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Abstract. In this paper, we establish a general asymptotic theory for the nonparametric maximum

likelihood estimation in semiparametric regression models with right censored data. We identify

a set of regularity conditions under which the nonparametric maximum likelihood estimators are

consistent, asymptotically normal and asymptotically efficient with covariance matrix that can be

consistently estimated by the inverse information matrix or the profile likelihood method. The

general theory allows one to obtain the desired asymptotic properties of the nonparametric maximum

likelihood estimators for any specific problem by verifying the set of conditions identified in this

paper rather than proving technical results from first principles. We demonstrate the usefulness of

this powerful theory through a variety of examples.
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1. Introduction

Semiparametric regression models are highly useful in investigating the effects of covariates on

potentially censored responses (e.g. failure times and repeated measures) in longitudinal studies. It is

desirable to analyze such models by the nonparametric maximum likelihood approach, which gener-

ally yields consistent, asymptotically normal and asymptotically efficient estimators. It is technically

difficult to prove the asymptotic properties of the nonparametric maximum likelihood estimators

(NPMLEs). Thus far, rigorous proofs exist only in some special cases.

In this paper, we develop a general asymptotic theory for the NPMLEs with right censored

data. The theory is very encompassing in that it pertains to a generic form of likelihood rather

than specific models. We prove that under a set of mild regularity conditions, the NPMLEs are

consistent, asymptotically normal and asymptotically efficient, and the limiting covariance matrix

can be consistently estimated by the inverse information matrix or the profile likelihood method.
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This paper is the technical companion to that of Zeng and Lin (2007), which presents several

classes of models to unify and extend the existing semiparametric regression models. The likelihoods

for those models can all be written in the general form considered in this paper. For each class of

models in Zeng and Lin (2007), we identify a set of conditions under which the regularity conditions

for the general theory are shown to hold so that the desired asymptotic properties are ensured.

2. Some Semiparametric Models

We describe briefly the three kinds of models considered in Zeng and Lin (2007). We assume that

the censoring mechanism satisfies coarsening at random (Heitjan and Rubin, 1991).

2.1. Transformation Models for Counting Processes

Let N∗(t) record the number of events that the subject has experienced by time t, and let Z(·)
denote the corresponding covariate processes. Zeng and Lin (2007) proposed the following class of

transformation models for the cumulative intensity function of N∗(t) given the covariate and the

at-risk history by time t

Λ(t|Z) = G




{
1 +

∫ t

0
R∗(s)eβT Z(s)dΛ(s)

}eγT eZ
−G(1),

where G is a continuously differentiable and strictly increasing function with G′(1) > 0 and G(∞) =

∞, R∗(·) is an indicator process, Z̃ is a subset of Z, β and γ are regression parameters, and Λ(·) is

an unspecified increasing function. The data consist of {Ni(t), Ri(t), Zi(t); t ∈ [0, τ ]} (i = 1, . . . , n),

where Ri(t) = I(Ci ≥ t)R∗
i (t), Ni(t) = N∗

i (t∧Ci), Ci is the censoring time, and τ is a constant. The

likelihood is
n∏

i=1

∏

t≤τ

{Ri(t)dΛ(t|Zi)}dNi(t) exp
{
−

∫ τ

0
Ri(t)dΛ(t|Zi)

}
,

where dNi(t) = Ni(t)−Ni(t−).

2.2. Transformation Models With Random Effects for Dependent Failure Times

For i = 1, . . . , n, k = 1, . . . ,K and l = 1, . . . , nik, let N∗
ikl(·) denote the number of the kth type

of event experienced by the lth individual in the ith cluster, and Zikl(·) the corresponding covariate

processes. Zeng and Lin (2007) assumed that the cumulative intensity for N∗
ikl(t) takes the form

Λk(t|Zikl; bi) = Gk

{∫ t

0
R∗

ikl(s)e
βT Zikl(s)+bT

i
eZikl(s)dΛk(s)

}
,
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where Gk, Λk and R∗
ikl are analogous to G, Λ and R∗ of Section 2.1, Z̃ikl is a subset of Zikl plus the

unit component, and bi is a vector of random effects with density f(b; γ). Let Cikl, Nikl and Rikl be

defined analogously to Ci, Ni and Ri of Section 2.1. The likelihood is

n∏

i=1

∫

b

K∏

k=1

nik∏

l=1

∏

t≤τ

[
Rikl(t)eβT Zikl(t)+bT eZikl(t)dΛk(t)G′

k

{∫ t

0
Rikl(s)eβT Zikl(s)+bT eZikl(s)dΛk(s)

}]dNikl(t)

× exp
[
−Gk

{∫ τ

0
Rikl(t)eβT Zikl(t)+bT eZikl(t)dΛk(t)

}]
f(b; γ)db.

2.3. Joint Models for Repeated Measures and Failure Times

For i = 1, . . . , n and j = 1, . . . , ni, let Yij be the measure of a response variable at time tij

for the ith subject, and Xij the corresponding covariates. We assume that (Yi1, . . . , Yini) follows a

generalized linear mixed model with density fy(y|Xij ; bi), where bi is a set of random effects with

density f(b; γ). We define N∗
i and Zi as in Section 2.1, and assume that

Λ(t|Zi; bi) = G

{∫ t

0
R∗

i (s)e
βT Zi(s)+(ψ◦bi)

T eZi(s)dΛ(s)
}

,

where Z̃i is a subset of Zi plus the unit component, ψ is a vector of unknown constants, and v1 ◦ v2

is the component-wise product of two vectors v1 and v2. The likelihood is

n∏

i=1

∫

b

∏

t≤τ

{Ri(t)dΛ(t|Zi; b)}dNi(t) exp
{
−

∫ τ

0
Ri(t)dΛ(t|Zi; b)

} ni∏

j=1

fy(Yij |Xij ; b)f(b; γ)db.

For continuous measures, Zeng and Lin (2007) proposed the semiparametric linear mixed model

H̃(Yij) = αT Xij + bT
i X̃ij + εij ,

where H̃ is an unknown increasing function with H̃(−∞) = −∞, H̃(∞) = ∞ and H̃(0) = 0, α is a

set of regression parameters, X̃ij is typically a subset of Xij , and εij (i = 1, . . . , n; j = 1, . . . , nij) are

independent with density fε. Write Λ̃(y) = e
eH(y). The likelihood is

n∏

i=1

∫

b

∏

t≤τ

{Ri(t)dΛ(t|Zi; b)}dNi(t) exp
{
−

∫ τ

0
Ri(t)dΛ(t|Zi; b)

}

×
ni∏

j=1

fε

(
log(Λ̃(Yij))− αT Xij − bT

i X̃ij

){d log Λ̃(Yij)/dy}f(b; γ)db.

3. Nonparametric Maximum Likelihood Estimation
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All the likelihood functions given in Section 2 can be expressed in the following form

n∏

i=1

K∏

k=1

nik∏

l=1

∏

t≤τ

λk(t)Rikl(t)dN∗
ikl(t)Ψ(Oi; θ,A),

where τ is the study duration and assumed to be finite, N∗
ikl(·) denotes the counting process of

event k for lth subject in cluster i and dN∗
ikl(t) is the jump size of N∗

ikl at time t, Rikl(·) denotes

the observed at-risk process of event k for lth subject in cluster i, λk(t) = Λ′k(t), θ is a d-vector of

regression parameters and variance components, A = (Λ1, . . . ,ΛK), Oi pertains to the observation

on the ith cluster including (N∗
iklRikl, Rikl, Zikl, k = 1, ..., K, l = 1, ..., nik) with Zikl denoting the

possibly time-dependent covariates associated with subject l in cluster i, and Ψ is a functional of Oi,

θ and A. Additionally, nik is the cluster size for cluster i associated with event k and we assume

that it is uniformly bounded. For the nonparametric maximum likelihood estimation, we allow A
to be discontinuous with jumps at the observed failure times and maximize the modified likelihood

function
n∏

i=1

K∏

k=1

nik∏

l=1

∏

t≤τ

Λk{t}Rikl(t)dN∗
ikl(t)Ψ(Oi; θ,A),

where Λk{t} denotes the jump size of the monotone function Λk at t. Equivalently, we maximize the

logarithm of the above function

Ln(θ,A) =
n∑

i=1

[
K∑

k=1

nik∑

l=1

∫ τ

0
Rikl(t) log Λk{t}dN∗

ikl(t) + log Ψ(Oi; θ,A)

]
. (1)

We wish to establish an asymptotic theory for the resulting NPMLEs θ̂ and Â.

4. Regularity Conditions

We impose the following conditions on the model and data structures.

(C1) The true value θ0 lies in the interior of a compact set Θ, and the true functions Λ0k are

continuously differentiable in [0, τ ] with Λ′0k(t) > 0, k = 1, . . . , K.

(C2) With probability one, P (infs∈[0,t] Rik·(s) ≥ 1|Zikl, l = 1, . . . , nik) > δ0 > 0 for all t ∈ [0, τ ],

where Rik·(t) =
∑nik

l=1 Rikl(t).

(C3) There exist a constant c1 > 0 and a random variable r1(Oi) > 0 such that E[log r1(Oi)] < ∞
and for any θ ∈ Θ and any finite Λ1, . . . , ΛK ,

Ψ(Oi; θ,A) ≤ r1(Oi)
K∏

k=1

∏

t≤τ

{
1 +

∫ t

0
Rik·(t)dΛk(t)

}−dN∗
ik·(t) {

1 +
∫ τ

0
Rik·(t)dΛk(t)

}−c1
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almost surely, where N∗
ik·(t) =

∑nik
l=1 N∗

ikl(t). In addition, for any constant c2,

inf
{
Ψ(Oi; θ,A) : ‖Λ1‖V [0,τ ] ≤ c2, . . . , ‖ΛK‖V [0,τ ] ≤ c2, θ ∈ Θ

}
> r2(Oi) > 0,

where ‖h‖V [0,τ ] is the total variation of h(·) in [0, τ ], and r2(Oi), which may depend on c2, is a finite

random variable with E[| log r2(Oi)|] < ∞.

We require certain smoothness of Ψ. Let Ψ̇θ denote the derivative of Ψ(Oi; θ,A) with respect to

θ, and let Ψ̇k[Hk] denote the derivative of Ψ(Oi; θ,A) along the path (Λk + εHk), where Hk belongs

to the set of functions in which Λk + εHk is increasing with bounded total variation. We impose the

following condition.

(C4) For any (θ(1), θ(2)) ∈ Θ, and (Λ(1)
1 , Λ(2)

1 ), . . . , (Λ(1)
K ,Λ(2)

K ), (H(1)
1 ,H

(2)
1 ), . . . , (H(1)

K ,H
(2)
K ) with

uniformly bounded total variations, there exist a random variable F(Oi) ∈ L4(P ) and K stochastic

processes µik(t;Oi) ∈ L6(P ), k = 1, ...,K, such that

∣∣∣Ψ(Oi; θ(1),A(1))−Ψ(Oi; θ(2),A(2))
∣∣∣ +

∣∣∣Ψ̇θ(Oi; θ(1),A(1))− Ψ̇θ(Oi; θ(2),A(2))
∣∣∣

+
K∑

k=1

∣∣∣Ψ̇k(Oi; θ(1),A(1))[H(1)
k ]− Ψ̇k(Oi; θ(2),A(2))[H(2)

k ]
∣∣∣

+
K∑

k=1

∣∣∣∣∣
Ψ̇k(Oi; θ(1),A(1))[H(1)

k ]
Ψ(Oi; θ(1),A(1))

− Ψ̇k(Oi; θ(2),A(2))[H(2)
k ]

Ψ(Oi; θ(2),A(2))

∣∣∣∣∣

≤F(Oi)

[
|θ(1) − θ(2)|+

K∑

k=1

{∫ τ

0
|Λ(1)

k (s)− Λ(2)
k (s)|dµik(s;Oi) +

∫ τ

0
|H(1)

k (s)−H
(2)
k (s)|dµik(s;Oi)

}]
.

In addition, µik(s;Oi) is non-decreasing, and E[F(Oi)µik(s;Oi)] is bounded and left-continuous with

uniformly bounded left- and right-derivatives for any s ∈ [0, τ ]. Here, the right-derivative for a

function f(x) is defined as limh→0+(f(x + h)− f(x+))/h.

The following condition ensures identifiability of parameters.

