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SUMMARY

We propose a semiparametric additive rate model for modelling recurrent events in the pres-
ence of the terminal event. The dependence between recurrent events and terminal event is fully
nonparametric and is due to some latent process in the baseline rate function. Additionally, a
general transformation model is used to model the terminal event given covariates. We construct
an estimating equation for parameter estimation. The asymptotic distributions of the proposed
estimators are derived. Simulation studies demonstrate that the proposed inference procedure

performs well in realistic settings. Application to a medical study is presented.

Some key word@\dditive rate model; Estimating equation; Recurrent event; Terminal event; Transformation models.

1. INTRODUCTION

Recurrent events are common in medical practice or epidemiologic studies when each sub-
ject experiences a particular event repeatedly over time. Examples of recurrent events include

multiple infection episodes, tumor recurrences, and repeated drug use. Interest of recurrent event
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2 DONGLIN ZENG AND JIANWEN CAI

analysis usually focuses on identifying risk factors which may elevate or decrease the frequencies
of recurrent events.

In most practices, recurrent event times are subject to censoring. One typical censoring is
caused by the termination of the follow-up due to the subject’s death. Such terminating censor-
ship is very likely informative about the recurrent events so it should be accounted for in the
analysis. In the literature, most of the existing methods on recurrent event analysis (e.g., Ander-
sen and Gill, 1982; Prentice, Williams and Peterson, 1981; Wei, Lin and Weissfeld, 1989) require
non-informative censorship and may yield misleading results when recurrent event times are ac-
tually informatively censored. Recently, jointly modelling both recurrent events and terminal
event through shared frailty or random-effects have been developed. Such joint models attribute
the association between the two types of events to some latent effects, which are included in
the regression models either as frailty or random effects. For example, Wang, Qin and Chiang
(2001) and Huang and Wang (2004) studied a shared frailty model with proportional intensity
and proportional hazards assumptions for recurrent events and the terminal event, respectively.
The model allows an unknown distribution for the shared frailty. Liu, Wolfe and Huang (2004)
considered the same model but assumed a gamma frailty distribution. In a recent paper, Zeng
and Lin (2009) studied the general transformation models in this joint modelling approach. For
all these joint modelling approaches, one strong assumption is that the dependence between the
recurrent events and the terminal event is modelled via an explicit and parametric latent effect,
which may not be true in practice. The computation involved in the joint modelling approach is
usually intensive.

Compared to the intensity models used in the joint modelling approaches mentioned above,
rate models have also been popular in analyzing recurrent events because the regression coeffi-

cients reflect the covariate effects on the frequency of the recurrent events which is practically
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Recurrent Events with Informative Terminal Event 3

more intuitive. Examples include the proportional rate model or its transformed form as proposed
by Pepe and Cai (1993), Lawless and Nadeau (1995) and Lin, Wei, Yang and Ying (2000). All
these models assume the effect of the covariates to be multiplicative and the non-informative
censoring. Work on extension to incorporating the informative terminal event is limited: Cook
and Lawless (1997) studied the mean and rate of the recurrent events among survivors at certain
time points. Ghosh and Lin (2000) proposed an nonparametric estimator for the rate function of
the recurrent event by incorporating the survival probabilities of the terminal event. They fur-
ther considered the proportional rate model with covariates in Ghosh and Lin (2002), where the
inverse probability weighted estimating equation was used to obtain the consistent estimators
for the regression coefficients. An expanded version of the same type of the inverse weighted
estimating equation was adopted to improve the efficiency in Miloslavsky et al (2004) for the
proportional rate model.

A useful and important alternative to the proportional rate model is the additive rate model,
where the true underlying covariate effects may add to, rather than multiply, the baseline event
rate. As pointed out in Schaubel et al (2006), in many practical applications, an additive model
may indeed be more appropriate, particularly with respect to continuous covariates. In situations
where the additive and multiplicative models fit the data equally well, the additive model may
be preferred due to the interpretation of the regression parameter. For the additive rate model as
given in Lin and Ying (1994), no work has been done to incorporate the informative terminal
event.

In this paper, we focus on the additive rate model for recurrent events. Only covariates of in-
terest are parametrically modelled as an additive component in this model. In our additive model,

the baseline rate function is nonparametric and depends on some latent random variables which
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4 DONGLIN ZENG AND JIANWEN CAI

are associated with the terminal event. However, such an association is fully nonparametric. A

general transformation model (Zeng and Lin, 2006) is used for modelling terminal event.

