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SUMMARY

We propose a class of transformation models for multivariate failure times. The class of
transformation models generalize the usual gamma frailty model and yields a marginally lin-
ear transformation model for each failure time. Nonparametric maximum likelihood estima-
tion is used for inference. The maximum likelihood estimators for the regression coefficients
are shown to be consistent and asymptotically normal, and their asymptotic variances attain the
semiparametric efficiency bound. Simulation studies show that the proposed estimation proce-
dure provides asymptotically efficient estimates and yields good inferential properties for small
sample sizes. The method is illustrated using data from a cardiovascular study.

Some key words: Gamma frailty model; Linear transformation model; Proportional hazards model; Semiparametric
efficiency.

1. INTRODUCTION

Multivariate failure time data arise when each study subject can potentially experience sev-
eral events (Kalbfleisch & Prentice, 2002, Chs. 8–10). For multivariate failure times, it is often
interesting to determine risk factors that are predictive for all the failures or predictive for some
failures but not others. For example, in a colon cancer study (Lin, 1994), patients with resected
colon cancer could experience cancer recurrence and then die; in this study, investigators wished
to access the efficacy of adjuvant therapy for both types of failures. Since multivariate failure
times are from the same subject, they are potentially dependent on one another, and ignoring
this may lead to biased inference. To account for the dependence of correlated failure times in
a statistical model, it is natural and convenient to represent such dependence through a frailty
term or a random effect (Clayton & Cuzick, 1985; Oakes, 1989, 1991; Hougaard, 2000). In par-
ticular, the proportional hazards model (Cox, 1972) with gamma frailty was used to incorporate
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covariates by Nielsen et al. (1992) and Klein (1992), and for a subject with covariate X , such a
model takes the form �k(t | X ) = ω�k(t) exp(βT

k X ), where �k(t | X ) is the cumulative hazard
function for failure time of type k, �k(t) is an unknown baseline function and ω is the gamma
frailty. The asymptotic properties of the nonparametric maximum likelihood estimates from this
model can be studied using the same theory as in Murphy (1994, 1995) and Parner (1998).

The proportional hazards model assumes that the hazard ratios across covariate levels are
constant over time. Such an assumption is often violated in scientific studies. Instead, other
semiparametric models may provide more accurate or more concise summarization of the data.
One alternative is the proportional odds model (Bennett, 1983; Murphy et al., 1997), which
assumes that the hazard ratio between two sets of covariate values converges to unity as time
increases rather than being constant. In fact, both the proportional hazards and proportional
odds models belong to the class of linear transformation models, which relate an unknown
transformation of the failure time linearly to the covariates (Kalbfleisch & Prentice, 2002, p. 241).
For univariate survival data, Dabrowska & Doksum (1988), Cheng et al. (1995) and Chen et al.
(2002) proposed general estimators for this class of models. More general transformation models
have been recently proposed and studied by Zeng & Lin (2006).

The literature on the generalization of transformation models to multivariate failure times by
incorporating random effects is very limited. Only Zeng & Lin (2007) discussed a class of such
transformation models. In their paper, the cumulative hazard function for the failure time of type
k is assumed to have the form Gk{exp(βT

k X + bT Z )�k(t)}, where X and Z are subject-specific
covariates, Gk is the transformation used and b is the random effect. Such a class of transformation
models include the proportional hazards and the proportional odds models as special cases, and
incorporates the dependence across failure times through the random effect b. However, as
discussed by Zeng & Lin (2007), this class does not include the usual gamma frailty model,
and inference requires that the latent random effects be nonzero. Additionally, for many simple
transformations, βk does not have a clear interpretation regarding the relationship between X and
the failure times.

In this paper, we propose a different general class of transformation models with gamma frailty.
Our class includes the gamma frailty model as a special case and allows the random effects to be
zero. The proposed models are not covered by the general class of models in Zeng & Lin (2007),
and imply another set of marginal transformation models for each failure time so their regression
coefficients have a direct interpretation similar to the usual linear transformation models.

2. MODELS AND INFERENCE

Let Tik denote the failure time of event type k (k = 1, . . . , K ). We assume that given ωi ,

�ik(t | ωi , Xi ) = Gk
{
�k(t)exp

(
βT

k Xi
)}

ωi ,

where ωi follows the gamma distribution with mean unit and variance θ . The model is a natural
generalization of the usual frailty model, which yields it as a special case, but we allow more
flexible choices for the transformation model. For example, when Gk(x) = x , we obtain the
proportional hazards model, and when Gk(x) = log(1 + x), we obtain the proportional odds
model. Furthermore, under the above model, we can easily obtain the marginal cumulative hazard
function for the failure time of event type k as log[1 + θGk{�k(t) exp(βT

k Xi )}]/θ . Equivalently,
Tik given Xi satisfies another linear transformation model log �k(Tik) = −βT

k Xi + εik, where εik

follows the distribution log G−1
k {(U−θ − 1)/θ}, and U ∼ Uniform(0,1). Hence, βk has the same

interpretation as the coefficients in the usual linear transformation models (Cheng et al., 1995;
Zeng & Lin, 2006). Furthermore, we allow θ = 0, i.e. no frailty exists among the failure times.
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We further assume that the study ends at some finite τ . However, when the event times are
cure-type events (Berkson & Gage, 1952), that is, the survival probability at infinity is nonzero,
we also allow τ = ∞. Under these assumptions, we can rewrite the above model as

�ik(t | ωi , Xi ) = Gk
{

Fk(t) exp
(
αk + βT

k Xi
)}

ωi (1)

by defining Fk(t) = �k(t)/�k(τ ) and αk = log �k(τ ). Clearly, Fk(τ ) = 1; i.e. Fk(t) is a distribu-
tion function in [0, τ ].