(C5) (First Identifiability Condition) If



K∏

k=1

nik∏

l=1

∏

t≤τ

λ∗k(t)
Rikl(t)dN∗

ikl(t)


Ψ(Oi; θ∗,A∗) =




K∏

k=1

nik∏

l=1

∏

t≤τ

λ0k(t)Rikl(t)dN∗
ikl(t)


Ψ(Oi; θ0,A0)

almost surely, then θ∗ = θ0 and Λ∗k(t) = Λ0k(t) for t ∈ [0, τ ], k = 1, . . . , K.

The next assumption is more technical and will be used in proving the weak convergence of the

NPMLEs. For any fixed (θ,A) in a small neighborhood of (θ0,A0) in Rd × {BV [0, τ ]}K , where
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BV [0, τ ] denotes the space of functions with bounded total variations in [0, τ ], condition (C4) implies

that the linear functional

Hk 7→ E

[
Ψ̇k(Oi; θ,A)[Hk]

Ψ(Oi; θ,A)

]

is continuous from BV [0, τ ] to R. Thus, there exists a bounded function η0k(s; θ,A) such that

E

[
Ψ̇k(Oi; θ,A)[Hk]

Ψ(Oi; θ,A)

]
=

∫ τ

0
η0k(s; θ,A)dHk(s).

We assume the following condition.

(C6) There exist functions ζ0k(s; θ0,A0) ∈ BV [0, τ ], k = 1, . . . , K, and a matrix ζ0θ(θ0,A0) such that
∣∣∣∣∣E

[
Ψ̇θ(Oi; θ,A)
Ψ(Oi; θ,A)

− Ψ̇θ(Oi; θ0,A0)
Ψ(Oi; θ0,A0)

]
− ζ0θ(θ0,A0)(θ − θ0)−

K∑

k=1

∫ τ

0
ζ0k(s; θ0,A0)d(Λk − Λ0k)

∣∣∣∣∣

=o

(
|θ − θ0|+

K∑

k=1

‖Λk − Λ0k‖V [0,τ ]

)
.

In addition, for k = 1, . . . , K,

K∑

k=1

sup
s∈[0,τ ]

∣∣∣
{

η0k(s; θ,A)− η0k(s; θ0,A0)
}
− η0kθ(s; θ0,A0)(θ − θ0)

−
∫ τ

0

K∑

m=1

η0km(s, t; θ0,A0)d(Λm − Λ0m)(t)
∣∣∣ = o

(
|θ − θ0|+

K∑

k=1

‖Λk − Λ0k‖V [0,τ ]

)
,

where η0km is a bounded bivariate function and η0kθ is a d-dimensional bounded function. Further-

more, there exists a constant c3 such that |η0km(s, t1; θ0,A0)−η0km(s, t2; θ0,A0)| ≤ c3|t1− t2| for any

s ∈ [0, τ ] and any t1, t2 ∈ [0, τ ].

The final assumption ensures that the Fisher information matrix along any finite-dimensional

submodel is non-singular.

(C7) (Second Identifiability Condition) If with probability one,

K∑

k=1

nik∑

l=1

∫
hk(t)Rikl(t)dN∗

ikl(t) +
Ψ̇θ(Oi; θ0,A0)T v +

∑K
k=1 Ψ̇k(Oi; θ0,A0)[

∫
hkdΛ0k]

Ψ(Oi; θ0,A0)
= 0

for some constant vector v ∈ Rd and hk ∈ BV [0, τ ], k = 1, . . . , K, then v = 0 and hk = 0 for

k = 1, . . . ,K.

Remark 1. (C1)-(C2) are standard assumptions in any analysis of censored data. Particularly,

(C2) assumes that for each type of event, at any time in [0, τ ], there exists some subject in the

cluster to be at risk. Intuitively, this condition enables one to identify Λk(t) for t ∈ [0, τ ]. (C3)

pertains to the model structure and will be verified for the examples in Section 2. (C4) and (C6)
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essentially impose the smoothness of this structure and in many cases, they can be verified through

some appropriate differentiability. (C5) is clearly the usual parameter identifiability condition. In

(C7), the expression on the left-hand side of the equality is in fact the score function along submodel

(θ0 + εν, Λ0k + ε
∫

hkdΛ0k, k = 1, ...,K). Therefore, (C7) is equivalent to saying that any non-trivial

submodel has non-singular Fisher information. Both conditions (C5) and (C7) usually require some

work to verify, but can be translated to simple conditions in specific cases.

5. Some Useful Lemmas

Lemma 1. For any constant c, the following classes of functions are P -Donsker:

F1 =
{
log Ψ(Oi; θ,A) : ‖Λk‖V [0,τ ] ≤ c, k = 1, . . . , K, θ ∈ Θ

}
,

F2 =

{
Ψ̇θ(Oi; θ,A)
Ψ(Oi; θ,A)

: ‖Λk‖V [0,τ ] ≤ c, k = 1, . . . ,K, θ ∈ Θ

}
,

F3k =

{
Ψ̇k(Oi; θ,A)[H]

Ψ(Oi; θ,A)
: ‖Λm‖V [0,τ ] ≤ c,m = 1, . . . ,K, θ ∈ Θ, ‖H‖V [0,τ ] ≤ c

}
, k = 1, . . . ,K.

Proof. We shall only prove that F3k is P -Donsker. The proofs for the other two classes are

similar. For k = 1, . . . ,K, we define a measure µ̃k in [0, τ ] such that for any Borel set A ⊂ [0, τ ],

µ̃k(A) =
∫ τ

0
I(t ∈ A)E

[F(Oi)2(µik(τ ;Oi)− µik(0;Oi))2dµik(t;Oi)
]
.

Condition (C4) implies that µ̃k([0, τ ]) ≤ ‖F(Oi)‖L4(P )‖µik(τ ;Oi) − µik(0;Oi)‖L6(P ). Thus, µ̃k is a

finite measure. According to Theorem 2.7.5 of van der Vaart and Wellner (1996), the bracket covering

number for any bounded set in BV [0, τ ] is of order exp{O(1/ε)} in L2(µ̃k), k = 1, . . . , K. Thus, we

can construct Nε ≡ (1/ε)d × exp{O(K/ε)} × exp{O(1/ε)} brackets for the set of (θ,A,H) in F3k,

denoted by

[θL
p , θU

p ]× [ΛL
1p,Λ

U
1p]× · · · × [ΛL

Kp,Λ
U
Kp]× [HL

p ,HU
p ], p = 1, . . . , Nε,

such that |θU
p − θL

p | < ε and
∫
|ΛU

kp − ΛL
kp|2dµ̃k < ε2,

∫
|HU

p −HL
p |2dµ̃k < ε2, k = 1, . . . ,K.

Any (θ,A, H) must belong to one of these brackets. Obviously, the bracket functions

Ψ̇k(Oi; θL
p ,AL

p )[HL]
Ψ(Oi; θL

p ,AL
p )

±F(Oi)

{
|θU

p − θL
p |+

K∑

m=1

∫
|ΛU

mp(s)− ΛL
mp(s)|dµim(s;Oi)

+
∫
|HU

p (s)−HL
p (s)|dµim(s;Oi)

}
, p = 1, . . . , Nε,
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cover all the functions in F3k. Since
∥∥∥∥∥F(Oi)

{
|θU

p − θL
p |+

K∑

m=1

∫
|ΛU

mp(s)− ΛL
mp(s)|dµim(s;Oi) +

K∑

m=1

∫
|HU

p (s)−HL
p (s)|dµim(s;Oi)

} ∥∥∥∥∥
L2(P )

≤c

[
|θU

p − θL
p |+

K∑

m=1

{
E

(∫
|ΛU

mp(s)− ΛL
mp(s)|dµ̃imF(Oi)

)2
}1/2

+
K∑

m=1

{∫ τ

0
|HU

p (s)−HL
p (s)|2dµ̃m

}1/2
]

≤c

[
|θU

p − θL
p |+

K∑

m=1

{∫
|ΛU

mp(s)− ΛL
mp(s)|2E[dµ̃imF(Oi)2(µ̃im(τ ;Oi)− µ̃im(0;Oi))2]

}1/2

+
K∑

m=1

{∫ τ

0
|HU

p (s)−HL
p (s)|2dµ̃m

}1/2
]

≤c

[
|θU

p − θL
p |+

K∑

m=1

{∫
|ΛU

mp(s)− ΛL
mp(s)|2dµ̃m

}1/2

+
K∑

m=1

{∫ τ

0
|HU

p (s)−HL
p (s)|2dµ̃m

}1/2
]
,

where c is a constant depending on K, the L2(P )-distance within each bracket pair is O(ε). Hence,

the bracket entropy integral of F3k is finite, so that F3k is P -Donsker. ♦

Lemma 2. For any bounded random variable (θ, Λ) in Θ × BV [0, τ ], the function g(s) ≡
∣∣∣E

[
Ψ̇k(Oi; θ,A)[I(· ≥ s)]/Ψ(Oi; θ,A)

] ∣∣∣ is left-continuous and it satisfies that for any s ∈ [0, τ ],

there exist δs, cs > 0 such that |g(s̃)−g(s)| ≤ cs|s̃−s| for s̃ ∈ (s− δs, s) and |g(s̃)−g(s+)| ≤ cs|s̃−s|
for s̃ ∈ (s, s + δs).

Proof. Since µik(t;Oi) is non-decreasing in t, it follows from (C4) that for any s1 and s2,

|g(s1)− g(s2)| ≤E

[
F(Oi)

{∫
|I(t ≥ s1)− I(t ≥ s2)|dµik(t;Oi)

}]

≤ |E [F(Oi)µik(s1;Oi)]−E [F(Oi)µik(s2;Oi)]| .

Thus, since E [F(Oi)µik(s;Oi)] is bounded, left-continuous and non-decreasing in s, g(s) is in BV [0, τ ]

and is left-continuous. In addition, the left- and right-differentiability of E[F(Oi)µik(s;Oi)] in (C4)

implies that the second part of the lemma holds. ♦
Lemma 3. For any h(s) ∈ BV [0, τ ], the linear map h 7→ ∫ τ

0 h(t)η0km(t, s; θ0,A0)dΛ0k(t) is a

bounded compact operator from BV [0, τ ] to BV [0, τ ].

Proof. It is clear from condition (C6) that this function maps any bounded set in BV [0, τ ] into

a bounded set consisting of equi-continuous functions. The result thus follows since any bounded

and equi-continuous functions consist of a totally bounded set in BV [0, τ ] and the linear map is

continuous. ♦

6. Consistency
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The following theorem states the consistency of θ̂ and Λ̂k, k = 1, . . . , K.

Theorem 1. Under conditions (C1)–(C5), |θ̂ − θ0|+
∑K

k=1 supt∈[0,τ ] |Λ̂k(t)− Λ0k(t)| →a.s. 0.

Proof. We fix a random sample in the probability space and assume that conditions (C1)–(C5)

hold for this sample. The set of such samples has probability one. We prove the result for this fixed

sample. The entire proof consists of three steps.

Step 1. We show that the NPMLEs exist or equivalently Λ̂k(τ) < ∞ for k = 1, . . . , K when n is

large enough. By condition (C3), the likelihood function is bounded by

n∏

i=1

r1(Oi)
K∏

k=1

∏

t≤τ

[
Λk{t}Rik·(t)

{
1 +

∫ t

0
Rik·(s)dΛk(s)

}−1
]dN∗

ik·(t) {
1 +

∫ τ

0
Rik·(s)dΛk(s)

}−c1

≤
n∏

i=1

r1(Oi)
K∏

k=1

{
1 +

∫ τ

0
Rik·(s)dΛk(s)

}−c1

.

If Λk(τ) = ∞ for some k, then condition (C2) implies that, with probability one, inft∈[0,τ ] Rik·(t) ≥ 1

for some i, so that the above function is equal to zero. Thus, the maximum of the likelihood function

can only be attained for Λ̂k(τ) < ∞ when n is large enough.

Step 2. We show that lim supn Λ̂k(τ) < ∞ almost surely, i.e., Λ̂k(τ) is bounded uniformly for all

large n. By differentiating the objective function (1) with respect to Λk{Yikl} for which dN∗
ikl(Yikl) = 1

and Rikl(Yikl) = 1, we note that Λ̂k{Yikl} satisfies the following equation

1

Λ̂k{Yikl}
= −

n∑

j=1

Ψ̇k(Oj ; θ̂, Â)[I(· ≥ Yikl)]

Ψ(Oj ; θ̂, Â)
.

In other words,

Λ̂k(t) = −
n∑

i=1

nik∑

m=1

∫ t

0





n∑

j=1

Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]

Ψ(Oj ; θ̂, Â)





−1

Rikm(s)dN∗
ikm(s).