2. MODELS AND INFERENCE
2-1. Models

Let N(¢) denote the counting process associated with recurrent event afiddtote the
terminal event time. The covariates of interest are denotel byor the terminal event timé,

we assume the following linear transformation model
A(tX) = Ge™ PA@)), (1)

whereA (t| X) is the conditional hazard function @fgiven X, A(-) is an unknown and monotone
transformation withA(0) = 0 andG is a given transformation function. The usual proportional
hazards model and the proportional odds model are both special cases of the linear transformation

model withG(z) = x andG(x) = log(1 + z). Note that model (1) is equivalent to
log A(T) = XT5 +e,

where ¢ is an independent error following a distribution with cumulative density function

1 — e~ G(¢), For the recurrent event process, we iebe subject-specific latent effect which

is independent o and may be associated with the terminal event residuabr any timet,

givenr andT > t, we assume that the rate of the recurrent event attilméndependent of .
Furthermore, we model this rate function of the recurrent event process via an additive model by

assuming

E[N®)|X, T > t,v] = [(T > t) {dR(t,v) + XTydt}, (2)
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Recurrent Events with Informative Terminal Event 5

where R(t,v) is the subject-specific baseline cumulative rate function and assumed to be un-
known. MoreoverR(0, ) = 0 andR(t, v) is an increasing function affor ¢ < T'. Particularly,

the parametety represents the rate difference for one unit chang& ifor a given subject-
specific latent effect. The latent effect explains the dependence between the recurrent event

process and the terminal event.

2.2. Inference Procedure

Suppose that we observed data frei.d subjects subject to right censoring. We denote them

as
Yi=TiNC;, A =I1(T; <)

and(N;(t),t <Y;)fori =1,...,n, whereC; is censoring time for subjeé¢tT; A C; is the min-
imum of 7; andC;, andI(T; < C;) is the failure indicator. We assume that the right-censoring
is noninformative satisfying that; is independent of, N;(¢) and7; given X;.

Our goal is to estimatg and~. First, we use the survival dat&;, A;, X;),i = 1,...,n, to
estimate the parameters in model (1). Particularly, the nonparametric maximum likelihood esti-
mation approach (Zeng and Lin, 2006) is used to derive the estimatéafadA and we denote
the estimates a@ andA respectively. That is@ andA maximize
11 [{A{meX? PG (AT exp {—G(AY)e T ﬁ)}} ,
=1
whereA{t} denotes the jump size df att. The details of computin@ andA can be found in
Zeng and Lin (2006).

To estimatey, sinceT can be censored, we may not be able to estimate the rate function given

T directly; instead, we need to consider the observed rate function given the observed end point
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6 DONGLIN ZENG AND JIANWEN CAI

Y. From model (2), we have
EAN@®)|X,Y > 1] = (Y > ) {dB[R(t,V)|X,Y > ] + X ydt} .
SinceC is independent of andT’ given X,
E[R(t,v)|X,Y > t] = E[R(t,v)|X,T > t] = E[R(t,v)|X,e > log A(t) — X1 ].
Following the assumption th&t, ) are independent of, we obtain

ElAN@®)|X,Y > 1] = I(V > 1) {dE[R(t, Ve > s]

T
s=log A(t)—XTg3 +X th}' (3)

Thus, if definedH (t, s) asE[dR(t,v)|e > s], then itis necessary to be able to estim&t&t, s)

using the observed data. Note that from the fact) is independent ok andC, we have

E[dR(t,v)I(e > s)] _ EldR(t,v)[(A(Y)e X % > ¢%)g(X)]

PRVl o1 = =50 9T = BIAY)e 7 > e)g(X)

for any integrable functiow(X). Particularly, we choosg(X) to be of the formI(X7 3 >

log A(t) — s) so that both\ (Y)e X" # > e5 and X7 3 > log A(t) — s impliesY > t. Then,

AN (t) — XTydt) I(A(Y)e "8 > e5, XT3 > log A(t) — s)]
E[I(AY)eX"8 > es, XT3 > log A(t) — s)]

EldR(t, )| > 5] = 2L

Hence, we can estimati (¢, s) using the empirical observations as

1y (AN (1) = XTydt) I(A(Y;)e ™77 > e, XTB > log A(t) — )
" IA(Y)e 7P > es, XT3 > log A(t) — )

dH(t,s) =
From (3), this implies that the following term

1(Y; > t) {dNi(t) — dH(t,log A(t) - X B) — X[ ydt
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Recurrent Events with Informative Terminal Event 7

has mean approximating zero giv&Rp; equivalently, if define

SR dN(OI(R(Y))e P > A()e X0 XT R > XT )

dNi(t) = 7 p =
" I(A(Y))e 5>A() —X08 XTR > XTB)
and
“XIB S A(e-XTB XTG> xT3
Xi(t) = 2= X;I(A(Y))e . > A(t)e , X5 6> X, 6)7
LV IA))e ™7 > A(t)e XT3, XT5 > XTH)
then

I(Y; > 1) {dNi(t) — dNi(t) — (X; = Xi(1)) el

is approximately zero for giverx;.

Hence, to estimate, we propose the following estimating equation for inference:

z / 1(%; > £)(X; = Xi(t)) {dNi(t) — dNi(t) — (X; — X;(t)) Tt } =

wherew(t) is any deterministic weight function. Equivalently, the estimatorfodenoted a§,

is given as

lZ/IY>t )X, — X())®2dt] [Z/IY>t )X — X()){dNi(t)—dNi(t)}].
(4)
Note that there is some possibility that the denominator in the calculatioN d@f ) and X; (),

ie.,
S IR > Re X P XTB = xTH),

could be zero. In this case, we defih as zero so that the correspondily; (¢) and X ;(¢) are

