the last term in (A.5), by the Taylor expansion, is equal to

1265
$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{I}(X_{i},t)[\widetilde{\beta}-\widehat{\beta},\widetilde{\Lambda}-\widehat{\Lambda}]+o_{p}(n^{-1/2})$$

1267
$$= \frac{1}{n} \sum_{i=1}^{n} \mathcal{Z}_{i} \mathcal{I}(X_{i}, t)[S_{\beta}, S_{\Lambda}] + o_{p}(n^{-1/2})$$
1268

Hence, from the influence function for $\widehat{\gamma}$ as derived in proving Theorem 2, we obtain

1270
$$\Omega_1 + \Omega_2 + (\Omega_3 - \hat{\gamma}) = \frac{1}{n} \sum_{i=1}^n \mathcal{Z}_i S_\gamma(N_i, Y_i, \Delta_i, X_i; \beta_0, \Lambda_0) + o_p(n^{-1/2}).$$
1271

- Theorem 3 thus holds from Theorem 3.6.13 in van der Vaart and Wellner (1996).

	28 DONGLIN ZENG AND JIANWEN CAI
1297	REFERENCES
1298	
1299	
1300	Abrams, D. I., Goldman, A. I., Launer, C., Korvick, J. A., Neaton, J. D., Crane, L. R., Grodesky, M.,
1301	Wakefield, S., Muth, K., Kornegay, S., Cohn, D. L., Harris, A., Luskin-Hwark, R., Markowitz, N.,
1302	Sampson, J. H., Thompson, M., Deyton, L. (1994). A comparative trial of Didanosine or Zalcitabine
1303	after treatment with Zidovudine in patients with human immunodeficiency virus infection. New Eng-
1304	land Journal of Medicine 330, 657-662.
1305	Andersen, P. K. and Gill, R. D. (1982). Cox's regression model for counting processes: a large sample
1306	study. The Annals of Statistics 10, 1100-1200.
1307	Cook, R. J. and Lawless, J. F. (1997). Marginal analysis of recurrent events and a terminal event. Statistics
1308	in Medicine 16, 911-924.
1309	Ghosh, D. and Lin, D. Y. (2000). Nonparametric analysis of recurrent events and death. Biometrics 56,
1310	554-562.
1311	Ghosh, D. and Lin, D. Y. (2002). Marginal regression models for recurrent and terminal events. Statistica
1312	Sinica 12, 663-688.
1313	Ghosh, D. and Lin, D. Y. (2003). Semiparametric analysis of recurrent events data in the presence of
1314	dependent censoring. Biometrics 59, 877-885.
1315	Huang, C. and Wang, M. (2004). Joint modeling and estimation for recurrent event processes and failure
1316	time data. Journal of the American Statistical Association 99, 1153-1165.
1317	Lawless LE and Nadeau C (1995). Some simple robust methods for the analysis of recurrent events
1318	Technometrics 37, 158-168.
1319	
1320	Lin, D. Y., Robins, J. M. and Wei, L. J. (1996). Comparing two failure time distributions in the presence
1321	of dependent censoring. <i>Biometrika</i> 83, 381-393.
1322	
1323	
1324	

Recurrent Events with Informative Terminal Event

1345	Lin, D.Y., Wei, L.J., Yang, I. and Ying, Z. (2000). Semiparametric regression fort he mean and rate func-
1346	tions of recurrent events. Journal of the Royal Statistical Society B 62, 711-730.
1347	Lin, D.Y. and Ying, Z. (1994). Semiparametric analysis of the additive risk model. <i>Biometrika</i> 81, 61-71.
1348	Liu, L., Wolfe, R. A., and Huang, X. (2004). Shared frailty models for recurrent events and a terminal
1349	event. Biometrics 60, 747-756.
1350	McKeague, I. W. and Sasieni, P. D. (1994). A partly parametric additive risk model. Biometrika 81 501-
1351	514.
1352	Miloslavsky, M., Keles, M., van der Laan, M. J. and Butler, S. (2004). Recurrent events analysis in the
1353	presence of time-dependent covariates and dependent censoring. Journal of the Royal Statistical
1354	Society, Serie B 66, 239-257.
1355	Neaton, J. D., Wentworth, D. N., Rhame, F., Hogan, C., Abrams, D. I., and Deyton, L. (1994). Consider-
1356	ation in choice of a clinical endpoint for AIDS clinical trials. Statistics in Medicine 13, 2107-2125.
1357	Pepe, M. and Cai, J.(1993). Some graphical displays and marginal regression analysis for recurrent failure
1358	times and time dependent covariates, Journal of the American Statistical Association 88, 811-820.
1359	Prentice, R. L., Williams, B. J., and Peterson, A. V. (1981). On the regression analysis of multivariate
1360	failure time data. Biometrika 68, 373-379.
1361	Schaubel, D.E., Zeng, D. and Cai, J. (2006). A semiparametric additive rates model for recurrent event
1362	data. Lifetime Data Analysis 12, 386-406.
1363	Vlahov, D., Anthony, J. C., Muňoz, A., Margolick, J., Nelson, K.E., Celentano, D. D., Solomon, L., and
1364	Polk, B. F. (1991). The ALIVE study: A longitudinal study of HIV-1 infection in intravenous drug
1365	users: Description of methods. Journal of Drug Issues 21, 758-776.
1366	van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. New York:
1367	Springer-Verlag.
1368	
1369	
1370	
1371	
1372	

	30	DONGLIN ZENG AND JIANWEN CAI
1393	Vlahov, D., Antho	ony, J. C., Muňoz, A., Margolick, J., Nelson, K.E., Celentano, D. D., Solomon, L., and
1394	Polk, B. F. ((1991). The ALIVE study: A longitudinal study of HIV-1 infection in intravenous drug
1395	users: Descri	ription of methods. Journal of Drug Issues 21, 758-776.
1396	Wang, M., Qin, J	J., and Chiang, C. (2001). Analyzing recurrent event data with informative censoring.
1397	Journal of th	he American Statistical Association 96, 1057-1065.
1398	Zeng, D. and Lin,	, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting
1399	processes. Bi	<i>Biometrika</i> 93, 627-640.
1400	Zeng, D. and Lir	n, D. Y. (2009). Semiparametric transformation models with random effects for joint
1401	analysis of re	recurrent and terminal events. Biometrics, in press.
1402		
1403		
1404		
1405		
1406		
1407		
1408		
1409		
1410		
1411		
1412		
1413		
1414		
1415		
1416		
1417		
1418		
1419		
1420		
1421		