To prove the boundedness of Λ̂k(τ), we construct another step function Λ̃k with jumps only at the

Yikl for which dN∗
ikl(Yikl) = 1 and Rikl(Yikl) = 1,

1

Λ̃k{Yikl}
= −

n∑

j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ Yikl)]
Ψ(Oj ; θ0,A0)

.

That is,

Λ̃k(t) = −
n∑

i=1

nik∑

m=1

∫ t

0





n∑

j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]
Ψ(Oj ; θ0,A0)





−1

Rikm(s)dN∗
ikm(s).
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We show that Λ̃k uniformly converges to Λ0k. By Lemma 1,

n−1





n∑

j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]
Ψ(Oj ; θ0,A0)



 → E

[
Ψ̇k(Oi; θ0,A0)[I(· ≥ s)]

Ψ(Oi; θ0,A0)

]
(2)

uniformly in s ∈ [0, τ ]. Since the score function along the path Λk = Λ0k + εI(· ≥ s) with the other

parameters fixed at their true values has zero expectation,

0 =E

[
nik∑

l=1

∫
δ(t = s)
λ0k(t)

Rikl(t)dN∗
ikl(t)

]
+ E

[
Ψ̇k(Oi; θ0,A0)[I(· ≥ s)]

Ψ(Oi; θ0,A0)

]

=E

[
nik∑

l=1

Rikl(s)dN∗
ikl(s)/ds

]/
λ0k(s) + E

[
Ψ̇k(Oi; θ0,A0)[I(· ≥ s)]

Ψ(Oi; θ0,A0)

]
,

(3)

where δ(t = s) is the Dirac function. The submodel is not in the parameter space; however, we can

always choose a sequence of submodels in the parameter space which approximates this submodel.

Thus, the uniform limit of Λ̃k(t) is

E




nik∑

m=1

∫ t

0

{
E

[
nik∑

l=1

Rikl(s)dN∗
ikl(s)/ds

]/
λ0k(s)

}−1

Rikm(s)dN∗
ikm(s)


 = Λ0k(t).

That is, Λ̃k(t) uniformly converges to Λ0k(t).

We show next that the difference between the log-likelihood functions evaluated at (θ̂, Â) and

(θ0, Ã), where Ã = (Λ̃1, ..., Λ̃K), will be negative eventually if some Λ̂k(τ) diverges, which will induce

a contradiction. The key arguments are based on condition (C3) and are similar to those of Murphy

(1994). Clearly, n−1Ln(θ̂, Â) ≥ n−1Ln(θ0, Ã). It follows from (2) and (3) that nΛ̃k{t} converges

to λ0k(t)/E
[∑nik

l=1 Rikl(t)dN∗
ikl(t)/dt

]
, and is thus uniformly bounded away from zero, where t is an

observed failure time. Therefore,

n−1Ln(θ0, Ã) + n−1
n∑

i=1

K∑

k=1

nik∑

l=1

∫
Rikl(t)dN∗

ikl(t) log n

=n−1
n∑

i=1

K∑

k=1

nik∑

l=1

∫
log(nΛ̃k{t})Rikl(t)dN∗

ikl(t) + n−1
n∑

i=1

log Ψ(Oi; θ0,A0),

which is bounded away from −∞ when n is large. That is,

n−1Ln(θ0, Ã) + n−1
n∑

i=1

K∑

k=1

nik∑

l=1

∫
Rikl(t)dN∗

ikl(t) log n = O(1),
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where O(1) denotes a finite constant. On the other hand, condition (C3) implies that

n−1Ln(θ̂, Â) ≤n−1
n∑

i=1

K∑

k=1

nik∑

l=1

∫
Rikl(t) log Λ̂k{t}dN∗

ikl(t) + n−1
n∑

i=1

log Ψ(Oi; θ̂, Â)

≤n−1
n∑

i=1

log r1(Oi) + n−1
n∑

i=1

K∑

k=1

∫
I(Rik·(t) > 0) log Λ̂k{t}dNik·(t)

− n−1
n∑

i=1

K∑

k=1

∫
log

{
1 +

∫ t

0
Rik·(s)dΛ̂k(s)

}
dNik·(t)

− n−1
n∑

i=1

K∑

k=1

c1 log
{

1 +
∫ τ

0
Rik·(s)dΛ̂k(s)

}
,

where dNik·(t) =
∑nik

l=1 Rikl(t)dN∗
ikl(t). Thus,

O(1) ≤n−1
n∑

i=1

K∑

k=1

∫
I(Rik·(t) > 0) log(nΛ̂k{t})dNik·(t)

− n−1
n∑

i=1

K∑

k=1

∫
log

{
1 +

∫ t

0
Rik·(s)dΛ̂k(s)

}
dNik·(t)

− n−1
n∑

i=1

K∑

k=1

c1 log
{

1 +
∫ τ

0
Rik·(s)dΛ̂k(s)

}
.

(4)

We now show that the right-hand side will diverge to −∞ if Λ̂k(τ) diverges for some k. The

proof is based on the partitioning idea of Murphy (1994). Specifically, we construct a sequence:

t0k = τ > t1k > t2k > . . . in the following manner. First, we define

t1k = argmin
{

t ∈ [0, t0k) :
c1

2
E[I(Rik·(τ) > 0)] ≥ E

[
I(Rik·(t) > 0, Rik·(τ) = 0)

∫ t0k

t
dNik·(t)

]}
,

where Rik·(t) = infs∈[0,t] Rik·(s). Clearly, such a t1k exists, and the above inequality becomes an

equality if t1k > 0. If t1k > 0, we choose a small constant ε0 such that

ε0
1− ε0

<
c1E

[
I(Rik·(τ) = 0, Rik·(t1k) > 0)

]

E
[
I(Rik·(t1k) = 0, Rik·(0) > 0)

∫ τ
0 dNik·(t)

] ,

and define

t2k = argmin

{
t ∈ [0, t1k) : (1− ε0)E

[{
c1 +

∫ t0k

t1k

dNik·(t)

}
I(Rik·(t0k) = 0, Rik·(t1k) > 0)

]

≥ E

[
I(Rik·(t1k) = 0, Rik·(t) > 0)

∫ t1k

t
dNik·(t)

]}
.
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Such a t2k exists. If t2k > 0, the inequality is an equality, and we define

t3k = argmin

{
t ∈ [0, t1k) : (1− ε0)E

[{
c1 +

∫ t1k

t2k

dNik·(t)
}

I(Rik·(t1k) = 0, Rik·(t2k) > 0)
]

≥ E

[
I(Rik·(t2k) = 0, Rik·(t) > 0)

∫ t2k

t
dNik·(t)

]}
.

We continue this process. The sequence eventually stops at some tNk,k = 0. If this is not true, then

the sequence is infinite and strictly decreases to some t∗ ≥ 0. Since all the inequalities are equalities,

we sum all the equations except the first one to obtain

(1− ε0)E
[{

c1 +
∫ t0k

t∗
dNik·(t)

}
I(Rik·(t∗) > 0, Rik·(τ) = 0)

]

= E

[
I(Rik·(t1k) = 0, Rik·(t∗) > 0)

∫ t1k

t∗
dNik·(t)

]
,

which implies that

c1(1 − ε0)E[I(Rik·(τ) = 0, Rik·(t1k) > 0)] ≤ ε0E

[
I(Rik·(t1k) = 0, Rik·(0) > 0)

∫ τ

0
dNik·(t)

]
.

This contradicts with the choice of ε0. Thus, the sequence stops at some tNkk = 0.

If we denote Iqk = [tq+1,k, tqk), then the right-hand side of (4) can be bounded by

K∑

k=1

[
n−1

n∑

i=1

Nk−1∑

q=0

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

log
(
nΛ̂k{t}

)
dNik·

− n−1
n∑

i=1

Nk−1∑

q=0

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik· log
{

1 + Λ̂k(tq+1,k)
}

− n−1
n∑

i=1

Nk−1∑

q=0

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)c1 log
{

1 + Λ̂k(tq+1,k)
}

− n−1
n∑

i=1

I(Rik·(t0k) > 0) log
{

1 + Λ̂k(τ)
}]

.

(5)
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Since log x is a concave function,

n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

log
(
nΛ̂k{t}

)
dNik·(t)

≤
{

n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik·

}

× log




∑n
i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)

∫
t∈Iqk

nΛ̂k{t}dNik·(t)∑n
i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)

∫
t∈Iqk

dNik·(t)




≤
{

n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik·

}

× log

[
nΛ̂k(tqk)∑n

i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫
t∈Iqk

dNik·(t)

]
.

Therefore, (5) can be further bounded by

O(1) ≤
K∑

k=1

[
Nk−1∑

q=0

n−1
n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik·

× log

{
n∑n

i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫
t∈Iqk

dNik·

}

+
Nk−1∑

q=0

log Λ̂k(tqk)

{
n−1

n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik·

}

− n−1
n∑

i=1

N−1∑

q=0

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik· log
{

1 + Λ̂k(tq+1,k)
}

−
Nk−1∑

q=0

n−1
n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)c1 log
{

1 + Λ̂k(tq+1,k)
}

− n−1
n∑

i=1

I(Rik·(t0k) > 0) log
{

1 + Λ̂k(τ)
}]

.

By condition (C2),
n∑n

i=1 I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫
t∈Iqk

dNik·

→a.s.

(
E

[
I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)

∫

t∈Iqk

dNik·

])−1

< ∞,

13



so that

O(1) ≤
K∑

k=1

(
− n−1

n∑

i=1

c1

2
I(Rik·(t0k) > 0) log

{
1 + Λ̂k(τ)

}

−
{

n−1
n∑

i=1

c1

2
I(Rik·(t0k) > 0)− n−1

n∑

i=1

I(Rik·(t0k) = 0, Rik·(t1k) > 0)
∫

t∈I0k

dNik·

}

× log
{

1 + Λ̂k(t0k)
}

−
Nk−1∑

q=1

[
n−1

n∑

i=1

I(Rik·(tq−1,k) = 0, Rik·(tqk) > 0)

{
c1 +

∫

t∈Iqk

dNik·

}

− n−1
n∑

i=1

I(Rik·(tqk) = 0, Rik·(tq+1,k) > 0)
∫

t∈Iqk

dNik·

]{
1 + log Λ̂k(tqk)

})
.

According to the construction of tqk’s, the coefficients in front of log Λ̂k(tqk) are all negative when n

is large enough. Therefore, the corresponding terms cannot diverge to ∞. However, if Λ̂k(τ) → ∞,

the first term in the summation goes to −∞. We conclude that for all n large enough, Λ̂k(τ) < ∞.

Thus, lim supn Λ̂k(τ) < ∞.

Step 3. We obtain the consistency result from condition (C5). Since Λ̂k is bounded and monotone,

Λ̂k is weakly compact. Helly’s selection theorem implies that, for any subsequence, we can always

choose a further subsequence such that Λ̂k point-wise converges to some monotone function Λ∗k.

Without loss of generality, we also assume that θ̂ converges to some θ∗. The consistency will hold if

we can show that Λ∗k = Λ0k and θ∗ = θ0. Since Λ0k is continuous, the weak convergence of Λ̂k to Λ0k

can be strengthened to the uniform convergence of Λ̂k to Λ0k in [0, τ ].

Note that

Λ̂k(t) =
∫ t

0

|n−1
∑n

j=1 Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]/Ψ(Oj ; θ0,A0)|
|n−1

∑n
j=1 Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]/Ψ(Oj ; θ̂, Â)|

dΛ̃k(s). (6)

Clearly, Λ̂k is absolutely continuous with respect to Λ̃k. By condition (C3),

sup
s∈[0,τ ]

∣∣∣∣∣n
−1

n∑

j=1

Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]

Ψ(Oj ; θ̂, Â)
− n−1

n∑

j=1

Ψ̇k(Oj ; θ∗,A∗)[I(· ≥ s)]
Ψ(Oj ; θ∗,A∗)

∣∣∣∣∣

≤ n−1
n∑

j=1

F(Oj)

{
|θ̂ − θ∗|+

K∑

k=1

∫
|Λ̂k(t)− Λ∗k(t)|dµjk(t;Oj)

}
→ 0

since Λ̂k converges to Λ∗k and is bounded and {F(Oj)µjk(t;Oj) : t ∈ [0, τ ]} is a P -Glivenko-Cantelli

class. By Lemma 1 and the Glivenko-Cantelli theorem,

n−1
n∑

j=1

Ψ̇k(Oj ; θ∗,A∗)[I(· ≥ s)]
Ψ(Oj ; θ∗,A∗) → E

[
Ψ̇k(Oj ; θ∗,A∗)[I(· ≥ s)]

Ψ(Oj ; θ∗,A∗)

]
uniformly in s ∈ [0, τ ],
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and

n−1
n∑

j=1

Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]
Ψ(Oj ; θ0,A0)

→ E

[
Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]

Ψ(Oj ; θ0,A0)

]
uniformly in s ∈ [0, τ ].