If we have a set of right-censored data, the observed data for a single cluster are {Yk =
min(Tk, Ck),�k = I (Tk � Ck), X} (k = 1, . . . , K ), where Ck is the censoring time for event
type k. Therefore, under the assumption that the censoring time is independent of the failure time
and the frailty given the covariates, the likelihood function is

Ln(α, β, θ, F) =
K∏

k=1

[
G ′

k

{
Fk(Yk)eαk+βT

k X}
Fk(Yk)eαk+βT

k X ]�k

×
∫

ω
∑K

k=1
�k exp

(
−ω

[
K∑

k=1

Gk
{

Fk(Yk)eαk+βT
k X}])

gθ (ω) dω.

The estimation of the parameters αk, βk, Fk and θ is based on nonparametric maximum like-
lihood estimation. In this approach, we treat Fk as a discrete distribution function with positive
jumps at the Yk for which �k = 1. Thus, the estimates of all the parameters maximize the
following loglikelihood function from n independent and identically distributed clusters:

ln(α, β, θ, F) =
n∑

i=1

K∑
k=1

�ik
[

log G ′
k

{
Fk(Yik)eαk+βT

k Xi
} + log Fk{Yik} + αk + βT

k Xi
]

+
n∑

i=1

log
∫

ω
∑K

k=1
�ik exp

(
−ω

[
K∑

k=1

Gk
{

Fk(Yik)eαk+βT
k Xi

}])
gθ (ω) dω,

where ln(α, β, θ, F) = log Ln(α, β, θ, F), and Fk{t} denotes the jump size of Fk at t . In fact,
it is easy to show that the estimates for Fk must be a cumulative distribution function with
positive jumps only at the Yiks for which �ik = 1. Therefore, the above maximization should be
performed over the parameters αk, βk, θ and these positive jumps. Additionally, the summation
of these positive jumps for Fk should be unity due to the fact that Fk is a distribution function
in [0, τ ]. We denote the nonparametric maximum likelihood estimates for αk, βk , θ and Fk by
α̂k, β̂k, θ̂ and F̂k , respectively. Correspondingly, we let �̂k denote the estimate of �k .

Our subsequent theory will establish asymptotic normality of the nonparametric maximum
likelihood estimators, and specifically that the asymptotic covariance for the nonparametric
maximum likelihood estimators can be consistently estimated using the inverse of the observed
Fisher information matrix. That is, we treat the jump sizes of F̂k as usual parameters along with
αk, βk and θ . We then calculate the observed information matrix for these parameters, denoted
by Ĵ . The asymptotic covariance for F̂k, α̂k, β̂k and θ̂ is thus estimated using the delta method.
For example, to estimate the asymptotic covariance of

∑
k(

∫
hkd F̂k + t0k α̂k + tT

1k β̂k) for some
deterministic functions hk and constants t0k and t1k (k = 1, . . . , K ), which can also be written
as

∑
k{

∑n
i=1 �ikhk(Yik)F̂k{Yik} + t0k α̂k + tT

1k β̂k}, we can use h̃T Ĵ−1h̃, where h̃ is the vector
consisting of all hk(Yik) for which �ik = 1 and t0k and t1k for k = 1, . . . , K.

When the true frailty variance is zero, the estimate for θ , θ̂ , can be negative. In this case, we
use max(0, θ̂ ) as the estimate for θ . Then from the theory given later, such a modified estimate
has a half-truncated normal distribution, so that inference for θ can be carried out accordingly.
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3. COMPUTATIONAL ALGORITHM

We present a computationally convenient algorithm to compute the nonparametric maximum
likelihood estimator, which avoids maximization over a large number of parameters. We apply the
expectation-maximization, EM, algorithm by treating ωi as missing data. In the E-step, we evaluate
the conditional expectation of some function Q(ωi ) given the observed data. The conditional
density of ωi given the observed data is

Gamma

⎛
⎝θ−1 +

K∑
k=1

�k,

[
θ−1 +

K∑
k=1

Gk
{

Fk(Yik)eαk+βT
k Xi

}]−1⎞⎠ .

The conditional expectation of Q(ωi ) can be calculated analytically or by a Laplace approxima-
tion; we denote it by Ê{Q(ωi )}. In the M-step, we need to maximize the following loglikelihood
function:

ln(α, β, θ, F) =
n∑

i=1

K∑
k=1

�ik
[

log G ′
k

{
Fk(Yik)eαk+βT

k Xi
} + log Fk(Yik)

+ αk + βT
k Xi + Ê(log ωi )

] −
n∑

i=1

Ê(ωi )
K∑

k=1

Gk
{

Fk(Yik)eαk+βT
k Xi

}

− n log θ1/θ	(1/θ) + (1/θ − 1)
n∑

i=1

Ê(log ωi ) − θ−1
n∑

i=1

Ê(ωi ).

To this end, we order the Yik for which �ik = 1 from smallest to largest, and denote them as
y1k < · · · < ynk ,k . The corresponding covariates are denoted by x1k, . . . , xnk ,k . Let flk be the
jump size of Fk(·) at ylk and let Flk denote Fk(ylk) (l = 1, . . . , nk). After differentiating the
loglikelihood function with respect to flk , we obtain

1

flk
= −

∑
Yik�ylk

�ik
G ′′

k

{
Fk(Yik)eαk+βT

k Xi
}

G ′
k

{
Fk(Yik)eαk+βT

k Xi
}eαk+βT

k Xi

+
∑

Yik�ylk

Ê(ωi )G
′
k

{
Fk(Yik)eαk+βT

k Xi
}

eαk+βT
k Xi + λk,

where λk is the Lagrange multiplier for the constraint
∑nk

l=1 flk = 1. This yields

1

flk
= 1

fl+1,k
−

∑
ylk�Yik<yl+1,k

�ik
G ′′

k

(
Flkeαk+βT

k Xi
)

G ′
k

(
Flkeαk+βT

k Xi
)eαk+βT

k Xi

+
∑

ylk�Yik<yl+1,k

Ê(ωi )G
′
k

(
Flkeαk+βT

k Xi
)
eαk+βT

k Xi . (2)