Z€eros.
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337 2.3. Extension to time-dependent covariates
338 Our model and inference method can be extended to incorporate external time-dependent co-
339 variatesX (¢) in the above formulation. Particularly, whed(t) is time-dependent, the transfor-
340 mation model (1) for the terminal event becomes
341 .
A(HX) = G( / e XOTBGN(s)),
342 0
343 whereA(t|X) is the conditional hazard function @f given X. The above model is also equiva-
344 lent to
345
log/ BdA (s) =

346
347 wheree is independent o with cumulative density function — exp{—G(e€)}. Thus, if we
348 re-defined N;(t) as
> 1 AN OIS e 5O BdR(s) > [ e BaR(s), Jie o0 "BaR(s) < J{ e Pak(s))
350 P I(Jy? e XIOTBAN(s) > [ e XTBAR(s), [ e X BaR(s) < [ e~ X1 BdR(s))
351 and redefineX;(t) as
352 X7 e X BdR(s) > [ e X9 BaR (s) f e X BgR(s) < [t e X BR(s))
353 i ( fo e XiTBAR(s) > [ e X TBAA(s), [ e=XiTFAR(s) < [ e Xi)TBdA(s))
354 then an estimator foy is given similar to (4) as
355 n “1ron

[Z [ 10> DX —XAt))@?dt] [Z [ 107 = Du(Xi(e) - i) {ani(t) - dVite >}]
356 i=1 i=1
357
358

3. ASYMPTOTICRESULTS
359 o
We provide the asymptotic results for the estimatgts\) andy, assumingX and its effect

360

to be time-independent. The same results apply to the case Wheantains time-dependent
361
362
363
364

365
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Recurrent Events with Informative Terminal Event 9

components. We need the following assumptions.

(C.1) The true parametel, belongs to a known compact set and the hazards funadijot) is
continuously differentiable and strictly increasing[in 7], wherer is the study duration and
assumed to be finite.

(C.2) CovariatesY are bounded and satisfy the following conditionaif + o X = 0 with
probability one, themyy = 0 anda; = 0.

(C.3) Transformation functiods(z) is three-times continuously differentiable and strictly in-

creasing. Moreover, there exists a positive constgisuch that

lim sup (14 2)?e %" < oo, lim sup (1 + z)""G (2)e @) < .

T—00 r—0o0

(C.4) There exists some positive constansuch thatP(C' > 7| .X) > do.

The conditions in both (C.1) and (C.4) are standard in the practice of survival analysis con-
text. Condition (C.2) is equivalent to saying that the design métriX| is full rank with some
positive probability. Condition (C.3) stipulates the tail behavior of the transformation func-
tion G(x). It is easy to check that transformatio6§x) = p=! {(1 + 2)? — 1} for p > 0 and
G(z) = r~tlog(1 + rx) for r > 0 satisfy this condition. The same condition is used in Zeng
and Lin (2006) for transformation models.

The first result concerns the asymptotic distributior(@ff\), which has been given in Zeng
and Lin (2006). We quote this result in the following theorem.

Theorem 1 (from Zeng and Lin, 2006) Under conditions (C.1)-(C.4}3, A) are strongly con-

sistent in the sense

18— Bol + sup [A(t) — Ao(t)] —as. 0;
te[0,7]
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10 DONGLIN ZENG AND JIANWEN CAI

moreover,nl/z(ﬁ— Bo, A — Ag) converges in distribution to a tight Gaussian process in the
metric spacek? x [°°[0, 7], whered is the dimension off; and*>[0, 7] consists all the bounded
function in[0, 7] equipped with the supreme norm.

Furthermore, according to Zeng and Lin (2006), we have the following asymptotic linear ex-

pansion for3 andA:

n'2(3 = Bo) = GnSs(Y, A, X; Bo, M) + 0,(1),

nY2(A(t) — Ao(t)) = GuSA(Y, A, X, t; B0, Ao) + 0p(1), (5)

whereSz andS, are the respective influence function ﬁ)landf\, G, Is the empirical process
defined asnl/Q(Pn — P) with P,, being the empirical measure afl being its expectation,
ando,(1) denotes the random element converging to zero in probability in the metric space of
Theorem 1. Moreover, using the consistent estimator of the information matrixdod A as
given in Zeng and Lin (2006), we can estimatg and S, consistently in the uniform sense of
(Y, A, X) andt € [0, 7]; so we denote such estimatorsé\aﬁand& respectively.

The following theorem gives the asymptotic distributionfor

Theorem 2 Under conditions (C.1)-(C.4),
n'/2(3 = 0) = GuS+(N, Y, A, X; Bo, 70, Ao) + 0p(1),

wheresS, is the mean-zero influence function ferand is given in the appendix. As the result,
n'/2(3 — ~40) converges in distribution to a mean-zero Gaussian distribution with varlanee
Var(S,).

We need to estimate the asymptotic covariancg.dflowever, sinces,, is complicated and

involves the Hadamard derivatives in the metric space of Theorem 1, direct estimaipis oot
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Recurrent Events with Informative Terminal Event 11

feasible. Therefore, we propose the following Monte-Carlo method: from the proof of Theorem
2, we note that in the expression (§)s variation only comes from the teri;(t) — N;(t) and
the variation in the empirical summations in the numerator and denominados(of, as well as
the plug-in estimato(ﬁ, K). Therefore, we wish to use the Monte-Carlo method to capture all
these variations.