The numerator and denominator in the integrand of (6) uniformly converge to deterministic functions,

denoted by g1k(s) and g2k(s), respectively. It follows from (3) that g1k(s) ≡ E[
∑nik

l=1 Rikl(s)dNikl∗(s)/ds]/λik(s)

is bounded away from zero. We claim that infs∈[0,τ ] g2k(s) > 0. If this is not true, then there exists

some s∗ ∈ [0, τ ] such that g2k(s∗+) = 0 or g2k(s∗) = 0. By Lemma 2, there exist δ∗ and c∗ such that

|g2k(s)| ≤ c∗|s− s∗| for s ∈ (s∗, s∗ + δ∗) or s ∈ (s∗ − δ∗, s∗]. On the other hand, for any ε > 0,

Λ̂k(τ) ≥
∫ τ

0

|n−1
∑n

j=1 Ψ̇k(Oj ; θ0,A0)[I(· ≥ s)]/Ψ(Oj ; θ0,A0)|
ε + |n−1

∑n
j=1 Ψ̇k(Oj ; θ̂, Â)[I(· ≥ s)]/Ψ(Oj ; θ̂, Â)|

dΛ̃k(s).

Taking limits on both sides, we obtain

O(1) ≥
∫ τ

0

g1k(s)
ε + g2k(s)

dΛ0k(s).

Let ε → 0. By the monotone convergence theorem,

O(1) ≥
∫ s∗+δ∗

s∗

g1k(s)λ0k(s)
c∗|s− s∗| ds,

or

O(1) ≥
∫ s∗

s∗−δ∗

g1k(s)λ0k(s)
c∗|s− s∗| ds.

This is a contradiction since the right-hand side is infinity. The contradiction implies that the limit

g2k(s) is uniformly positive. We can take limits on both sides of (6) to obtain

Λ∗k(t) =
∫ t

0

g1k(s)
g2k(s)

dΛ0k(s).

Thus, Λ∗k is also absolutely continuous with respect to Λ0k and dΛ∗k/dΛ0k = g1k/g2k. Since Λ0k(t)

is differentiable with respect to t, so is Λ∗k(t). We denote {Λ∗k}′(t) = λ∗k(t). The forgoing arguments

show that dΛ̂k(t)/dΛ̃k(t) uniformly converges to λ∗k(t)/λ0k(t), which is uniformly positive in [0, τ ].

It follows from the inequality n−1Ln(θ̂, Â) ≥ n−1Ln(θ0, Ã) that

n−1
n∑

i=1

K∑

k=1

nik∑

l=1

∫
log

dΛ̂k(t)

dΛ̃k(t)
Rikl(t)dN∗

ikl(t) + n−1
n∑

i=1

log
Ψ(Oi; θ̂, Â)

Ψ(Oi; θ0, Ã)
≥ 0.

In view of Lemma 1, the Glivenko-Cantelli theorem and the uniform convergence of dΛ̂k/dΛ̃k, we

take limits on both sides of the above inequality to obtain

E

[
log

∏K
k=1

∏nik
l=1

∏
t≤τ{λ∗k(t)}Rikl(t)dN∗

ikl(t)Ψ(Oi; θ∗,A∗)∏K
k=1

∏nik
l=1

∏
t≤τ{λ0(t)}Rikl(t)dN∗

ikl(t)Ψ(Oi; θ0,A0)

]
≥ 0.
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The left-hand side is the negative Kullback-Leibler distance of the density indexed by (θ∗,A∗). Thus,

condition (C5) entails that θ∗ = θ0 and Λ∗ = Λ0. ♦

7. Weak Convergence and Asymptotic Efficiency

Define V =
{
v ∈ Rd, |v| ≤ 1

}
, and Q =

{
h(t) : ‖h(t)‖V [0,τ ] ≤ 1

}
. We identify (θ̂ − θ0, Â − A0) as

a random element in l∞(V ×QK) through the definition (θ̂ − θ0)T v +
∑K

k=1

∫ τ
0 hk(s)d(Λ̂k −Λ0k)(s).

Theorem 2. Under conditions (C1)–(C7), n1/2(θ̂−θ0, Â−A0) →d G in l∞(V ×QK), where G is a

continuous zero-mean Gaussian process. Furthermore, the limiting covariance matrix of n1/2(θ̂− θ0)

attains the semiparametric efficiency bound.

Proof. The proof is based on the likelihood equation and follows the arguments of van der Vaart

(1998, pp. 419–424). Let L(θ,A) be the log-likelihood function from a single cluster, L̇θ(θ,A) be the

derivative of L(θ,A) with respect to θ, and L̇k(θ,A)[Hk] be the path-wise derivative along the path

Λk + εHk. We sometimes omit the arguments in these derivatives when θ = θ0 and A = A0. Let Pn

be the empirical measure based on n i.i.d. observations, and P be its expectation.

Define W = (h1, . . . , hK) ∈ QK . The likelihood equation for (θ̂, Â) along the path (θ̂ + εv, Â +

ε
∫ WdÂ), where v ∈ Rd and hk ∈ BV [0, τ ], is given by

0 =Pn

[
vT L̇θ(θ,A) +

K∑

k=1

L̇k(θ,A)
[ ∫

hkdΛk

]]
.

To be specific,

0 =Pn

[
vT Ψ̇θ(Oi; θ,A)

Ψ(Oi; θ,A)

]
+

K∑

k=1

Pn

[
nik∑

l=1

∫
hk(t)Rikl(t)dN∗

ikl(t) + Ψ̇k(Oi; θ,A)
[ ∫

hkdΛk

]]
.

Since (θ0,A0) maximizes P[L(θ,A)],

0 =P
[
vT L̇θ(θ0,A0)

]
, 0 = P

[
L̇k(θ0,A0)

[ ∫
hkdΛ0k

]]
, hk ∈ Q, k = 1, . . . , K.

These equations, combined with the likelihood equation for (θ̂, Â), yield

n1/2(Pn −P)

[
vT L̇θ(θ̂, Â) +

K∑

k=1

Lk(θ̂, Â)
[ ∫

hkdΛ̂k

]]

=− n1/2P
[

vT Ψ̇θ(Oi; θ̂, Â)

Ψ(Oi; θ̂, Â)
− vT Ψ̇θ(Oi; θ0,A0)

Ψ(Oi; θ0,A0)

]

−
K∑

k=1

n1/2P
[

Ψ̇k(Oi; θ̂, Â)[
∫

hkdΛ̂k]

Ψ(Oi; θ̂, Â)
− Ψ̇k(Oi; θ0,A0)[

∫
hkdΛ0k]

Ψ(Oi; θ0,A0)

]
.
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Define N0 =
{

(θ,A) : |θ − θ0|+
∑K

k=1 ‖Λk − Λ0k‖V [0,τ ] < δ0

}
, where δ0 is a small positive con-

stant. When n is large enough, (θ̂, Â) belongs to N0 with probability one. By Lemma 1 and the

Donsker theorem,

op(1) + n1/2(Pn −P)

[
vT L̇θ(θ0,A0) +

K∑

k=1

Lk(θ0,A0)
[ ∫

hkdΛ0k

]]

=− n1/2P
[

vT Ψ̇θ(Oi; θ̂, Â)

Ψ(Oi; θ̂, Â)
− vT Ψ̇θ(Oi; θ0,A0)

Ψ(Oi; θ0,A0)

]

−
K∑

k=1

n1/2P
[

Ψ̇k(Oi; θ̂, Â)[
∫

hkdΛ̂k]

Ψ(Oi; θ̂, Â)
− Ψ̇k(Oi; θ0,A0)[

∫
hkdΛ0k]

Ψ(Oi; θ0,A0)

]
,

(7)

where op(1) represents some random element converging in probability to zero in l∞(V ×QK).

Under condition (C6), the first term on the right-hand side of (7) is equal to

−n1/2

{
K∑

k=1

∫ τ

0
vT ζ0k(s)d(Λ̂k − Λ0k) + vT ζ0θ(θ̂ − θ0)

}
+ o

(
n1/2|θ̂− θ0|+ n1/2

K∑

k=1

‖Λ̂k −Λ0k‖V [0,τ ]

)
.

The second term is equal to

−
K∑

k=1

n1/2

{∫ τ

0
hk(t)η0k(t; θ̂, Â)dΛ̂k(t)−

∫ τ

0
hk(y)η0k(t; θ0,A0)dΛ0k(t)

}
.

It follows from condition (C6) that the above expression is equal to

−
K∑

k=1

n1/2

[∫ τ

0
hk(t)

{
η0kθ(t; θ0,A0)(θ̂ − θ0) +

K∑

m=1

∫ τ

0
η0km(s, t; θ0,A0)d(Λ̂m − Λ0m)(s)

}
dΛ0k(t)

+
∫ τ

0
hk(t)η0k(t; θ0,A0)d(Λ̂k(t)− Λ0k(t))

]
+ o

(
n1/2|θ̂ − θ0|+ n1/2

K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)

=−
K∑

k=1

n1/2

[
(θ̂ − θ0)T

∫ τ

0
hk(t)η0kθ(t; θ0,A0)dΛ0k(t)

+
K∑

m=1

∫ τ

0

{
I(m = k)hm(t)η0m(t; θ0,A0) +

∫ τ

0
η0km(s, t; θ0,A0)hk(s)dΛ0k(s)

}
d(Λ̂m(t)− Λ0m(t))

]

+ o

(
n1/2|θ̂ − θ0|+ n1/2

K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
.

Thus, the right-hand side of (7) can be written as

−n1/2

{
B1[v,W]T (θ̂ − θ0) +

K∑

k=1

∫
B2k[v,W]d(Λ̂k − Λ0k)

}
+o

(
n1/2|θ̂−θ0|+n1/2

K∑

k=1

‖Λ̂k−Λ0k‖V [0,τ ]

)
,

where (B1, B21, . . . , B2K) are linear operators in Rd × {BV [0, τ ]}K , and

B1[v,W] = vT ζ0θ(θ0,A0) +
K∑

k=1

∫ τ

0
hk(t)η0kθ(t; θ0,A0)dΛ0k(t), (8)
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B2k[v,W] = vT ζ0k(s; θ0,A0)+hk(t)η0k(t; θ0,A0)+
K∑

m=1

∫ τ

0
η0mk(s, t; θ0,A0)hm(s)dΛ0k(s), k = 1, . . . , K.

(9)

It follows from the above derivation that

B1[v,W]T ṽ +
K∑

k=1

∫
B2k[v,W]W̃kdΛ0k

=
d

dε

∣∣∣
ε=0
P

[
vTLθ(θ0 + εṽ,A0 + ε

∫
W̃dA0) +

K∑

k=1

Lk(θ0 + εṽ,A0 + ε

∫
W̃dA0)[

∫
hkdΛ0k]

]
.

(10)

We can write (B1, B21, . . . , B2K)[v,W] as



v
η01(t; θ0,A0)× h1(t)

...
η0K(t; θ0,A0)× hK(t)


 +




vT ζ0θ(θ0,A0) +
∑K

k=1

∫ τ
0 hk(t)η0kθ(t; θ0,A0)dΛ0k(t)− v

vT ζ01(t; θ0,A0) +
∑K

m=1

∫ τ
0 η0m1(s, t; θ0,A0)hm(s)dΛ0m(s)

...
vT ζ0K(t; θ0,A0) +

∑K
m=1

∫ τ
0 η0mK(s, t; θ0,A0)hm(s)dΛ0m(s)


 .

We wish to prove that (B1, B21, . . . , B2K) is invertible. As shown at the end of this section, η0k(t; θ0,A0) <

0, so that the first term of (B1, B21, . . . , B2K) is an invertible operator. It follows from Lemma 3 that

the second term is a compact operator. Thus, (B1, B21, . . . , B2K) is a Fredholm operator, and the in-

vertibility of (B1, . . . , B2K) is equivalent to the operator being one-to-one (Rudin, 1973, pp. 99–103).