Since Flk = 1 − fl+1,k − fl+2,k − · · · − fnk ,k , this gives us a recursive formula for calculating
flk from fl+1,k, . . . , fnk ,k . Therefore, we can treat αk, βk , ξk = fnk ,k (k = 1, . . . , K ), and θ as
the parameters to be updated in the M-step, since any other flk can be indirectly expressed as a
function of these parameters using formula (2). Hence, the maximization in the M-step can be
carried out over a small set of parameters including αk, βk , ξk (k = 1, . . . , K ), and θ . In practice,
a one-step Newton–Raphson algorithm can be used to update these parameters. In particular, the
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equations to be solved are

n∑
i=1

�ik

[
G ′′

k

{
Fk(Yik)eαk+βT

k Xi
}

G ′
k

{
Fk(Yik)eαk+βT

k Xi
} Fk(Yik)eαk+βT

k Xi + 1

] (
1, X T

i

)T

−
n∑

i=1

Ê(ωi )G
′
k

(
Fk(Yik)eαk+βT

k Xi
)
Fk

(
Yikeαk+βT

k Xi
)(

1, X T
i

)T = 0, (3)

nk∑
l=1

flk = 1 (k = 1, . . . , K ), (4)

and

n

θ2
log θ − n

θ2
+ n

	′(1/θ)

θ2	(1/θ)
− 1

θ2

n∑
i=1

Ê(log ωi ) + 1

θ2

n∑
i=1

Ê(ωi ) = 0, (5)

where flk is a function of αk, βk and ξk . We iterate between the E- and M-steps until convergence.
The resulting estimates are then the nonparametric maximum likelihood estimators.

One limitation in the above algorithm is that the estimate of θ must be positive. However, when
the frailty variance is zero, the maximum likelihood estimate of θ can be zero or even negative.
The EM algorithm is not applicable in this case since the frailty ωi has an improper density when
θ < 0. To overcome this dilemma, we add a second set of equations by fixing θ = 0 and then
compute the nonparametric maximum likelihood estimators for the other parameters. The same
EM algorithm can be used in this case except that θ is set to be zero. We then compare the observed
likelihood functions for the nonparametric maximum likelihood estimators obtained in the first
set of equations with θ � 0 and the observed likelihood function for the nonparametric maximum
likelihood estimators obtained in the second set of equations with θ = 0. The equations with the
larger likelihood function are treated as the final estimates.

Finally, the inverse of the observed information matrix can be used to estimate the asymptotic
covariance matrix of the parameter estimates. The observed information matrix can be calculated
using Louis’ formula (Louis, 1982) based on equations (3)–(5).

4. ASYMPTOTIC RESULTS

We establish asymptotic results for the proposed estimators. For a noncured failure time in
which all subjects eventually fail, we assume τ to be finite; while for a cured failure time in which
some subjects never failure, we allow τ to equal infinity. The latter generalizes the development
in Zeng et al. (2006) to the multivariate case, and it does not assume that we observe events at
τ = ∞, i.e. all the cured subjects are right censored.

Let θ0 and (α0k, β0k, F0k) denote the true values for the parameters θ and (αk, βk, Fk), respec-
tively. We need the following assumptions.

Assumption 1. The true parameter β0k belongs to a known bounded regionBk and 0 � θ0 < θM

for some constant θM , f0k(t) > 0 for t ∈ [0, τ ] and k = 1, . . . , K . The vectors (1, X ) are linearly
independent with positive probability and X is bounded with probability one.

Assumption 2. The transformation Gk is a strictly increasing function with Gk(0) = 0 and
G ′

k(0) > 0, and is three-times continuously differentiable in [0, τ ]. Moreover, G ′′
k (x) � 0,

lim supx→∞{G ′
k(x)/G ′

k(Mx) + Gk(Mx)/Gk(x)} < ∞, where M = maxK
k=1 supβ∈Bk ,X βT

k X .



6 DONGLIN ZENG, QINGXIA CHEN AND JOSEPH G. IBRAHIM

Assumption 3. The censoring times (C1, . . . , CK ) are independent of (T1, . . . , TK ) conditional
on X . Moreover, inf x P(C1 = τ, . . . , CK = τ | X = x) > 0.

The assumption about the known boundness of β0k in Assumption 1 is standard. In the
assumption, we allow the possibility that θ0 = 0, corresponding to no correlation among all
types of events. Moreover, we do not assume a known bound for αk and �k(τ ). Therefore, we
do not impose a bound for α̂k . This yields a very challenging statistical issue for establishing
consistency of the parameter estimates. Assumption 2 implies that there exists some constant
c0 > 0 such that Gk(x) � c0x , G ′

k(x) � c0G ′
k(Mx) and Gk(Mx) � c0Gk(x). Many classes of

transformations satisfy these properties. For example, Gk(x) = r−1 log(1 + xr ) with r � 0 and
Gk(x) = {(1 + x)ρ − 1}/ρ with ρ ∈ [0, 1]. Assumption 3 assumes that all subjects surviving at
τ are right-censored.

Under these assumptions, we first establish identifiability of the model parameters.

THEOREM 1. Under Assumptions 1–3, all the parameters, including (αk, βk, Fk) (k =
1, . . . , K ) and θ , are identifiable.

The proof of Theorem 1, which is given in the Appendix, utilizes the expression of the
likelihood function but considers the cases θ0 = 0 and θ0 > 0 separately. Our next result shows
that any nontrivial one-dimensional submodel possesses a nonsingular Fisher information matrix.
Such a result is necessary to establish the subsequent asymptotic properties.

THEOREM 2. Under Assumptions 1–3, for any one-dimensional submodel given as {α0k +
εak, β0k + εbk, d F0k + ε

∫
h0kd F0k, θ0 + εw, (k = 1, . . . , K )}, the Fisher information along

this submodel is nonsingular, where h0k is a function in BV [0, τ ], the space of all functions
with bounded total variation, satisfying

∫ τ
0 hk(s)d F0k(s) = 0.

The proof is given in the Appendix and is based on an explicit expression for the score function
along this submodel and considers θ0 = 0 and θ0 > 0 separately. Using both Theorem 1 and
Theorem 2, we are able to obtain the following consistency results.