Specifically, we generatei.i.d random variable€., ..., Z, from the standard normal distri-
bution. Then the contribution s variation due taV;(t) — N,(t) in expression (4) is equivalent

to the variation of the following function afz,, ..., Z,,),

n -1
0 = [;/I(Y > Hw(t)(X; —Xi(t))®2dt] X

[Z 2, [ 10 = () (X, - Xu(e) {dVifo) - dM(t)}] :
=1

given the observed data. The contribution due to the numerator and denominafeft piis

equivalent to

~ N ~XTB _ R (n.—XTB 5 5
X0 25N (1) = XTRA)TA(Yy)e 7 > R()e P XT B > XTB)
" IA(Y)e ™ > Mt)e X8 XTE > XTB)

~ " “XTB v (no-XTB T3 ~
S0 (AN (1) = XTAd0IR(Y)e P > R()eXIP, X7 5 > X )

+ - ~ 2
(S5 1R 037 > Rye 05, X152 x75))

(znjl ZI(A(Y)e TP > R(t)e X1 XTF > X?@)) H :
=
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12 DONGLIN ZENG AND JIANWEN CAI

Finally, to account for the variation in estimatiggand A, we generate
~ .1 ~ ~ ~ 1 & ~
i=1 i=1

We then obtain

x [zn:/f(Y > Hw(t)(X; — Xi(t)) {dNi(t) - dﬁi(t)}] 7

whereN;(t) is defined the same way a;(t) except that 3, A) is replaced with{ 3, A). Thus,
intuitively, the pure variation due g3, A) is reflected i3 — 3.

We combine all these together and obtain one statistic
v =0 + Q2 + Q3.

We repeat such Monte-Carlo method a number of times. The sample variation of these generated
statistics{7} is considered as an estimator for the asymptotic covariange of

The following theorem justifies the validity of the above Monte-Carlo method, whose proof is
given in the appendix.
Theorem 3 Let £z denote the conditional expectation with respectZlg..., Z, given the

observed data. Then
Ez [(7}’ - 'AY)®2} —p 27-

The proof of Theorem 2 utilizes the theory of empirical process and Theorem 1. Particularly,
we expandn!/2(3 — vp) linearly as the summation of independent components. The proof of

Theorem 3 is in the same spirit as of Theorem 2. All the details are given in the appendix.
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Recurrent Events with Informative Terminal Event 13

4. PARTLY LINEAR ADDITIVE RISK MODEL

In this section, we consider an even more general model for the recurrent events called partly
parametric additive risk model. In this model, we allow some covariates to have time-dependent
effects but other covariates to have linear effects. Specificallj/leind Z denote those covari-
ates whose effects are time-dependent and linear respectiveli( andV, 7). Then a partly

linear additive risk model for the recurrent events assumes
E[N@®)|X, T > t,v] = [(T > t) {dR(t,v) + W a(t)dt + 2" 0dt }

where the parameter(¢) is an unknown function of. Such a model is similar to the partly
parametric additive model proposed in McKeague and Sasieni (1994) but we allow the baseline
function to depend on an unknown latent effect which is also associated with the terminal event
T.

We can apply the same idea as in Section 2 to estiméteandd. Particularly, a similar

equation to (3) holds:
EN®|X,Y > 1] = [(Y > ) {dH(t,log A(t) — X" 8) + WTa(t)dt + 27 0dt}

Again,dH (t, s) can be estimated using the empirical observations as

(AN () = WEa(t)dt — Z70dt) I(A(Y;)e ™0 P > e, XT B > log A(t) — s)

_XT3 = ~
" I(A(Y;)e X7 > e, XT3 > log A(t) — s)

dH(t,s)
Therefore, this implies that

1(Y; > t) {dNi(t) - dH (¢, log A(t) — X B) — W] a(t)dt — 2] 0at}
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14 DONGLIN ZENG AND JIANWEN CAI

has mean approximating zero givan. If define N;(¢), W;(t) andZ;(t) similarly as before, we

conclude that
1(Y; > 1) {dNi(t) = dNi(t) = (W, = Wi(t)Ta(t)dt — (2, - Zu(1) 0dt}

is approximately zero for giveX;.

Hence, we propose the following estimating equations to estimage for anyt, andé:

z [ B 6= )13 > )00 = T3(0) {aNie) = dN0) = (s = () o)

~(Zi = Zu(t))" 0dt} =0, (6)

whereK,, (t) = a,; ' K(t/a,) with K (-) being a symmetric kernel function ang being a band-

width. Solving (6) yields
a(to; 0) = Sww (to)  {Zw(to) — Zwz(to)d},

where

9
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Recurrent Events with Informative Terminal Event 15

and

Swz(to) = Z/Kan (t —to)I(Y; > t)(W; — Wi(t))(Zi — Zy(t)) dt.
=1
After substituting this into equation (7), we obtain that the estimatof fergiven as

n -1
= lZ / 1(Y; > t) {(Zi — Zi(t))®? = (Zi — Zi(t)) (Wi — Wi(t))TZWW(t)_lZWZ(t)} dt]
i=1

X [i /I(Yi > t)(Zi — Zi(t)) {dNi(t) —dN;(t) — (W; — Wi(t))TEWW(t)_IEWN(t)dt}] :
=1

A~

The estimator fory(¢) is then given ag(t; 6).