Suppose that B1[v,W] = 0, . . . , and B2K [v,W] = 0. It is easy to see from (10) that the derivative of

P[vTLθ(θ0,A0) +
∑K

k=1 Lk(θ0,A0)[
∫

hkdΛ0k]] along the path (θ0 + εv,A0 + ε
∫ WdA0) is zero. That

is, the information along this path is zero, or vTLθ(θ0,A0)+
∑K

k=1 Lk(θ0,A0)
[ ∫

hkdΛ0k

]
= 0 almost

surely. By condition (C7), v = 0 and W = 0, so that (B1, B21, . . . , B2K) is one-to-one and invertible.

It follows from (7) that, for any (v,W) ∈ V ×QK ,

n1/2

{
vT (θ̂ − θ0) +

K∑

k=1

∫ τ

0
hk(t)d(Λ̂k(t)− Λ0k(t))

}

=− n1/2(Pn −P)

[
ṽT L̇θ(θ0,A0) +

K∑

k=1

L̇k(θ0,A0)
[ ∫

h̃kdΛ0k

]]

+ o
(
n1/2|θ̂ − θ0|+ n1/2

K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
,

where (ṽ, h̃1, . . . , h̃K) = (B1, B21, . . . , B2K)−1(v, h1, . . . , hK). Since

|θ̂ − θ0|+
K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ] = sup
(v,h1,...,hK)∈V×QK

∣∣∣∣vT (θ̂ − θ0) +
K∑

k=1

∫ τ

0
hk(t)d(Λ̂k(t)− Λ0k(t))

∣∣∣∣,

we have

n1/2

{
|θ̂ − θ0|+

K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ]

}
= Op(1) + o

(
n1/2|θ̂ − θ0|+ n1/2

K∑

k=1

‖Λ̂k − Λ0k‖V [0,τ ]

)
.
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Thus, n1/2
{|θ̂ − θ0|+

∑K
k=1 ‖Λ̂k − Λ0k‖V [0,τ ]

}
= Op(1). Consequently,

n1/2

{
vT (θ̂ − θ0) +

K∑

k=1

∫ τ

0
hk(t)d(Λ̂k(t)− Λ0k(t))

}

= −n1/2(Pn − P)

[
ṽT L̇θ(θ0,A0) +

K∑

k=1

L̇k(θ0,A0)
[ ∫

h̃kdΛ0k

]]
+ op(1).

We have proved that n1/2(θ̂ − θ0, Â − A0) converges weakly to a Gaussian process in l∞(V × QK).

By choosing hk = 0 for k = 1, . . . ,K, we see that vT θ̂ is an asymptotically linear estimator of vT θ0

with influence function ṽT L̇θ(θ0,A0) +
∑K

k=1 L̇k(θ0,A0)[
∫

h̃kdΛ0k]. Since the influence function lies

in the space spanned by the score functions, θ̂ is an efficient estimator for θ0.

It remains to verify that η0k(t; θ0,A0) < 0. Under condition (C6),

P
[

Ψ̇k(Oi; θ0,A0)[Hk]
Ψ(Oi; θ0,A0)

]
=

∫ τ

0
η0k(s; θ0,A0)dHk(s).

The choice of Hk(s) = I(s ≥ t) yields

P
[

Ψ̇k(Oi; θ0,A0)[I(· ≥ t)]
Ψ(Oi; θ0,A0)

]
= η0k(t; θ0,A0).

On the other hand, the score function along the path Λ0k + εI(· ≥ t) with the other parameters fixed

at their true values has zero expectation. We expand this expectation to obtain

P
[

Ψ̇k(Oi; θ0,A0)[I(· ≥ t)]
Ψ(Oi; θ0,A0)

]
= −λ−1

k (t)dE [I(Rik·(t) > 0)N∗
ik·(t)] /dt < 0.

Thus, η0k(t; θ0,A0) < 0. ♦

8. Information Matrix

Theorem 2 implies that the functional parameter A can be estimated in the same rate as the

Euclidean parameter θ. Thus, we may treat (1) as a parametric log-likelihood with θ and the jump

sizes of Λk, k = 1, . . . , K, at the observed failure times as the parameters and estimate the asymptotic

covariance matrix of the NPMLEs for these parameters by inverting the information matrix. This

result is formally stated in Theorem 3. We impose an additional assumption.

(C8) There exists a neighborhood of (θ0,A0) such that for (θ,A) in this neighborhood, the first and

second derivatives of log Ψ(Oi; θ,A) with respect to θ and along the path Λk + εHk with respect to

ε satisfy the inequality in (C4).
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For any v ∈ V and h1, . . . , hK ∈ Q, we consider the vector (vT ,~hT
1 , . . . ,~hT

K)T , where ~hk is the

vector consisting of the values of hk(·) at the observed failure times. Let In be the negative Hessian

matrix of (1) with respect to θ̂ and the jump sizes of (Λ̂1, . . . , Λ̂K).

Theorem 3. Assume that conditions (C1)–(C8) hold. Then In is invertible for large n, and

sup
v∈V,h1,...,hK∈Q

∣∣∣n(vT ,~hT
1 , . . . ,~hT

K)I−1
n (vT ,~hT

1 , . . . ,~hT
K)T

−AVar

[
n1/2

{
vT (θ̂ − θ0) +

K∑

k=1

∫
hkd(Λ̂k − Λ0k)

}] ∣∣∣∣∣ → 0

in probability, where AVar denotes the asymptotic variance.

Proof. The proof is similar to that of Theorem 3 in Parner (1998); see also van der Vaart (1998,

pp. 419–424). First, (10) implies that, for any v ∈ V and h1, . . . , hK ∈ Q,

−P






L̈θθ L̈θ1 . . . L̈θK
...

...
. . .

...
L̈Kθ LK1 . . . LKK










v∫
h1dΛ01

...∫
hKdΛ0K


 ,




v∫
h1dΛ01

...∫
hKdΛ0K










= vT B1(v, h1, . . . , hK) +
K∑

k=1

∫
B2k(v, h1, . . . , hK)hkdΛ0k, (11)

where L̈ pertains to the second-order derivative of the log-likelihood function.

On the right-hand side of (10), we replace P by Pn to obtain two new linear operators Bn1 and

Bn2k. It is easy to show that Bn1 and Bn2k converge uniformly to B1 and B2k, respectively. Under

condition (C8), the results of Lemma 1 apply to the second-order derivatives L̈ and the operators

(B1, B21, . . . , B2K). By replacing θ0, Λ0k and P on both sides of (11) with θ̂, Λ̂0k and Pn, we obtain

(vT ,~hT
1 , . . . ,~hT

K)In(vT ,~hT
1 , . . . ,~hT

K)T = vT Bn1(ṽ, h̃1, . . . , h̃K)+
K∑

k=1

∫
Bn2k(ṽ, h̃1, . . . , h̃K)hkdΛ̂k+op(1).

According to the proof of Theorem 2, (B1, B21, . . . , B2K) is invertible, and so is (Bn1, . . . , Bn2k) for

large n. Note that vT Bn1(ṽ, h̃1, . . . , h̃K) +
∑K

k=1

∫
Bn2k(ṽ, h̃1, . . . , h̃K)hkdΛ̂k can be written as

(vT ,~hT
1 , . . . ,~hT

K)Bn(vT ,~hT
1 , . . . ,~hT

K)T

for some matrix Bn. Therefore, Bn is invertible, and so is In. Furthermore,

sup
v∈V,h1,...,hK∈Q

∣∣∣(vT ,~hT
1 , . . . ,~hT

K)In(vT ,~hT
1 , . . . ,~hT

K)T − (vT ,~hT
1 , . . . ,~hT

K)Bn(vT ,~hT
1 , . . . ,~hT

k )T
∣∣∣ → 0.
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According to Theorem 2, the asymptotic variance of n1/2
{

vT (θ̂ − θ0) +
∑K

k=1

∫
hkd(Λ̂k − Λ0k)

}

is equal to

P



{
L̇T

θ ṽ +
K∑

k=1

L̇k

[ ∫
h̃kdΛ0k

]}2



= −P







L̈θθ L̈θ1 . . . L̈θK
...

...
. . .

...
L̈Kθ LK1 . . . LKK










ṽ∫
h̃1dΛ01

...∫
h̃KdΛ0K


 ,




ṽ∫
h̃1dΛ01

...∫
h̃KdΛ0K











,

where (ṽ, h̃1, . . . , h̃K) is equal to (B1, B21, . . . , B2K)−1(v, h1, . . . , hK), which can be approximated

by (Bn1, Bn21, . . . , Bn2K)−1(v, h1, . . . , hK). Hence, the asymptotic variance can be approximated

uniformly in v and hk’s by its empirical counterpart (vT ,~hT
1 , . . . ,~hT

K)B−1
n InB−1

n (ṽT ,
~̃
h

T

1 , . . . ,
~̃
h

T

K)T ,

which is further approximately by (vT ,~hT
1 , . . . ,~hT

K)I−1
n (vT ,~hT

1 , . . . ,~hT
K)T . ♦

9. Profile Likelihood

Theorem 4. Let pln(θ) be the profile log-likelihood function for θ, and assume that conditions

(C1)–(C8) hold. For any εn = Op(n−1/2) and any vector v,

−pln(θ̂ + εnv)− 2pln(θ̂) + pln(θ̂ − εn)
nε2n

→p vT Σ−1v,

where Σ is the limiting covariance matrix of n1/2(θ̂− θ0). Furthermore, 2
{

pln(θ̂)− pln(θ0)
}
→d χ2

d.

Proof. We appeal to Theorem 1 of Murphy and van der Vaart (2000). Specifically, we construct

the least favorable submodel for θ0 and verify all the conditions in their Theorem 1. For notational

simplicity, we assume that K = 1. It is straightforward to extend to K > 1.

It follows from the proof of Theorem 2 that
∫ τ

0
B2(0, h)h∗dΛ0 = −E

[
L̈ΛΛ

[ ∫
h∗dΛ0,

∫
hdΛ0

]]
,

where B2 stands for the operator (B21, . . . , B2K), and L̈ΛΛ[H1,H2] denotes the second-order deriva-

tive of L(θ, A) with respect to Λ along the bi-directions H1 and H2. On the other hand,

E

[
L̇Λ

[ ∫
h∗dΛ0

]
L̇θ

]
= −

∫ τ

0
h∗(s)L̇∗ΛL̇θdΛ0(s),

where L∗Λ is the dual operator of LΛ in L2[0, τ ]. Thus, if we choose h such that B2(0, h) = −L̇∗ΛL̇θ,

then

E

[
L̇Λ

[ ∫
h∗dΛ0

]
L̇θ

]
= −E

[
L̈ΛΛ

[ ∫
h∗dΛ0,

∫
hdΛ0

]]
.
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By definition,
∫

hdΛ0 is the least favorable direction for θ0 and L̇θ − L̇Λ[
∫

hdΛ0] is the efficient score

function. Such an h exists since B2(0, ·) is invertible. In addition, h ∈ BV [0, τ ]. Hence, we can

construct the least favorable submodel at (θ, Λ) by ε 7→ (ε, Λε) with dΛε(θ,Λ) = {1 + (ε− θ) · h} dΛ.

Clearly, Λθ(θ, Λ) = Λ and

∂L(ε,Λε)
∂ε

∣∣∣
ε=θ0,θ=θ0,Λ=Λ0

= L̇θ − L̇Λ

[ ∫
hdΛ0

]
.

If θ̃ →p θ0 and Λ̂eθ maximizes the objective function with θ̂ replaced by θ̃, we can use the arguments

in the proof of Theorem 1 to show that Λ̂eθ is consistent. In the likelihood equation for Λ̂eθ, we can

use the arguments for the linearization of (7) to show that, uniformly in h ∈ Q,

op(1) + n1/2(Pn − P)
[
L̇Λ(θ0,Λ0)

[ ∫
hdΛ0

]]

=− n1/2

∫ τ

0
B2(0, h)d(Λ̂eθ − Λ0) + Op(n1/2|θ̃ − θ0|) + op(n1/2‖Λ̂eθ − Λ0‖V [0,τ ]).

The arguments for proving the invertibility of (B1, B2) show that h 7→ B2(0, h) is invertible. Thus,

‖Λ̂eθ − Λ0‖V [0,τ ] = Op(|θ̃ − θ0|+ n−1/2).

By condition (C6), we obtain the no-bias condition, i.e.,

E

[
∂L(ε,Λε)

∂ε

∣∣∣
ε=θ0,θ=eθ,Λ=bΛeθ

]
= Op(|θ̃ − θ0|+ n−1/2).

We have verified conditions (8)–(11) of Murphy and van der Vaart (2000).