THEOREM 3. Under Assumptions 1–3, it follows that

K∑
k=1

(| α̂k − α0k | + | β̂k − β0k |) + | θ̂ − θ0 | +
K∑

k=1

sup
t∈[0,τ ]

| F̂k − F0k | → 0,

almost surely. The proof of Theorem 3, given in the Appendix, relies on first obtaining the
compactness of α̂k , or equivalently, the uniform boundedness of �̂k . However, in contrast to
Murphy (1994) and Parner (1998) who worked on �̂k directly, our proof works on Gk(�k)
instead due to the nature of the transformation models. Moreover, the proof of consistency needs
to consider θ0 > 0 and θ0 = 0 separately.

Our last theorem gives the asymptotic properties of the nonparametric maximum likelihood
estimators.

THEOREM 4. Under Assumptions 1–3 and treating �̂k as a function in BV [0, τ ], n1/2(β̂k −
βk0, θ̂ − θ0, �̂k − �0k)k=1,...,K , converges in distribution to a zero-mean Gaussian process
in the product of real spaces and BV [0, τ ]⊗K . Moreover, the asymptotic covariances of β̂k

(k = 1, . . . , K ) and α̂ attain their semiparametric efficiency bound.

The proof follows from Theorem 2 in the Appendix of Zeng & Lin (2007), so we only outline
it below. First, since θ0 may be zero, we consider an extended domain θM > θ > −ε0 where ε0 =
min[1/K , {∑K

k=1 Gk(eα0k+βT
0k X )}−1]. Under the extended likelihood function, the true parameter
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value for θ is in the interior of the domain and by consistency, when n is large enough, θ̂ belongs to
the interior of the domain. We can easily check that condition (C1) in Zeng & Lin (2007) follows
from our Assumption 1 and the above extension. Condition (C2) in Zeng & Lin (2007) is implied
by our Assumption 1. Conditions (C4), (C6) and (C8) in Zeng & Lin (2007) can be verified
by direct calculations. Our previous results on parameter identifiability and nonsingularity of
submodel information yield the two identifiability conditions (C5) and (C7) given in Zeng & Lin
(2007). Condition (C3) in Zeng & Lin (2007) is not necessary for the asymptotic distribution
once consistency holds.

Remark 1. As in Theorem 2 of Zeng & Lin (2007), the asymptotic covariance matrix attains
the efficiency bound and can be estimated using the observed information matrix as described
in the previous section. Furthermore, since θ̂ can be negative, we propose to estimate θ by
θ̌ = θ̂ I (θ̂ � 0), where I (x) is an indicator function of condition x . Thus, from Theorem 4, we
conclude that θ̌ possesses the same asymptotic distribution as θ̂ if θ0 > 0; however, if θ0 = 0,
then n1/2θ̌ → σ Z I (Z � 0), in distribution, where Z denotes the standard normal distribution,
and σ 2 is the asymptotic variance of θ̂ . This result can be used to test whether θ = 0.

Remark 2. For a cured failure time, when τ = ∞, we can estimate the cure rate for each event
type. From the assumed model, it is easy to calculate

Pr(Tk � τ | Xi ) =
∫

exp
[ − ωGk

{
Fk(τ )eαk+βT

k X}]
gθ (ω)dω = {

1 + θGk
(
eαk+βT

k X)}−1/θ .

Thus, an estimator of the cure rate for event type k given X is given by π̂k = {1 +
θ̂Gk(eα̂k+β̂T

k X )}−1/θ̂ . From the previous derivation, π̂k also has an asymptotically normal dis-
tribution and its variance can be estimated using the delta method.

5. NUMERICAL STUDIES

We conducted simulation studies to examine the small sample performance of the proposed
methodology using 1000 replications. We considered two event types, k = 1, 2, with the following
transformations:

Gk(x) =
{

{(1 + x)ρ − 1}/ρ (ρ � 0),

log(1 + r x)/r (r � 0).
(6)

In this family, ρ = 1 or r = 0 (i.e. G(x) = x) yields the proportional hazards model, whereas
ρ = 0 or r = 1, i.e. G(x) = log(1 + x) yields the proportional odds model. Other than these two
special cases, we also considered two other transformations in the simulation study: ρ = 0·5,
which gives G(x) = 2{(1 + x)1/2 − 1}; ρ = 0 and r = 0·5, which gives G(x) = 2 log(1 + x/2).
The transformation model had a cumulative hazard function of the form

�ik(t | ωi , Xi1, Xi2) = Gk{Fk(t) exp(αk + βk1 Xi1 + βk2 Xi2)}ωi (i = 1, . . . , n; k = 1, 2),

where Xi1 was simulated from a uniform distribution on (0, 1), Xi2 was simulated from a
Bernoulli distribution with success probability p = 0·4, ωi was simulated from a Gamma (1/θ, θ )
distribution, and Fk(t) = (1 − e−t )/(1 − e−3)I (0 � t � 3) + I (t > 3). The censoring times of
the two event types were both generated from a mixture distribution with probability 0·5 from a
uniform distribution on (3/2, 3) and probability 0·5 from a point mass at τ = 3.

We chose θ to be 1 and 0·5 in the simulation study. When θ = 1, the results are summarized in
Table 1 for each of the four transformation models and sample size n. The confidence intervals
were constructed based on the asymptotic normal approximation for β̂, a lognormal approximation
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Table 1. Simulation results from 1000 replications when θ = 1

n Par True Est SE ASE CP Par True Est SE ASE CP

G1(x) = x G2(x) = x
200 β11 1·0 1·00 0·50 0·48 0·94 β21 −1·5 −1·53 0·48 0·49 0·95

β12 −0·5 −0·50 0·30 0·29 0·94 β22 0·5 0·51 0·27 0·27 0·96
�1(τ/4) 0·555 0·56 0·06 0·06 0·94 �2(τ/4) 0·555 0·55 0·06 0·06 0·96

θ 1·0 0·99 0·29 0·29 0·95
400 β11 1·0 0·99 0·35 0·34 0·94 β21 −1·5 −1·50 0·33 0·34 0·96

β12 −0·5 −0·50 0·20 0·20 0·96 β22 0·5 0·49 0·19 0·19 0·96
�1(τ/4) 0·555 0·56 0·05 0·05 0·94 �2(τ/4) 0·555 0·56 0·05 0·05 0·94