Notice that the expression éftakes a similar expression gsin (4), except that additional
projections on the covarialé’-space are subtracted from bdthandd N (¢). Therefore, under
some regularity conditions and assuming, — oo andna; — 0, following the similar argu-
ments as proving Theorem 2, we can show that consistent anabl/Q(é — 6p) converges in
distribution to a mean-zero normal distribution. Moreover, the estimataxfrcan be shown

to be point-wise consistent and asymptotically normal.

5. SIMULATION STUDIES

We conduct simulation studies to examine the performance of the proposed method. In the
simulation studies, for each subjéctve generate two covariates wilfy; from a Bernoulli dis-
tribution with success probability 0.5 atéh; from the uniform distribution in0, 1]. To generate

the terminal event, we use the transformation model

T;
log 5 = Xli — O.5X2¢ + €.
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16 DONGLIN ZENG AND JIANWEN CAI
Thus, the true cumulative hazards functibg(t) = ¢/2 and the corresponding, = (1, —0.5)7.

Furthermore, we generatefrom the extreme-value distribution so the model for the terminal
event is the proportional hazards model.

To generate the recurrent events, we use the following intensity model:

)\z(t) = fZI(TZ > t) {0.5 — g exp(z/i)/log € +0.5Xq; + O.SXQZ‘} ,

where\;(t) denotes the intensity function at timdor subject:, &; is generated independently
from a Gamma-distribution with mean 1 and variance 0.5;ai&lindependently generated from
the uniform distribution irj0, 1]. Additionally, the coefficient), is a given constant. Clearly, this

intensity model implies the following rate model

E[le(tﬂXlz, Xgi, Vi, 61‘] = I(T:L > t) {05 — T/)() eXp(I/Z-)/log e +0.5X; + 08X21} dt.

Thus, the corresponding coefficien = (0.5,0.8)”". The first component-y exp(v;)/ log €;
reflects the dependence between the rate of the recurrent events and the terminal event. Partic-
ularly, whenyy = 0, we obtain the situation when the terminal event is non-informative of the
recurrent events; wheyy is non-zero, this implies the informativeness of the terminal event. For
the latter, we chooséy = 1 in the simulations. Finally, the right-censoring time is generated
from the minimum of the uniform distribution in.5, 8] and 3, which yields 35% censoring. The
average number of the recurrent events per subjects is around 3 to 3.5.

For each simulated data, we first implement the algorithm in Zeng and Lin (2006) to estimate
£ and A as well as their influence functions. The estimator~fas obtained using the formula
(4). The procedure based on the Monte-Carlo resampling method, which was given in the previ-
ous section, is used to estimate the asymptotic covariance. Particularly, we use 100 Monte-Carlo

samples and find the variance estimation to be fairly accurate. The following two tables sum-
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marize the results from sample sizes= 100, 200 and400, with Table 1 from the simulations
corresponding tgyy = 1 and Table 2 from the simulations correspondinggo= 0. In the tables,
column “Bias” is the average bias from 1000 repetitions; “SE” is the sample standard deviation
of the empirical estimates; “ESE” is the average value of the estimated standard errors obtained
from the resampling approach; “CP” is the coverage probability of the 95% confidence interval
based on the normal approximation. The results indicate that the biases of the estimators are
small and decrease quickly with the increasing sample sizes; the estimated standard errors are
reasonably close to the empirical standard errors; the confidence intervals all have reasonable
nominal levels.

For comparison, we also report the results by treating the terminal event as non-informative;
that is, we estimate the effects of the covariates on the recurrent event rate by fitting a simple

additive rate model as follows:

E[dN)|T > t,X] = I(T > t)(dR(t) + X Tadt).

Such naive estimators can be obtained using the same expression (4) except that we setd

[\(Y) =Y. Note that our model (2) does not reduce to this model. As expected, the naive estima-
tors treating the terminal event as non-informative can have very large bias when the recurrent
events and the terminal event are actually dependent due to some latent procegs £i.¢),

while its bias is small when there are no such dependenceje=, 0). From the simulation
studies, when the recurrent event is independent of the terminal event, our estimators generally
have larger variance than the naive estimators, mainly because the latter utilizes the indepen-
dence information in estimation. However, under the situation when the two types of events are
actually dependent/{, = 1), the naive estimator produce large bias while our estimator is still

approximately unbiased. The ratios between the mean square errors from our method and the
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Table 1.Simulation Results from 1000 Repetitions with Non-informative Terminal Events
Our approach Naive

n  Par. True Bias SE ESE CP Bias SE
(x1072) (x1072) (x1072) (x1072) (x1072) (x1072?)