Condition (C4), together with Lemma 1, implies that the class

{
∂L(ε,Λε)

∂ε
: |ε− θ0| < δ0, (θ, Λ) ∈ N0

}

is P -Donsker and that the functions in the class are continuous at (θ0,Λ0) almost surely, while

condition (C8) implies that the class

{
∂2L(ε,Λε)

∂ε2
: |ε− θ0| < δ0, (θ, Λ) ∈ N0

}

is P -Glivenko-Cantelli and is bounded in L2(P ). Therefore, all the conditions in Murphy and van

der Vaart (2000) hold, so that the desired results follows from their Theorem 1. ♦

10. Applications
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In this section, we apply the general results to the problems described in Section 2. We shall

identify a set of conditions for each problem under which regularity conditions (C1)–(C8) are satisfied

so that the desired asymptotic properties hold. These applications not only provide the theoretical

justifications for the work of Zeng and Lin (2007), but also illustrate how the general theory can be

applied to specific problems.

10.1. Transformation Models With Random Effects for Dependent Failure Times

We assume the following conditions.

(D1) The parameter value (βT
0 , γT

0 )T belongs to the interior of a compact set Θ in Rd, and Λ′0k(t) > 0

for all t ∈ [0, τ ], k = 1, . . . , K.

(D2) With probability one, Zikl(·) and Z̃ikl(·) are in BV [0, τ ] and are left-continuous with bounded

left- and right-derivatives in [0, τ ].

(D3) With probability one, P (Cikl ≥ τ |Zikl) > δ0 > 0 for some constant δ0.

(D4) With probability one, nik is bounded by some integer n0. In addition, E[Nik·(τ)] < ∞.

(D5) For k = 1, . . . ,K, Gk(x) is four-times differentiable such that Gk(0) = 0, G′
k(x) > 0, and for

any integer m ≥ 0 and any sequence 0 < x1 < . . . < xm ≤ y,

m∏

l=1

{(1 + xl)G′
k(xl)} exp{−Gk(y)} ≤ µm

0k(1 + y)−κ0k

for some constants µ0k and κ0k > 0. In addition, there exists a constant ρ0k such that

sup
x

{
|G′′

k(x)|+ |G(3)(x)|+ |G(4)(x)|
G′(x)(1 + x)ρ0k

}
< ∞.

(D6) For any constant a1 > 0,

sup
γ

E

[∫

b
exp{a1(N∗

ik·(τ) + 1)|b|}f(b; γ)db

]
< ∞,

and there exists a constant a2 > 0 such that for any γ,
∣∣∣∣∣
ḟγ(b; γ)
f(b; γ)

∣∣∣∣∣ +

∣∣∣∣∣
f̈γ(b; γ)
f(b; γ)

∣∣∣∣∣ +

∣∣∣∣∣
f

(3)
γ (b; γ)
f(b; γ)

∣∣∣∣∣ ≤ O(1) exp{a2(1 + |b|)}.

(D7) Consider two types of events: k ∈ K1 indicates that event k is recurrent and k ∈ K2 indicates

that event k is survival time. For k ∈ K1 ∪ K2, if there exist ck(t) and v such that with probability

1, ck(t) + vT Zikl(t) = 0 for k ∈ K1 and ck(0) + vT Zikl(0) = 0 for k ∈ K2, then v = 0.
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(D8) If there exist constants αk and α0k such that for any subset Lk ⊂ {1, ..., nik} and for any ωkl

and tkl, ∫

b

∏

k∈K1

nik∏

l=1

exp{iωklb
T Z̃ikl(tkl)}

∏

k∈K2

∏

l∈Lk

exp{αk + bT Z̃ikl(0)}f(b; γ)db

=
∫

b

∏

k∈K1

nik∏

l=1

exp{iωklb
T Z̃ikl(tkl)}

∏

k∈K2

∏

l∈Lk

exp{α0k + bT Z̃ikl(0)}f(b;γ0)db,

then γ = γ0. In addition, if for k ∈ K2 and for any t,

∫

b
exp

{
−Gk(

∫ t

0
ebT eZikl(s)dΛ1(s))

}
f(b; γ0)db =

∫

b
exp

{
−Gk(

∫ t

0
ebT eZikl(s)dΛ2(s))

}
f(b; γ0)db,

then Λ1 = Λ2. Furthermore, if for some vector v and constant αk,

I (k ∈ K1)
∫

b
e2bT eZikl(0)f ′(b; γ0)T vdb + I (k ∈ K2)

∫

b
ebT eZikl(0)(αkf(b; γ0)− f ′(b; γ0)T v)db = 0,

then v = 0.

(D1)–(D4) are standard conditions for this type of problem. We shall show that condition (D5)

holds for all commonly used transformations. We first consider the class of logarithmic transforma-

tions G(x) = ρ log(1 + rx) (ρ > 0, r > 0). Clearly,

m∏

k=1

{
(1 + xk)G′(y)

}
exp{−G(y)} ≤

m∏

k=1

{
ρr(1 + xk)
1 + rxk

}
(1 + ry)−ρ

≤ {ρr(1 + 1/r)}m (1 + ry)−ρ

≤ {ρr(1 + 1/r)}m min(1, r)−ρ(1 + y)−ρ.

Thus, in condition (D5), we can set µ0 to ρr(1 + 1/r)min(1, r)−ρ and κ0 to ρ. We can verify the

polynomial bounds for G′′(x)/G(x), G(3)(x)/G(x) and G(4)(x)/G(x) by direct calculations. We next

consider the class of Box-Cox transformations G(x) = {(1 + x)ρ − 1}/ρ. Clearly,

m∏

k=1

{
(1 + xk)G′(xk)

}
exp{−G(y)} ≤

m∏

k=1

(1 + xk)ρ exp[−{(1 + y)ρ − 1}/ρ]

≤ (1 + y)mρ exp{−(1 + y)ρ/2ρ} exp{−(1 + y)ρ/2ρ} exp(1/ρ)

≤ (2ρ)m exp(1/ρ)2ρ(1 + y)−ρ

≤ {4ρ + exp(1/ρ)}m (1 + y)−ρ.

Thus, we can set µ0 to 4ρ + exp(1/ρ) and κ0 to ρ. The polynomial bounds for G′′(x)/G(x),

G(3)(x)/G(x) and G(4)(x)/G(x) hold naturally. Finally, we consider the linear transformation model:

H(T ) = βT Z + ε, where ε is standard normal. In this case, G(x) = − log{1− Φ(log x)}, where Φ is

24



the standard normal distribution function. We claim that there exists a constant ν0 > 0 such that

φ(x) ≤ ν0{1 − Φ(x)}(1 + |x|). If x < 0, then φ(x) ≤ (2π)−1/2 ≤ 2(2π)−1/2{1 − Φ(x)}(1 + |x|). If

x ≥ 0,

lim
x→0

φ(x)
{1− Φ(x)}(1 + x)

= 2(2π)−1/2.

By the L’Hospital rule,

lim
x→∞

1− Φ(x)
φ(x)

= lim
x→∞

φ(x)
φ(x)x

= 0,

and

lim
x→∞

φ(x)
{1− Φ(x)}(1 + x)

= lim
x→∞

−φ(x)x
−φ(x)(1 + x) + {1− Φ(x)} = lim

x→∞
1

(1 + x)/x− {1− Φ(x)}/xφ(x)
= 1.

Therefore, φ(x)/[{1 − Φ(x)}(1 + x)] is bounded for x ≥ 0. Without loss of generality, assume that

y > 1. Clearly,

m∏

k=1

{
(1 + xk)G′(xk)

}
exp{−G(y)} =

m∏

k=1

{
(1 + xk)φ(log(xk))/xk

1− Φ(log(xk))

}
{1− Φ(log y)}.

Since (1 + x)φ(log(x))/[x{1 − Φ(log x)}] is bounded when x is close to zero and it is bounded by a

multiplier of (1 + log x) when x is close to ∞,

(1 + x)φ(log(x))/x{1− Φ(log x)} ≤ ν01 + ν02 log(1 + x)

for two constants ν01 and ν02. Therefore,

m∏

k=1

{
(1 + xk)G′(xk)

}
exp{−G(y)} ≤ {ν01 + ν02 log(1 + y)}m {1− Φ(log y)}.

Since 1− Φ(x) ≤ 21/2 exp(−x2/4) when x > 0, the above expression is bounded by

21/2 {ν01 + ν02 log(1 + y)}m exp{−(log y)2/4}

≤ν03 {ν01 + ν02 log(1 + y)}m exp{−ν04(log(1 + y))2}

≤ν03 {ν01 + ν02 log(1 + y)}m exp{−ν04(log(1 + y))2/2} exp{−ν04 log(1 + y)/2}

≤νm
05(1 + y)−ν04/2,

where all the ν’s are positive constants. The polynomial bounds for G′′(x)/G(x), G(3)(x)/G(x) and

G(4)(x)/G(x) follow from the fact that φ(x)/{1− Φ(x)} ≤ O(1 + |x|).
Condition (D6) pertains to the tail property of the density function for the random effects f(b; γ).

For survival data, N∗
ik·(τ) ≤ 1, so that the first half of condition (D6) is tantamount to that the
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moment generating function of b exists everywhere. This condition holds naturally when b has a

compact support or a Gaussian density tail. The second half of condition (D6) clearly holds for

Gaussian density functions.

(D7) and (D8) are sufficient conditions to ensure parameter identifiability and non-singularity

of the Fisher information matrix. In most applications, these conditions are tantamount to the

linear independence of covariates and the unique parametrization of the random-effects distribution.

Specifically, if Z̃ikl is time-independent, then the second condition in (D8) is not necessary; if Z̃ikl does

not depend on k and l and b has a normal distribution, then the other two conditions in (D8) hold as

well provided that Z̃ikl is linearly independent with positive probability; if Z̃ikl is time-independent

and K1 is non-empty (i.e., at least one event is recurrent), then (D8) can be replaced by the linear

independence of Z̃ikl for some k ∈ K1 and the unique parametrization of f(b; γ).

We wish to show that conditions (D1)–(D8) imply conditions (C1)–(C8), so that the desired

asymptotic properties hold. Conditions (C1) and (C2) follow naturally from (D1)–(D4). To verify

condition (C3), we note that

Ψ(Oi; θ,A) =
∫

b

K∏

k=1

nik∏

l=1

Ωikl(b;β,Λk)f(b; γ)db,

where

Ωikl(b; β, Λk) =
∏

t≤τ

{
Rikl(t)eβT Zikl(t)+bT eZikl(t)G′

k(qikl(t))
}dN∗

ikl(t) exp {−Gk(qikl(τ))} ,

and qikl(t) =
∫ t
0 Rikl(s) exp{βT Zikl(s) + bT Z̃ikl(s)}dΛk(s).

If ‖Λk‖V [0,τ ] are bounded, then Ωikl(b; β, Λk) ≥ exp{O(1)N∗
ikl(τ)}I(|b| ≤ B0) for any fixed con-

stant B0 such that P (|b| ≤ B0) > 0. Thus, Ψ(Oi; θ,A) is bounded from below by exp{O(1)N∗
ikl(τ)},

so that the second half of condition (C3) holds. It follows from condition (D5) that

Ωikl(b;β, Λk) ≤ O(1)
∏

t≤τ

{
Rikl(t)ebT eZikl(t)

}dN∗
ikl(t)

µ
N∗

ikl(τ)

0k

∏

t≤τ

{1 + qikl(t)}−dN∗
ikl(t) {1 + qikl(τ)}−κ0k .

Since exp{βT Zikl(s)+bT Z̃ikl(s)} ≥ exp{−O(1+|b|)}, we have 1+qikl(t) ≥ e−O(1+|b|)
{

1 +
∫ t
0 Rik·(s)dΛk(s)

}
,

so that

Ωikl(b; β, Λk) ≤ O(1)µN∗
ikl(τ)

0k eO(1+N∗
ikl(τ))|b| ∏

t≤τ

{
1 +

∫ t

0
Rik·(s)dΛk(s)

}−dN∗
ikl(t)

{
1 +

∫ τ

0
Rikl(s)dΛk(s)

}−κ0k

.