θ 1·0 0·99 0·20 0·20 0·96

G1(x) = x G2(x) = log(1 + x)
200 β11 1·0 1·01 0·50 0·48 0·94 β21 −1·5 −1·54 0·62 0·63 0·95

β12 −0·5 −0·50 0·30 0·29 0·94 β22 0·5 0·51 0·35 0·36 0·96
�1(τ/4) 0·555 0·56 0·06 0·07 0·94 �2(τ/4) 0·555 0·55 0·07 0·08 0·95

θ 1·0 0·99 0·32 0·31 0·95
400 β11 1·0 0·99 0·35 0·34 0·95 0β21 −1·5 −1·50 0·43 0·44 0·96

β12 −0·5 −0·50 0·20 0·20 0·96 β22 0·5 0·49 0·25 0·25 0·95
�1(τ/4) 0·555 0·56 0·05 0·05 0·94 �2(τ/4) 0·555 0·56 0·05 0·05 0·94

θ 1·0 0·99 0·22 0·22 0·97

G1(x) = 2{(1 + x)1/2 − 1} G2(x) = 2 log(1 + x/2)
200 β11 1·0 1·00 0·58 0·55 0·94 β21 −1·5 −1·53 0·56 0·57 0·96

β12 −0·5 −0·50 0·34 0·32 0·94 β22 0·5 0·51 0·31 0·32 0·97
�1(τ/4) 0·555 0·56 0·07 0·07 0·95 �2(τ/4) 0·555 0·55 0·07 0·07 0·95

θ 1·0 0·98 0·32 0·31 0·95
400 β11 1·0 1·00 0·40 0·39 0·95 β21 −1·5 −1·50 0·39 0·40 0·95

β12 −0·5 −0·50 0·23 0·23 0·95 β22 0·5 0·49 0·23 0·23 0·96
�1(τ/4) 0·555 0·55 0·05 0·05 0·96 �2(τ/4) 0·555 0·56 0·05 0·05 0·94

θ 1·0 0·99 0·22 0·22 0·96

G1(x) = log(1 + x) G2(x) = log(1 + x)
200 β11 1·0 1·00 0·65 0·62 0·94 β21 −1·5 −1·53 0·62 0·63 0·95

β12 −0·5 −0·49 0·38 0·37 0·95 β22 0·5 0·51 0·35 0·36 0·96
�1(τ/4) 0·555 0·56 0·08 0·08 0·95 �2(τ/4) 0·555 0·56 0·08 0·08 0·95

θ 1·0 0·97 0·34 0·33 0·96
400 β11 1·0 0·99 0·45 0·44 0·95 β21 −1·5 −1·49 0·43 0·44 0·96

β12 −0·5 −0·50 0·26 0·26 0·95 β22 0·5 0·49 0·25 0·25 0·95
�1(τ/4) 0·555 0·56 0·05 0·05 0·95 �2(τ/4) 0·555 0·56 0·05 0·05 0·94

θ 1·0 0·98 0·23 0·23 0·97

Par, the parameter to be estimated; True, the true value of the parameter; Est, the average estimate; SE, the sample
standard deviation of the estimates; ASE, the average standard error; CP, the coverage probability of the nominal 95%
confidence intervals.

for �̂ and the Satterthwaite approximation for θ̂ , the last two because �̂ is positive and θ̂ is the
estimated frailty variance. The results in Table 1 indicate that for both event types, the proposed
method performs well with sample sizes of n = 200 and n = 400. In particular, the results show
that the biases are small, the estimated standard errors agree well with the sample standard
errors and the coverage probabilities range from 93% to 97%. The same results hold for the
simulations with θ = 0·5. We conclude that when θ > 0, the proposed estimation procedure
provides asymptotically efficient estimates and good inferential properties for small sample sizes.
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Table 2. Analysis of cardiovascular data

Time to myocardial infarction Time to stroke
Covariates Est SE P-value Est SE P-value

Race (black) 0·651 0·280 0·020 −0·095 0·289 0·744
Age 0·053 0·020 0·008 0·093 0·018 0·000
Gender (male) 0·158 0·212 0·000 −0·115 0·198 0·561
Hypertension 0·330 0·137 0·016 0·519 0·111 0·000
BMI −0·000 0·001 0·856 0·000 0·001 0·912
SBP 0·003 0·004 0·524 −0·001 0·001 0·509
Smoker 0·241 0·377 0·523 0·563 0·314 0·073
Diabetes −0·000 0·001 0·866 −0·000 0·001 0·746
Frailty variance 0·987 0·390 0·011

Est, estimate of the parameter; SE, standard error of the estimates.

Our proposed method also allows θ0 to be zero, implying no frailty among events. The third
simulation study considered this scenario under the same setup as the first two. The results are
summarized as before. The only difference is that the confidence intervals were constructed using
the half-normal distribution as described in Remark 1. The results, not shown, indicate that the
confidence interval for θ is slightly conservative; however, the inferences for all other parameters
are accurate. The Q–Q plots for θ̂ , not shown, show that the estimated quantiles are almost
linearly related to the quantiles of the half-normal distribution. The two distributions have a small
discrepancy at zero with a sample size of 200, but this is much improved with a sample size of
400.

6. APPLICATION

We now use the proposed methods to analyze a single county subset of data from the atheroscle-
rosis risk in communities study (ARIC Investigators, 1989). We defined T1 as the time to my-
ocardial infarction, and T2 as the time to stroke. Other risk factors included race, baseline age,
sex, BMI, systolic blood pressure, diabetes, hypertension and smoking status. The main goal is
to identify risk factors for either or both of the time-to-event variables. The data we used contain
1212 patients who are more than 65 years of age, and the censoring rates for myocardial infarction
and time to stroke were 89·2% and 86·8%, respectively.