100 G 1.0 2.6 26.2 26.3 94.6 - -
B2 -0.5 -0.7 45.4 43.6 94.8 - -
Y 0.5 2.5 24.5 26.8 96.2 0.5 20.4
Y2 0.8 2.9 40.2 41.1 95.0 0.9 40.5
200 1.0 0.1 18.2 18.4 94.7 - -
B2 -0.5 -0.8 31.9 30.4 94.0 - -
Y1 0.5 14 17.0 19.3 98.3 0.3 14.3
Y2 0.8 0.7 28.1 29.2 95.6 0.1 27.8
400 (3 1.0 -1.2 135 13.0 93.4 - -
B2 -0.5 -0.0 20.9 21.4 95.1 - -
Y1 0.5 0.5 12.3 13.8 96.7 -0.3 10.4
Y2 0.8 0.3 19.5 20.7 95.8 -0.4 19.2

native estimators decrease from 90% to 40% in estimatingghen the sample size increases
from 100 to 400. These ratios are close to 1 in estimatinigut also decrease significantly when
the sample size increases.

We repeat the same simulation study using the same setting excepistijanerated from the
logistic distribution, that is, the terminal event follows the proportional odds model. The results

and conclusions are similar (results not shown).

6. REAL EXAMPLE

We apply our method to analyze the data from a subgroup in the AIDS Links to Intravenous
Experiences (ALIVE) cohort study (Vlahov et al., 1991). In this study, a group of intravenous
drug users with HIV infections were followed between August 1, 1993 and December 31, 1997,

where the collected data included their in-patient admissions and other variables. The terminal
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865 Table 2.Simulation Results from 1000 Repetitions with Informative Terminal Events
866 Our approach Naive
867 n Par. True Bias SE ESE CP Bias SE
(x1072) (x1072) (x1072) (x1072) (x1072) (x1072)

868 100 1.0 2.6 26.2 26.3 94.6 - -

By -0.5 -6.8 45.4 43.6 94.8 - -
869 " 0.5 13.3 47.1 49.5 96.5 42.3 37.7

Yo 0.8 15 80.4 77.1 95.5 -23.8 73.2
870 200 1.0 0.1 18.2 18.4 94.7 - -

By -0.5 -0.8 31.9 30.4 94.0 - -
871 0% 0.5 7.8 325 35.5 96.5 43.6 26.0

Yo 0.8 0.2 54.2 54.2 95.2 -21.6 49.0
872 400 [ 1.0 -1.2 135 13.0 93.4 - -

By -0.5 -0.0 20.9 214 95.1 - -
873 Y1 0.5 3.1 23.5 25.3 96.4 42.2 19.1

Yo 0.8 0.4 37.9 38.6 93.9 -21.3 33.8
874
875 event was death. For illustration, we only consider the female patients of 471 subjects. On aver-
876 age, each patient had 1.3 hospital admissions and there were 83 deaths. The interest focuses on
877 the effects of the baseline HIV status (positive vs negative) and age on both recurrent hospital
878 admissions and death.
879 First, to determine the survival model for the death, we consider the class of logarithmic trans-
880 formationsr—! log(1 + rz) for G(z) by varyingr from 0 to 1. The AIC criterion chooses the
881 best transformation to be the proportional odds modet (1). We then proceed to fit the ad-
882 ditive rate model for the recurrent hospital admissions using our approach. The result is given
883 in the first half of Table 3, which shows that the HIV positive patients tended to die earlier and
884 experience more hospital admission, as compared to the HIV negative patients; the patient’s age
885 was significantly associated with the death but not the hospital admission.
886 To assess the goodness of fit using our model, we examine the following total summation of
887 the residuals for each subject
888 Yi ~ -~ ~

/ [dNi(t) — dH (t,Jog A(t) — X B) — X['5dt},
0

889
890
891
892

893
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Table 3.Analysis of HIV Data
Death Model Recurrent Event Model

Covariates Est SE Z-stat p-value Est SE Z-stat p-value
Data contain all 471 subjects
HIV+ vs HIV- 1.570 0.278 5.641 < 0.001 0.135 0.057 2.359 0.018
Age 0.057 0.018 3.179 0.001 0.004 0.003 1.431 0.152
Data exclude 11 extreme subjects

HIV+ vs HIV- 1.651 0.356 4.640 < 0.001 0.105 0.044 2408 0.016
Age 0.056 0.021 2.718 0.007 0.006 0.003 2.178 0.029

11 subjects are those who had at least 9 admissions.

equivalently,
/0 {dNi(t) — dN;(t) — (X; — Xi(t))Tadt} .

As shown in Section 2, when our model is correct, the above statistics should have an approxi-
mate mean zero and be independentafTherefore, a graphical way to assess the model fitis to

plot the above residual quantity against covarisiteWe plot in Figure 1 the summed residuals

for each subject versus the patient’s age within the HIV positive and negative groups respectively.
Overall, we find that the residuals fluctuate around zero and appear to be random. The residuals
for the subjects in HIV+ group appear to be slightly more spread-out than the ones for the sub-
jects in HIV- group. In addition, we notice that there are 11 subjects who have residuals larger
than 5. Interestingly, these subjects are all extreme cases who experienced at least 9 admissions;
thus, their observations can be very influential in the model fitting. For instance, after removing
these subjects, the average number of the admission reduces to 1.11; moreover, the result from
the model fit, as given in the second half of Table 3, shows that the age’s effect becomes much

more significant for the recurrent event model.
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15 T T T 15

10} 1 10}

*
*
*

residuals
(62}

residuals
(2]

20 40 60 20 40 60
baseline age in years in HIV+ group baseline age in years in HIV- group

Fig. 1. The plot of the residuals vs the baseline ages. Plot (a) plots the residuals for
the subjects in HIV+ group (b) plots the residuals for the subjects in HIV- group.