Thus, the first half of condition (C3) holds as well.
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We now verify condition (C4). Under condition (D5),

|Ωikl(b; β, Λk)| ≤ exp{O(1 + N∗
ikl(τ))|b|},

∣∣∣∣
∂

∂β
Ωikl(b; β, Λk)

∣∣∣∣ =

∣∣∣∣∣Ωikl(b; β, Λk)

[{∫
Rikl(t)Zikl(t)dN∗

ikl(t)

+
∫

Rikl(t)
G′′

k(qikl(t))
∫ t
0 Rikl(s)eβT Zikl(s)+bT eZikl(s)Zikl(s)dΛk(s)

G′
k(qikl(t))

dN∗
ikl(t)

}

−G′
k(qikl(τ))

{∫ τ

0
Rikl(s)eβT Zikl(s)+bT eZikl(s)Zikl(s)dΛk(s)

} ]∣∣∣∣∣
≤ exp{O(1 + N∗

ikl(τ))(1 + |b|)},

∣∣∣∣
∂

∂Λk
Ωikl(b; β, Λk)[Hk]

∣∣∣∣ =

∣∣∣∣∣Ωikl(b; β, Λk)

×
[{∫

Rikl(t)
G′′

k(qikl(t))
∫ t
0 Rikl(s)eβT Zikl(s)+bT eZikl(s)dHk(s)

G′
k(qikl(t))

dN∗
ikl(t)

}

−G′
k(qikl(τ))

{∫ τ

0
Rikl(s)eβT Zikl(s)+bT eZikl(s)dHk(s)

} ]∣∣∣∣∣
≤ exp{O(1 + N∗

ikl(τ))(1 + |b|)}.

Thus, it follows from the mean-value theorem that

∣∣∣Ωikl(b; β(1), Λk)− Ωikl(b; β(2), Λk)
∣∣∣ =

∣∣∣∣
∂

∂β
Ωikl(b; β∗, Λk)

∣∣∣∣ |β(1) − β(2)|

≤ exp{O(1 + N∗
ikl(τ))|b|}|β(1) − β(2)|,

|Ωikl(b; β, Λ(1)
k )− Ωikl(b;β, Λ(2)

k )| =
∣∣∣∣

∂

∂Λk
Ωikl(b; β, Λ∗k)[Λ

(1)
k − Λ(2)

k ]
∣∣∣∣

≤ exp{O(1 + N∗
ikl(τ))|b|}

×
{∫

Rikl(t)
∣∣∣∣
∫ t

0
eβ∗T Zikl(s)+bT eZikl(s)d(Λ(1)

k − Λ(2)
k )(s)

∣∣∣∣ dN∗
ikl(t)

+
∣∣∣∣
∫ τ

0
Rikl(t)eβ∗T Zikl(s)+bT eZikl(s)d(Λ(1)

k − Λ(2)
k )(s)

∣∣∣∣
}

≤ exp{O(1 + N∗
ikl(τ))(1 + |b|)}

×
{∫

Rikl(t)|Λ(1)
k (t)− Λ(2)

k (t)|dN∗
ikl(t) +

∫ τ

0
|Λ(1)

k (s)− Λ(2)
k (s)|ds

}
,

where the last inequality follows from integration by parts and the fact that Zikl(t) and Z̃ikl(t) have

bounded variations. It then follows from condition (D6) that |Ψ(Oi; θ(1),A(1))−Ψ(Oi; θ(2),A(2))| is

bounded by the right-hand side of the inequality in (C4). By the same arguments, we can verify the

bounds for the other three terms in (C4).
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To verify condition (C6), we calculate that

η0k(s; θ,A) =E

[∫

b

∏K
m=1

∏nim
l=1 Ωiml(b;β, Λm)f(b; γ)∫

b

∏K
m=1

∏nim
l=1 Ωiml(b; β, Λm)f(b; γ)db

×
{∫

t≥s

G′′
k(qikl(t))

G′
k(qikl(t))

dN∗
ikl(t)−G′

k(qikl(τ))
}

Rikl(s)eβT Zikl(s)+bT eZikl(s)db

]
.

For (θ,A) in a neighborhood of (θ0,A0),
∣∣∣∣∣η0k(s; θ,A)− η0k(s; θ0,A0)− ∂

∂θ
η0k(s; θ0,A0)T (θ − θ0)−

K∑

m=1

∂η0k

∂Λm
(s; θ0,A0)[Λm − Λ0m]

∣∣∣∣∣

=o

(
|θ − θ0|+

K∑

m=1

‖Λm − Λ0m‖V [0,τ ]

)
.

Thus, for the second equation in (C6), η0km(s, t; θ0,A0) is obtained from the derivative of η0k with

respect to Λm along the direction Λm − Λ0m, and η0kθ is the derivative of η0k with respect to θ.

Likewise, we can obtain the first equation in condition (C6). It is straightforward to verify the

Lipschitz continuity of η0km.

The verification of condition (C8) is similar to that of (C4), relying on the explicit expressions of

Ψ̈θθ(Oi; θ,A) and the first and second derivatives of Ψ(Oi; θ,A0 + εH) with respect to ε.

It remains to verify the two identifiability conditions under (D7) and (D8). To verify (C5),

suppose that (β, γ, Λ1, . . . ,Λk) yields the same likelihood as (β0, γ0, Λ10, . . . ,Λk0). That is,

∫

b

K∏

k=1

nik∏

l=1

λk(t)dN∗
ikl(t)Ωikl(b; β, Λk)f(b; γ)db =

∫

b

K∏

k=1

nik∏

l=1

λk0(t)dN∗
ikl(t)Ωikl(b;β0, Λk0)f(b; γ0)db.

We perform the following operations on both sides sequentially for k = 1, . . . , K and l = 1, . . . , nik:

(a) If the kth type of event pertains to survival time, for the lth subject of this type of event, the

first equation is obtained with Rikl(t) = 1 and dN∗
ikl(t) = 0 for any t ≤ τ , i.e., the subject does

not experience any event in [0, τ ]. The second equation is obtained by integrating t from tkl to

τ on both sides under the scenario that Rikl(t) = 1 and N∗
ikl(t) has a jump at t, i.e, the subject

experiences the event at time tkl. We then take the difference between these two equations. In the

resulting equation, the terms λk(t)dN∗
ikl(t)Ωikl(b; β, Λk) and λk0(t)dN∗

ikl(t)Ωikl(b; β0, Λk0) are replaced by

exp{−Gk(
∫ tkl

0 exp{βT Zikl(s)+bT Z̃ikl(s)}dΛk)} and exp{−Gk(
∫ tkl

0 exp{βT
0 Zikl(s)+bT Z̃ikl(s)}dΛk0)},

respectively.

(b) If the kth type of event is recurrent, for the lth subject of this type of event, we let Rikl(t) = 1

and let N∗
ikl(t) have jumps at s1, s2, . . . , sm and s′1, . . . , s

′
m′ for any arbitrary (m + m′) times in
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[0, τ ]. We integrate s1, . . . , sm from 0 to tkl and integrate s′1, . . . , s
′
m′ from 0 to τ . In the obtained

equation, λk(t)dN∗
ikl(t)Ωikl(b; β, Λk) is replaced by {Gk(qikl(tkl))}m {Gk(qikl(τ))}m′

on both sides. Note

that m and m′ are arbitrary. We then multiple both sides by {(iωkl)m/m!} /m′! and sum over

m,m′ = 0, 1, . . . On both sides of the resulting equation, the terms associated with k and l are

replaced by exp{iωklGk(qikl(tkl))}.
After these sequential operations, we obtain

∫

b

∏

k∈K1

nik∏

l=1

exp{iωklGk(qikl(tkl))}
∏

k∈K2

nik∏

l=1

exp{−Gk(qikl(tkl))}f(b; γ)db

=
∫

b

∏

k∈K1

nik∏

l=1

exp{iωklGk(qikl0(tkl))}
∏

k∈K2

nik∏

l=1

exp{−Gk(qikl0(tkl))}f(b; γ0)db.

For survival time, we can let any subject from the nik subjects have tkl = 0, which results in

∫

b

∏

k∈K1

nik∏

l=1

exp{iωklGk(qikl(tkl))}
∏

k∈K2

nik∏

l=1

[
1
ξkl

+ exp{−Gk(qikl(tkl))}
]

f(b; γ)db

=
∫

b

∏

k∈K1

nik∏

l=1

exp{iωklGk(qikl0(tkl))}
∏

k∈K2

nik∏

l=1

[
1
ξkl

+ exp{−Gk(qikl0(tkl))}
]

f(b; γ0)db,

where ξkl is any positive variable.

The above expression implies that {Gk(qikl(t)), k ∈ K1} as a function of

b1 ∼
∏

k∈K2

nik∏

l=1

[
1
ξkl

+ exp{−Gk(qikl(tkl))}
]

f(b;γ)

has the same distribution as {Gk(qikl0(t)), k ∈ K1} as a function of

b2 ∼
∏

k∈K2

nik∏

l=1

[
1
ξkl

+ exp{−Gk(qikl0(tkl))}
]

f(b; γ0);

so is true between {qikl(t)} and {qikl0(t)} because of the one-to-one mapping. Thus, the distributions

of {log q′ikl(t)} and {log q′ikl0(t)} should also agree and they have the same expectation. Now let

tkl = 0 for k ∈ K2. Since E[b1] = E[b2] = 0, we obtain log λk(t) + βT Zikl(t) = log λk0(t) + βT
0 Zikl(t)

for k ∈ K1. The above arguments also yield

∫

b

∏

k∈K1

nik∏

l=1

exp{bT Z̃ikl(tkl)}
∏

k∈K2

nik∏

l=1

[
1
ξkl

+ exp{−Gk(qikl(tkl))}
]

f(b;γ)db

=
∫

b

∏

k∈K1

nik∏

l=1

exp{bT Z̃ikl(tkl)}
∏

k∈K2

nik∏

l=1

[
1
ξkl

+ exp{−Gk(qikl0(tkl))}
]

f(b; γ0)db.
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We compare the coefficients of ξkl for k ∈ K2. This yields that for any subset Lk ⊂ {1, ..., nik},
∫

b

∏

k∈K1

nik∏

l=1

exp{iωklb
T Z̃ikl(tkl)}

∏

k∈K2

∏

l∈Lk

exp{−Gk(qikl(t))}f(b; γ)db

=
∫

b

∏

k∈K1

nik∏

l=1

exp{iωklb
T Z̃ikl(tkl)}

∏

k∈K2

∏

l∈Lk

exp{−Gk(qikl0(t))}f(b;γ0)db.

We differentiate the above expression with respect to tkl at 0 for k ∈ K2. It then follows from (D8)

that log λk(0) − log λ0k(0) + (β − β0)T Zikl(0) = 0 and γ = γ0. Thus, (D7) implies that β = β0 and

λk(t) = λ0k(t) for k ∈ K1. On the other hand, for any fixed k ∈ K2, we let tk′l′ = 0 if k′ 6= k or l′ 6= l.

Thus,
∫
b exp{−Gk(qikl(tkl))}f(b; γ0)db =

∫
b exp{−Gk(q0ikl(tkl))}f(b; γ0)db. Therefore, Λk = Λ0k for

k ∈ K2 according to (D8).

To verify (C7), we write v = (vβ, vγ). We perform operations (a) and (b) on the score equation

in (C7). The arguments used in proving the identifiability yield

∫

b


 ∑

k∈K1

nik∑

l=1

iωklAikl(tkl)Gk(qikl0(tkl))−
∑

k∈K2

∑

l∈Lk

Aikl(tkl) +
f ′(b; γ0)T vγ

f(b; γ0)




× exp





∑

k∈K1

nikl∑

l=1

iωklGk(qikl0(tkl))−
∑

k∈K2

∑

l∈Lk

Gk(qikl0(tkl))



 f(b; γ0)db = 0, (12)

where

Aikl(t) =
∫ t

0
(hk(s) + Zikl(s)T vβ)eβT

0 Zikl(s)+bT eZikl(s)dΛk0(s)G′
k(qikl0(t)).

We differentiate (12) with respect to tkl twice at 0 for k ∈ K1. Comparison of the coefficients for ωkl

yields
∫
b e2bT eZikl(0)f ′(b; γ0)T vγdb = 0. We also differentiate (12) with respect to tkl at 0 for k ∈ K2.

We obtain for each k ∈ K2 and l = 1, ..., nik,

∫

b
(hk(0) + Zikl(0)T vβ)ebT eZikl(0)f(b; γ0)db = −G′

k(0)
∫

b
ebT eZikl(0)f ′(b; γ0)T vγdb.

It then follows from (D8) that vγ = 0. For fixed k0 and l0, with the fact of vγ = 0, the score equation

under operations (a) and (b), where in (a) we let dN∗
ikl(t) = 0 for any t ≤ τ and in (b) we let m = 0

whenever k 6= k0 or l 6= l0, becomes a homogeneous integral equation for hk0(t) + Zik0l0(t)
T vβ. The

equation has a trivial solution, so hk0(t) + Zik0l0(t)
T vβ = 0. Since k0 and l0 are arbitrary, condition

(D7) implies that hk = 0 and vβ = 0.