Two transformations G1 and G2 need to be chosen using our approach. We consider all the
transformations from the family (6), which include both the proportional hazards models and the
proportional odds models. We calculate the likelihood function at a number of equally spaced grid
points of (ρ, r ) in increments of 0·1. The best model is that which yields the largest likelihood
function. The results show that G1(x) = G2(x) = log(1 + x) is the best choice, indicating that the
proportional odds model fits the data best among our choices of transformations. The estimates
from this model are given in Table 2. The table shows that black patients have higher risk of
developing myocardial infarction than white patients; older patients have higher risk of both time
to myocardial infarction and time to stroke; male patients have higher risks of time to myocardial
infarction; patients with hypertension appear to have higher risk of both events. Moreover, the
frailty variance is significant with p-value 0·011, indicating a strong association between the two
types of failure times.

One advantage of using frailty models for both types of failures is for prediction. To illustrate
this, suppose that we want to predict the survival distribution of one patient in one group, given
that the patient experiences a myocardial infarction event at year t1. From the proposed model,
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Fig. 1. Predicted survival probability of time to stroke for white male
patients given that myocardial infarction occurred at seven years of
follow-up; the solid line is the predicted survival curve and the dashed

lines are the pointwise 95% confidence intervals.

we can easily obtain the survival probability of time to stroke of P(T2 > t | T1 = t1, T2 > t1, X ),
which is given by∫

ω exp
(−ω

[
G1

{
F1(t1)exp

(
α1 + βT

1 X
)} + G2

{
F2(t)exp

(
α2 + βT

2 X
)}])

ω dω∫
ω exp

(−ω
[
G1

{
F1(t1)exp(α1 + βT

1 X )
} + G2

{
F2(t1)exp

(
α2 + βT

2 X
)}])

ω dω

=
(

1 + θ
[
G1

{
F1(t1)exp

(
α1 + βT

1 X
)} + G2

{
F2(t1)exp

(
α2 + βT

2 X
)}]

1 + θ
[
G1

{
F1(t1)exp(α1 + βT

1 X )
} + G2

{
F2(t)exp

(
α2 + βT

2 X
)}]

)1/θ+1

. (7)

Therefore, to predict the survival probability of time to stroke for a patient from one group, we
can first estimate the above expression for each Xi in this group by substituting the maximum
likelihood estimates into expression (7); we then take the average over all the patients in this
group. Figure 1 gives the survival probability of time to stroke for white male patients, given that
the patient had a myocardial infarction at seven years of follow-up.

7. REMARKS

The gamma frailty in our model is used for its computational tractability, but is likely to model
early dependence (Hougaard, 2000). The proposed approach can be easily generalized to different
frailty distributions, including the lognormal distribution and the positive stable distribution. It
would also be interesting to consider a list of frailty distributions and consider how to check the
frailty distribution empirically (Glidden, 2007).

Our models can be easily adapted to clustered failure times where only one failure time is
of interest and subjects are sampled from clusters. In this case, we can use model (1) for each
subject but assume the same G and β for each subject. The inference on nonparametric maximum
likelihood estimators should be applicable in this case as well. Although we only consider time-
independent covariates, time-dependent and external covariates can be easily incorporated into
(1). Other possible generalizations include modelling multivariate or clustered counting processes.

Selecting an appropriate transformation is an important issue. The transformation G(x) can
be misspecified in practice due to limited knowledge or due to complex relationships between
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the covariates and the time-to-event variable. In this paper, the function G was regarded as fixed.
As a generalization, one may also specify a parametric family of functions and then estimate
the relevant parameters. It is theoretically possible, although computationally demanding, to
account for this extra variation. However, whether this kind of variation should be accounted for
is debatable (Box & Cox, 1982). Nonparametric modelling and estimation of G is a challenging
topic currently pursued by statisticians and econometricians in many contexts.

APPENDIX

Proof of Theorem 1. From the likelihood function Ln(α, β, θ, F), we obtain that the joint survival distri-
bution of (T1, . . . , TK ) is given by (1 + θ [

∑K
k=1 Gk{Fk(tk) exp(αk + βT

k X )}])−1/θ . To show identifiability,
we first set(

1 + θ

[
K∑

k=1

Gk

{
Fk(tk)eαk+βT

k X
}])1/θ

=
(

1 + θ0

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}])1/θ0

, (A1)

and then show θ = θ0. We consider two situations.
We consider the first case when θ0 > 0. Suppose θ � θ0. Without loss of generality, we assume θ > θ0.

For each k = 1, . . . , K , let tl = 0 for l � k. We obtain

θGk

{
Fk(tk)eαk+βT

k X
} =

(
1 + θ0

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}])θ/θ0

− 1.

Therefore, it follows that

K∑
k=1

⎧⎨
⎩

(
1 + θ0

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}])θ/θ0

− 1

⎫⎬
⎭

=
(

1 + θ0

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}])θ/θ0

− 1.

As the function f (x) = (1 + x + y)θ/θ0 − (1 + x)θ/θ0 is strictly increasing for x > 0 given y > 0, it follows
that (1 + x + y)θ/θ0 + 1 > (1 + x)θ/θ0 + (1 + y)θ/θ0 . We therefore obtain a contradiction. Hence, θ = θ0.

We then consider the second case when θ0 = 0. In this case, (A1) is equivalent to(
1 + θ

[
K∑

k=1

Gk

{
Fk(tk)eαk+βT

k X
}])1/θ

= exp

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]

.

For each k = 1, . . . , K , we let tl = 0 for l � k and obtain θGk{Fk(tk)eαk+βT
k X } =

exp[θGk{F0k(tk)eα0k+βT
0k X }] − 1. Therefore, we get

exp

[
θ

K∑
k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]

− 1 =
K∑

k=1

(
exp

[
θGk

(
F0k(tk)eα0k+βT

0k X
)] − 1

)
.

As ex+y − ex � ey − 1 for x � 0, with equality if and only if x = 0, we obtain θ = 0.
In both cases, θ = θ0 gives Fk(t) exp(αk + βT

k X ) = F0k(t) exp(α0k + βT
0k X ). By Assumption (A1)

and the fact that Fk(τ ) = 1, we obtain αk = α0k, βk = β0k, Fk = F0k . This establishes parameter
identifiability.