7. DISCUSSION

In this paper, the general transformation models were used to model the terminal event given
covariates. However, such models are not essential in our approach. Other models such as the
accelerated failure time model or the additive hazards model can also be used. The choice of the
model for the terminal event depends on data fitting.

In obtaining the estimating equation for we constructed the risk set at timebased on
the ranks of both the terminal event residaaind X7 3 and gave each subject in the risk set
equal weights. One possibility is to assign different weights based on each subject’s covariate
information. It is unclear what weight functions can lead to a more efficient estimator. for
Another possibility to construct the risk set is to adapt the artificial censoring idea which was
used in Lin, Robins and Wei (1996) and Ghosh and Lin (2003) under different contexts and
models. This idea will further trim the risk set we constructed here. It remains unknown how

much efficiency gain/loss the artificial censoring will have. A better alternative approach is to
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1009 combine the estimators from our method and the artificial censoring approach in an optimal way,
1010 which will guarantee the efficiency improvement. We will explore this approach in the future.
1011 Although we focused on the additive rate model for the recurrent event, our inference method
1012 also applies to the proportional rate model, where the rate function is given as
1013 .
E[dN()|T > t,v, X] = I(T > t)e* "dR(t,v).
1014
1015 The same estimating equation can be constructed as in Section 2. However, the interpretation of
1016 the coefficienty is different between the additive rate model and the proportional rate model.
1017 Finally, we can model the mean function of the recurrent event instead of the rate function by
1018 assuming
1019
EIN(1)|X,T > t,v] = (T > t) {R(t,v) + X3t} .
1020
1021 Note that this model may only imply the rate modeKifis time-independent.
1022
1023 ACKNOWLEDGEMENT
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1025
1026 APPENDIX
1027 Proof of Theorem 2
1028 - T
To prove Theorem 2, we definkR (t) = dN(t) — X* yodt and
1029 T T
Rt X ) — im RIOIA)e P > Aty X", X[ > XT )
1030 ST S IAY)e NP > A()e X8, XT B > XTE)
1031 Moreover, based on 2.10.4 of van der Vaart and Wellner, the class
1032
{A(Y) : A is non-decreasing and right-contiuous and bounded by
1033
1034
1035
1036

1037
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is a VC-hull class; the same holds for the finite dimensional sgac€s : g € R?}. Thus,
{A)e"7 I = Boll + 18— ol < b }

is a universally Donsker class. Therefore, from the Glivenko-Cantelli theorem, it is clear that the asymp-

totic limit of dR(t, X; 3, A) is equal to

B [de(t)I(A(Yj)e—X? B> A)e X" XTB > XTﬂ)]

E [I(A(;)e™ 77 > A()e=X"3, XT3 > XTB)|

which is denoted agR (¢, X; 3, A). Moreover, such convergence is uniformlytia [0, 7], X, and(3, A)

is the neighborhood af3y, Ao). Similarly, we define the limit of<;(¢) as

B [X, 1A% > A X", X1 5 > X75)]

Eo(X,t;8,A) = =
. ! E [I(A(Yj)efx-" 7> At)e X8, XT3 > XTﬁ)]

evaluated ak = X;,0 = B, A=A.

From expression (4), we have

=
=
&

[Z/ I(Y; > )(X; — Xa(t))d {Ri(t) ~Ri(t: B, A }] .
Note that with probability one,
- Z/ 1Y > )(X; — X;(1)®%dt - Sx = E Uw(t)f(y > 1) (X — EO(X,t;ﬂO,AO))®2] .

Since Ey (X, t; Bo, Ao) is a function ofe and X ande are independent, from condition (C.2), the above

limit must be positive definite. Thus, it holds

n!/2(3 —n0) = n!/* (Sx + o(1) [ *12/ 1% > (X = Xu()d {Ru(t) ~ Ra(t: 5.8 }
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N

=n2(Zx +o(1))” l—lz/ I(Y; > t)(X; — Eo(Xi,t;3,A))d {Ri(t)—ﬁl(t;ﬁ,f\)}

—n'/? (Sx +o(1) [ —12/ 1(Y; > t)( X()—EO(Xi,t;B,/A\))d{Ri(t)—Ri(t;ﬁ,f\)}].