Remark 2. For survival time, condition (D5) is required to hold only for m = 0 and m = 1.
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Remark 3. The above results do not apply directly to the proportional hazards model with gamma

frailty because condition (D6) does not hold when b has a gamma distribution. It is mathematically

convenient to handle this model because the marginal hazard function has an explicit form. The

likelihood is a special case of ours with

Ψ(Oi; θ,Λ) =
ni∏

j=1

∏

t≤τ

Yij(t; β)dNij(t)
∏

t≤τ

{1 + θNi·(u−)}dNi·(t)
{

1 + θ

∫ τ

0
Yi·(u; β)dΛ(u)

}−(1/θ+Ni·(τ))

in Parner (1998)’s notation. Clearly, Ψ satisfies condition (C3) when θ > 0. The other conditions

can be verified in the same manner as before.

Remark 4. Our theory does not cover the case in which the true parameter values lie on the

boundary of Θ. It is delicate to deal with the boundary problem. One possible solution is to follow

the idea of Parner (1998) by extending the definition of the likelihood function outside Θ and verifying

conditions (C2)–(C8) for the extended likelihood function.

Remark 5. We have assumed known transformations. We may allow Gk to belong to a parametric

family of distributions, say Gk(·;ψ), where ψ is a parameter in a compact set. Then θ contains ψ.

Our results and proofs apply to this situation if assumption (D5) holds uniformly in ψ and the two

identifiability conditions are satisfied.

10.2. Joint Models for Repeated Measures and Failure Times

For the (parametric) generalized linear mixed model, the likelihood can be viewed as a special

case of that of Section 10.1 except that there is an additional parameter α in f(y|x; b). We assume

that conditions (D1)–(D8) hold but with (D6) replaced by the following condition.

(D6’) For any constant a1 > 0,

sup
α,γ

E




∫

b
exp{a1(N∗

i (τ) + 1)|b|}
ni∏

j=1

f(Yij |Xij ; b)f(b; γ)db


 < ∞,

and there exists a constant a2 > 0 such that for any γ and α,

3∑

k=1

∣∣∣∣∣
f

(k)
α (Yij |Xij , b)
f(Yij |Xij , b)

∣∣∣∣∣ +

∣∣∣∣∣
f

(k)
γ (b; γ)
f(b; γ)

∣∣∣∣∣ ≤ r3(Oi) exp{a2(1 + |b|)}

almost surely, where r3(Oi) is a random variable in L2(P ).

Under these conditions, the desired asymptotic properties follow from the arguments of Section 10.1.
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Under the semiparametric linear transformation model for continuous repeated measures, the

likelihood is in the form of that of Section 2.2 with K = 2 and ni2 = ni, where the time to the second

type of failure is defined by Yij (assuming without loss of generality that Yij ≥ 0). Thus, if we regard

Yij as a right-censored observation when it is greater than a very large value (i.e., the upper limit of

detection), then the asymptotic results given in Section 10.1 hold. When such an upper limit does

not exist, the estimator for Λ̃ can be unbounded when sample size goes to infinity. Then our proof

of Theorem 1 does not apply.

10.3. Transformation Models for Counting Processes

We shall verify conditions (C1)–(C8) under the following conditions.

(E1) The parameter value (βT
0 , γT

0 )T belongs to the interior of a compact set Θ in Rd, and Λ′0(t) > 0

for all t ∈ [0, τ ].

(E2) With probability one, P (C ≥ τ |Z) > δ0 > 0 for some constant δ0.

(E3) Condition (D5) holds.

(E4) With probability one, Z(·) and Z̃ are in BV [0, τ ] and are left-continuous with bounded left-

and right-derivatives in [0, τ ].

(E5) If γT Z̃ is equal to a constant with probability one, then γ = 0. In addition, if βT Z(t) = c(t)

for a deterministic function c(t) with probability one, then β = 0.

In this case,

Ψ(Oi; θ,Λ) =
∏

t≤τ

(
Ri(t)eβT Zi(t)+γT eZi

{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT eZi−1

×G′
[{

1 +
∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT eZi
])dN∗

i (t)

exp

(
−G

[{
1 +

∫ τ

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT eZi
])

.

By condition (D5),

∏

t≤τ

(
Ri(t)eβT Zi(t)+γT eZi

{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT eZi−1

×G′
[{

1 +
∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT eZi
])dN∗

i (t)

exp

(
−G

[{
1 +

∫ τ

0
Ri(s)eβT Zi(s)dΛ(s)

}eγT eZi
])

≤µ
N∗

i (τ)
1

∏

t≤τ

{
1 +

∫ t

0
Ri(s)eβT Zi(s)dΛ(s)

}−dN∗
i (t) {

1 +
∫ τ

0
Ri(s)eβT Zi(s)dΛ(s)

}−κeγT eZi
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for some constant µ1. Thus, condition (C3) follows from the boundedness of γT Z̃i. We can verify

the other conditions by using the arguments of Section 10.1.

To verify the first identifiability condition, we assume that N∗
i (t) has jumps at x, x1, . . . , xm for

some integer m. After integrating both sides of the equation in (C5) over x1, . . . , xm from 0 to τ and

integrating x from x to τ , we obtain

G




{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi


−G




{
1 +

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi







×

G




{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi


−G(1)




m

× exp


−G




{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi


 + G(1)




=


G




{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


−G




{
1 +

∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi







×

G




{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


−G(1)




m

× exp


−G




{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


 + G(1)


 .

Multiplying both sides of this equation by 1/m! and summing over m ≥ 0, we obtain

G




{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi


−G




{
1 +

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi




=G




{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


−G




{
1 +

∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


 .

Setting N∗
i (τ) = 0 in the likelihood function yields

G




{
1 +

∫ τ

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi


 = G




{
1 +

∫ τ

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


 .

Thus

G




{
1 +

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi


 = G




{
1 +

∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi


 ,

or {
1 +

∫ x

0
eβT

0 Zi(t)dΛ0(t)
}eγT

0
eZi

=
{

1 +
∫ x

0
eβ∗T Zi(t)dΛ∗(t)

}eγ∗T eZi

.
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Then Λ∗(t) is absolutely continuous with respect to t. Differentiating both sides with respect to

x and letting x = 0 yield λ∗(0) > 0. When x converges to zero, the left-hand side is equal to
[
exp{βT

0 Zi(0)}λ0(0)x
]eγT

0
eZi

+o(xeγT
0
eZi ) while the right-hand side is equal to

[
exp{β∗T Zi(0)}λ∗(0)x

]eγ∗T eZi

+o(xeγ∗T eZi ). Thus, γT
0 Z̃i = γ∗T Z̃i. By condition (E5), γ0 = γ∗. Furthermore, eβT

0 Zi(t)dΛ0(t)/dt =

eβ∗T Zi(t)dΛ∗(t)/dt. It follows from condition (E5) that β0 = β∗ and Λ0 = Λ∗.

To verify the second identifiability condition (C7), we assume that the score function along

(β0 + εhβ, γ0 + εhγ , dΛ0 + εhdΛ0) is zero. Equivalently, if we let g0(t) = {1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)}γT
0
eZi ,

then we obtain

0 =
∫

h(t)Ri(t)dN∗
i (t) +

∫
Ri(t)

{
hT

β Zi(t) + hT
γ Z̃i

}
dN∗

i (t)

+
∫

Ri(t)(eγT eZi − 1)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)

[∫ t

0
eβT

0 Zi(s)
{
hT

β Zi(s) + h(s)
}

dΛ0(s)
]

dN∗
i (t)

+
∫

Ri(t)hT
γ Z̃ie

γT eZi log
{

1 +
∫ t

0
eβT

0 Zi(s)dΛ0(s)
}

dN∗
i (t)

+
∫

Ri(t)
G′′(g0(t))
G′(g0(t))

g0(t)hT
γ Z̃ie

γT eZi log
{

1 +
∫ t

0
eβT

0 Zi(s)dΛ0(s)
}

dN∗
i (t)

+
∫

Ri(t)
G′′(g0(t))
G′(g0(t))

g0(t)


eγT

0
eZi

∫ t
0 eβT

0 Zi(s)
{

hT
β Zi(s) + h(s)

}
dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)


 dN∗

i (t)

−G′(g0(τ))g0(τ)hT
γ Z̃ie

γT eZi log
{

1 +
∫ τ

0
eβT

0 Zi(s)dΛ0(s)
}

−G′(g0(τ))g0(τ)
eγT

0
eZi

1 +
∫ τ
0 eβT

0 Zi(s)dΛ0(s)

∫ τ

0
eβT

0 Zi(s)
{
hT

β Zi(s) + h(s)
}

dΛ0(s).

We multiply both sides by the likelihood function and let N∗
i (t) have jumps at times t1, t2, . . . , tm.

We integrate t1 from 0 to t and tl, 1 < l ≤ m from 0 to τ . By multiplying the resulting equation by

1/(m− k)! and summing over m = 1, 2, . . ., we obtain

hT
γ Z̃i log

{
1 +

∫ t

0
eβT

0 Zi(s)dΛ0(s)
}

+

∫ t
0 eβT

0 Zi(s){hT
β Zi(s) + h(s)}dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)
= 0.

Differentiation with respect to t then yields

hT
γ Z̃i +

{
hT

β Zi(t) + h(t)
}−

∫ t
0 eβT

0 Zi(s)
{

hT
β Zi(s) + h(s)

}
dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)
= 0.

Combining the above two equations, we have

{
hT

β Zi(t) + h(t)
}−

∫ t
0 eβT

0 Zi(s)
{

hT
β Zi(s) + h(s)

}
dΛ0(s)

1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)

[
1 +

1

log{1 +
∫ t
0 eβT

0 Zi(s)dΛ0(s)}

]
= 0.
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This is a homogeneous integral equation for hT
β Zi(t)+ h(t) and has zero solution. That is, hT

β Zi(t)+

h(t) = 0. It follows from (E5) that h(t) = 0 and hβ = 0. Thus, hγ = 0.

11. Concluding Remarks

We have developed a general asymptotic theory for the NPMLEs with right censored data and

shown that this theory applies to the models considered by Zeng and Lin (2007). This theory can

also be used to establish the desired asymptotic properties for other existing semiparametric models,

particularly the models mentioned in Sections 7.1–7.4 of Zeng and Lin (2007), as well as those that

may be invented in the future. It is much simpler to verify the set of sufficient conditions identified

in this paper than proving the asymptotic results from scratch, which requires a good command of

modern empirical process theory and entails many pages of derivations. Conditions (C1) and (C2)

are standard conditions required in all censored-data regression; (C3), (C4) and (C6) are certain

smoothness conditions that can be verified directly, as demonstrated in Section 10; (C5) and (C7)

are two minimal identifiability conditions that need to be verified for any specific problem.

Although the basic structures of our proofs mimic those of Murphy (1994; 1995) and Parner

(1998), our technical arguments are innovative and substantially more difficult because we deal

with a very general form of likelihood function rather than specific problems. In all previous work,

verification of the Donsker property relies on the specific expressions of the functions, whereas our

Lemma 1 provides a universal way to verify this property. In verifying the invertibility of the

information operator, all previous work requires an explicit expression of the information operator

that is identified as the sum of an invertible operator and a compact operator, whereas we allow a

very generic form of information operator obtained from the likelihood function (1). Murphy and van

der Vaart (2001) stated that the consistency of NPMLEs needs to be proved on a case-by-case basis;

however, we were able to prove the consistency for a very general likelihood function. Although we

borrowed the partitioning idea of Murphy (1994), our technical arguments are very different because

of the generic form of the likelihood.

In some applications, the failure times are subject to left truncation in addition to right censoring.

To accommodate general censoring/truncation patterns, we define N(t) as the number of events

observed by time t and R(t) as the at-risk indicator at time t reflecting both left truncation and right

censoring. Assume that the truncation time has positive mass at time 0, so that condition (C2) is

satisfied. Then all the results continue to hold.
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This paper is concerned with the theoretical aspect of the NPMLEs and complements the work

of Zeng and Lin (2007). The interested readers are referred to the latter for the calculations of the

NPMLEs and for the use of the semiparametric regression models and NPMLEs in practice. The

latter also provides rationale for the kind of model considered in Sections 2 and 10 of this paper.

Although the latter contains some theoretical elements, this paper presents the theory (especially

the regularity conditions) in a more rigorous manner and provides all the proofs.
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