Proof of Theorem 2. If the Fisher information along this submodel is singular, then the score function
along this submodel is zero with probability one. To show that w = 0, in the score equations, we let �k = 1
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and integrate Yk from tk to τ , then subtract that from the score equation for which �k = 0 and Yk = τ . We
discuss the cases θ0 > 0 and θ0 = 0 separately.

When θ0 > 0, the score equation is

K∑
k=1

G ′
k

{
F0k(tk)eα0k+βT

0k X
}

eα0k+βT
0k X

{∫ tk

0
hk(s)d F0k(s) + F0k(tk)

(
ak + bT

k X
)}

+ w

K∑
k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}

− w

θ2
0

[
1 + θ0

K∑
k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]

log

[
1 + θ0

K∑
k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]

= 0.

For each k = 1, . . . , K , let tl = 0 for l � k, so we obtain

G ′
k

{
F0k(tk)eα0k+βT

0k X
}

eα0k+βT
0k X

{∫ tk

0
hk(s)d F0k(s) + F0k(tk)

(
ak + bT

k X
)}

+ wGk

{
F0k(tk)eα0k+βT

0k X
}

− w

θ2
0

[
1 + θ0Gk

{
F0k(tk)eα0k+βT

0k X
}]

log
[
1 + θ0Gk

{
F0k(tk)eα0k+βT

0k X
}] = 0.

Therefore, it follows that

w

K∑
k=1

[
1 + θ0Gk

{
F0k(tk)eα0k+βT

0k X
}]

log
[
1 + θ0Gk

{
F0k(tk)eα0k+βT

0k X
}]

= w

[
1 + θ0

K∑
k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]

log

[
1 + θ0

K∑
k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]

.

As f (x) = (1 + x + y) log(1 + x + y) − (1 + x) log(1 + x) is strictly increasing for x > 0 and y > 0, we
have (1 + x + y) log(1 + x + y) > (1 + x) log(1 + x) + (1 + y) log(1 + y). We therefore conclude that
w = 0.

When θ0 = 0, the score equation is

K∑
k=1

G ′
k

{
F0k(tk)eα0k+βT

0k X
}

eα0k+βT
0k X

{∫ tk

0
hk(s)d F0k(s) + F0k(tk)

(
ak + bT

k X
)}

− w

2

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]2

= 0.

Following the same arguments as before, we have

w

2

[
K∑

k=1

Gk

{
F0k(tk)eα0k+βT

0k X
}]2

= w

2

K∑
k=1

[
Gk

{
F0k(tk)eα0k+βT

0k X
}]2

,

which holds if and only if w = 0.
In both cases, w = 0 implies

∫ tk
0 hk(s) d F0k(s) + F0k(tk)(ak + bT

k X ) = 0. Let tk = τ . Since∫ τ

0 hk(s) d F0k(s) = 0 and F0k(τ ) = 1, we have ak = 0 and bk = 0. This further gives hk(s) d F0k(s) = 0.
We have thus proved nonsingularity of the Fisher information matrix along any nontrivial submodel.



Gamma frailty transformation models 13

Proof of Theorem 3. We recall that �k(t) = Fk(t)eαk . Thus, nonparametric maximum likelihood estima-
tion for (α, β, θ, F) is equivalent to maximizing

ln(θ, β1, . . . , βK ,�1, . . . , �K ) =
n∑

i=1

K∑
k=1

�ik log
[
G ′

k

{
�k(Yik)eβT

k Xi
}
�k{Yik}eβT

k Xi
]

+ log
	

( ∑K
k=1 �ik + 1/θ

)
	(1/θ )(1/θ )

∑K

k=1
�ik

−
(

K∑
k=1

�ik + 1

θ

)
log

(
1 + θ

[
K∑

k=1

Gk

{
�k(Yik)eαk+βT

k Xi
}])

.

The corresponding nonparametric maximum likelihood estimators are denoted by (θ̂ , β̂k, �̂k, k =
1, . . . , K ). Therefore, proving Theorem 3 is equivalent to establishing consistency for (θ̂ , β̂, �̂).

We define �k(t) = Gk{�k(t)}. By the mean-value theorem,

�k{t} = Gk{�k(t)} − Gk{�k(t−)} = �k{t}G ′
k{ν�k(t) + (1 − ν)�k(t−)}

for some ν ∈ [0, 1]. Since G ′
k is nonincreasing by Assumption (A2), we obtain �k{t} � �k{t}/G ′

k{�k(t)}.
Thus, the loglikelihood function ln is bounded above by

Op(n) +
n∑

i=1

K∑
k=1

�ik log �k{Yik} +
n∑

i=1

K∑
k=1

�ik log
G ′

k

{
�k(Yik)eβT

k Xi
}

G ′
k{�k(Yik)}

−
n∑

i=1

(
K∑

i=1

�ik + 1

θ

)
log

(
1 + θ

[
K∑

k=1

Gk

{
�k(Yik)eβT

k Xi
}])

.

From Assumption (A2),

G ′
k

{
�k(Yik)eβT

k Xi
}

G ′
k{�k(Yik)} � c0, Gk

{
�k(Yik)eβT

k Xi
}

� 1

c0
Gk{�k(Yik)}.

We have

ln(θ, β1, . . . , βK ,�1, . . . , �K )

� Op(n) +
n∑

i=1

K∑
k=1

�ik log
�{Yik}

1 + θ
∑K

k=1 �(Yik)
− 1

θ

n∑
i=1

log

{
1 + c−1

0 θ

K∑
k=1

�(Yik)

}
. (A2)

If Yik is the smallest observation so that �̂k{Yik} = ∞, then clearly �̂k{Yik} = ∞. However, from (A2),
the loglikelihood function will be −∞ whenever θ � 0. Hence, we conclude that �̂k{Yik} < ∞ for all Yik .
The same holds for �̂k .