On the other hand, we note

ﬁz(tvaa K) - RO(X27 7607/\0)

= [Ri(t; B, A) — Ro(Xi, t; B, A)] + [Ro (X, t; B, A) — Ro(Xi, t; Bo, Ao))- (A.2)

The first term of (A.2) can be rewritten

(Pn—P) [R(t)I(Ao(Y)e_XTﬂO > Ag(t)eXi P XT B, > X,»Tﬁo)}
B [I(8o(Y)e=X" > No(t)e= X0, XT 5y > XT )|

E [R(t)I(Ao(Y)efxTﬁo > Ao(t)einTﬁ%XTﬁo > X?ﬂo)}

2
B [I(Ao(Y)e= X" > Ao(t)e= X1, XT o > XT )]

x(Py — P) [I(AO(Y)e—XTf”O > Ag(t)e X Po, XT3y > XiTﬁo)} +o0p(n~1?). (A.3)

Using the mean-value theorem, the second term of (A.2) becomes

~

E [R(t)I(AO(Y)e*XTﬁO > Ag(t)e i Po, XT3y > XT ﬂo)]
B — Bo)

Vs

E [I(Ao(y)e—XTﬁo > Ao(t)e™X P, XT By > X?ﬂo)}

E [ROI(Ro(Y)e X" > Ag(t)e X7 %, XT > XT 6|

~

+Va [A = Ag] +0,(n"Y?),  (A4)

2
E [I(Ao(y)efXTﬁo > Ao(t)einT’HonTﬁo > XiTﬁo)]
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whereV s denotes the derivative with respectiandV , denotes the Hadmard derivative with respect

to A. Therefore,

Ri(t) — Ra(t; B, N) = Ri(t) — Ro(Xi, t; Bo, Ao)

—(Pn = P)S1(0; Bo, Ao, Xi,t) — Z(Xi,t)(B — o, A — Ao) + 0,(n /),

whereO denotes the observed statistit,(O; G0, Ao, X;, t) is the influence function given in equation
(A.3), andZ is the linear operator as given in equation (A.4).

Consequently, sinceip, , |X(t) — Eo(Xy,t; B, K)| — 0, (A.1) gives

”UQW —%0)

=n'?(Sx +o(1) ™"

n! zn; /w(t)f(m > 1) (Xi — Eo(Xi,t; B, M) d{Ri(t) — Ro(X;, t; Bo, Ao)
(P~ P51 (050 o Xt) ~ TN — Ao)}] + 0p(1)
= n'/22 (P, — P) Uw(t)l(y > t)(X — Eo(X,t; Bo, Ao))d(R(t) — Ro(X, t; fo, Ao))]
025 (P — P)E Uw(t)f(f/ > 1)(X = Bo(X, £ Bo, Ao))dS1 (O: o, Ao, X, t)}
—n'28 (P, - P)E Uw(t)f(ff > 1) (X — Eo(X, t; Bo, Ao))dZ(X,1)[Ss, SA]}

+op(1).

Here, E is the expectation with respect t&, X).
The asymptotic distribution fonzl/z(ﬁ — Bo, A— Ao, — 7o) thus follows from the above expansion

and the expansions in (5).

Proof of Theorem 3
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We examing, Q5 andQ3 — 7 separately. Clearly, using the same notation as in the proof of Theorem

21

—[12/ (V; > tw(t)(X; — X())®2dt]_><

—1

ZZ/ (Yi > 1) <><Xz-—Xi<t>>{dRz-<t>—d&-(t;ﬁ,m}].

Since the first term converges ¥y almost surely an@i(t;ﬁ, K) converges toRo (X, t; Bo, Ag) and
belongs to some Donsker class, we use Theorem 3.6.13 in van der Vaart and Wellner (1996) and conclude
that conditional on data,

Zzi/l(yi > Hw(t)(Xi — Eo(Xi, t; Bo, Ao)) {dRi(t) — dRo(Xi, t; Bo, Ao)}

i=1

Ql _ Xlnfl

+0p(n_1/2).
Similarly, we have

0, vy 20 Vf(ff > w(t)(X — Eo(X.t: fo, Ao))

LAN(1) = XTI (Ao(Vy)e T > Ap(t)e™> "0 XT3y > X7 )
E [I(Ag(Y)e= X750 > No(t)eX"h0, X7 8y > X7 )]

120 Y 2| [0 > 01X - BulTt o )

j=1
< I(Ao(Y;)e X7 9 > Ag(t)e > P XT 6y > XT )

B [(aN(t) = XT90dt) I(Bo(Y)e ™" %0 > Ag(t)e X", X7y > X7 )|

X
E [I(AO(Y)e*XTﬁo > AO(t)€7§T507XTﬁO > X:Tﬂo)r
+0,(n"1/?)
fz 1 ZZ E |:/ Y > t)(X E()(X t; ﬁ07)\0))d51<0i;ﬁ07AO’)’(V'7t>:| + Op(’n_l/Q),
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Finally,

On the other hand,

Note that

Rilt B.8) = Ro(X, .3, 8) = {Ru(:8,8) = Ro(X,, : 5. 1) }

= (P =P) [$1(05 5. K, Xi,1) = $1(0: 5. R, X, )| = 0,(n™'1?)

and that the last term in (A.5), by the Taylor expansion, is equal to

n

N T B A A+ oy ()
=1

- % Z ZiI(Xiv t) [Sﬁv SA] + Op(n_l/Q)'

=1
Hence, from the influence function f§ras derived in proving Theorem 2, we obtain
R R _
Qer+@%*7%:%E:%SAMJ@Aw&M%AM+OMnU%-
=1

Theorem 3 thus holds from Theorem 3.6.13 in van der Vaart and Wellner (1996).
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