To prove consistency, we first show that lim supn �̂k(τ ) < ∞ with probability one. Otherwise, suppose
that for some subsequence and some k, �̂k(τ ) → ∞. Since 1 + θ̂ [

∑K
k=1 Gk{�̂k(τ ) exp(β̂T

k Xi )}] > 0, we
immediately conclude that lim infn θ̂ � 0. By choosing a subsequence, we may assume θ̂ → θ∗ and
β̂k → β∗

k for k = 1, . . . , K . Note θM � θ∗ � 0. There are two cases.
Let θ∗ = 0. After differentiating with respect to �k{Yik}, we obtain �̂k(t) = ∫ t

0

Snk × (t ; �̂1, . . . , �̂K , β̂, θ̂ )−1d Nk(t), where Nk(t) = n−1
∑n

i=1 �ik I (Yik � t) and

Snk(t ; �1, . . . , �K , β, θ ) = −n−1
n∑

i=1

�ik
G ′′

k

{
�k(Yik)eβT Xik

}
G ′

k

{
�k(Yik)eβT Xik

} I (Yik � t)

+ n−1
n∑

i=1

θ
∑K

k=1 �ik + 1

θ
∑K

k=1 Gk

{
�k(Yik)eβT

k Xi
} + 1

I (Yik � t).



14 DONGLIN ZENG, QINGXIA CHEN AND JOSEPH G. IBRAHIM

From assumption (A2), when θ is small and satisfies θ
∑K

k=1 Gk{�k(Yik)eβT
k Xi } + 1 > 0, we have

Snk(t ; �1, . . . , �K , β, θ ) � 1

2n

n∑
i=1

1

| θ | ∑K
k=1 Gk

{
�k(Yik)eβT

k Xi
} + 1

I (Yik � t),

� 1

2n

n∑
i=1

1

| θ | ∑K
k=1 Gk

{
�k(τ )eβT

k Xi
} + 1

I (Yik � t),

� 1

2n

n∑
i=1

1

c1

{
1+ | θ | ∑K

k=1 �k(τ )M
} I (Yik � t),

where c1 = max(c0, 1) and M is the supremum of eβT
k X . Therefore, �̂k(τ ) � 2c1{1 +

|θ̂ | ∑K
k=1 �̂k(τ )M} ∫ τ

0 {n−1
∑n

i=1 I (Yik � t)}−1d Nk(t). Since θ̂ converges to zero, we obtain a contradiction

to �̂k(τ ) → ∞ for some k.
Suppose θ∗ > 0. We can assume θ̂ > θ∗/2. Note that �̂k(τ ) → ∞ is equivalent to �̂k(τ ) → ∞. From

(A2), since θ ∈ (θ∗/2, θM ), the observed loglikelihood function at the nonparametric maximum likelihood
estimators is further bounded above by

ln(θ̂ , β̂1, . . . , β̂K , �̂1, . . . , �̂K )

� Op(n) +
n∑

i=1

K∑
k=1

�ik log
�̂k{Yik}

1 + �̂k(Yik)
−

n∑
i=1

K∑
k=1

1

θM
log

{
1 + c−1

0 θM

K∑
k=1

�̂k(Yik)

}

� Op(n) +
K∑

k=1

[
n∑

i=1

�ik log
�̂k{Yik}

1 + �̂k(Yik)
−

n∑
i=1

1

θM
log{1 + �̂k(Yik)}

]
.

To complete the proof, we define �̃k(t) = ∫ t
0 Snk(t ; �01, . . . , �0K , β0, θ0)−1d Nk(t). By a direct check, we

can show �̃k → �0k uniformly in [0, τ ] and n�̃k{Yik} = Op(1). Thus, from

0 � n−1{ln(θ̂ , β̂1, . . . , β̂K , �̂1, . . . , �̂K ) − ln(θ0, β01, . . . , β0K ,�01, . . . , �0K )},
we obtain

0 � Op(1) +
K∑

k=1

[
n−1

n∑
i=1

�ik log
n�̂k{Yik}

1 + �̂k(Yik)
− n−1

n∑
i=1

1

θM
log{1 + �̂k(Yik)}

]
.

Each term for the kth type event has a similar expression as expression (25) in Parner (1998). Thus,
following the same arguments as in Parner (1998), we can show that the right-hand side diverges to −∞
if �̂k(τ ) → ∞ for some k. A similar argument is given in the Appendix of Zeng & Lin (2007).

We have shown that �̂k is uniformly bounded. By choosing a subsequence, we can as-
sume �̂k converges weakly to �∗

k . From the expression, �̂k(t) = ∫ t
0 {Snk(s; �01, . . . , �0K , β0, r0)}

{Snk(s; �̂1, . . . , �̂K , β̂, r̂ )}−1d�̃k(s), and after applying the same arguments as in Zeng & Lin (2007),
we conclude that �̂k is dominated by �̃k and the derivative converges. On the other hand, by examining
the observed loglikelihood function, we obtain

0 � n−1
n∑

i=1

(
K∑

k=1

�ik

[
log

G ′
k

{
�̂k(Yik)eβ̂T Xik

}
G ′

k

{
�̃k(Yik)eβT

0 Xik
} + log

�̂k{Yik}
�̃k{Yik}

+ β̂T Xik − βT
0 Xik

])

+ n−1
n∑

i=1

log

∫
ω

∑K

k=1
�ik exp

( − ω
[ ∑K

k=1 Gk

{
�̂k(Yik)eβ̂T Xik

}])
gθ̂ (ω) dω∫

ω

∑K

k=1
�ik exp

( − ω
[∑K

k=1 Gk

{
�0k(Yik)eβT

0 Xik
}])

gθ0 (θ0) dω

.

Now we take limits on both sides and define F∗
k = �∗

k/�
∗
k (τ ) and α∗ = log �∗

k (τ ). Then we obtain that the
Kullback–Leibler information for ( f ∗

1 , . . . , f ∗
K , α∗

1 , . . . , α
∗
K , β∗

1 , . . . , β∗
K , θ∗) is less than or equal to zero.
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Therefore, from the identifiability result proved earlier, F∗
k = F0k , α∗

k = α0k , β∗ = β0 and θ∗ = θ0. This
establishes consistency of (F̂k, α̂k, β̂k, k = 1, . . . , K ) and θ̂ .
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