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In this article, we study the semiparametric proportional odds model with random effects for

correlated, right-censored failure time data. We establish that the maximum likelihood estima-

tors for the parameters of this model are consistent and asymptotically Gaussian. Furthermore,

the limiting variances achieve the semiparametric efficiency bounds and can be consistently es-

timated. Simulation studies show that the asymptotic approximations are accurate for practical

sample sizes and that the efficiency gains of the proposed estimators over those of Cai, Cheng

and Wei (2002, JASA) can be substantial. A real example is provided to illustrate the proposed

methods.
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1. INTRODUCTION

In many scientific studies, there exists natural or artificial clustering of study subjects such

that the survival times or failure times of the subjects within the same cluster are correlated. A

common approach to accommodating the intra-class dependence is to incorporate an unobserved

random effect, the so-called frailty, into the Cox (1972) proportional hazards model. Specifically,

the hazard function for the jth subject of the ith cluster associated with a d1-vector of covariates

Xij is postulated to take the form

λ(t|Xij, ξi) = ξiλ0(t)e
XT

ijα, i = 1, . . . , n; j = 1, . . . , ni, (1)

where λ0(·) is an unspecified baseline hazard function, α is a vector of unknown regression

parameters, and ξi is the unobserved frailty for the ith cluster. Although various parametric

distributions for the frailty have been suggested, the existing literature has been focused on the

simple case of gamma frailty. The consistency and asymptotic distribution of the maximum

likelihood estimator for the gamma frailty model have been rigorously studied by Murphy (1994;

1995) for the case of no covariates and by Parner (1998) for the case with covariates.

Model (1) imposes a common gamma frailty on all members of the same cluster. Several au-

thors have extended this shared gamma frailty model to accommodate more flexible dependence

among cluster members. In particular, Pertersen (1998) allowed different additive frailties for

different members of the same cluster. Parner (1998) assumed that the frailty for each cluster

consists of two independent components: a common cluster-level effect and a subject-specific

effect, and showed that the maximum likelihood estimator is efficient.

Under model (1), the conditional hazard functions given frailties are required to be pro-

portionate over time among different sets of covariate values. This assumption of proportional

hazards may not be satisfied in certain applications. For independent failure time data, an at-

tractive alternative to the proportional hazards model is the proportional odds model (Pettitt

1982; Bennett 1983). The proportional odds model constraints the ratio of the odds of survival

associated with two sets of covariate values to be constant over time, and consequently the ratio

of the hazards to converge to unity as time increases. By contrast, the proportional hazards

model constraints the hazard ratio to be constant while the odds ratio tends to 0 or infinity.

Physical and biological rationale behind the proportional odds model was provided by Bennett

(1983) and others. Statistical inference is much more challenging under the proportional odds

model than under the proportional hazards model. Important contributions have been made
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by Bennett (1983), Pettitt (1984), Cuzick (1988), Dabrowska and Doksum (1988), Cheng, Wei

and Ying (1995), Wu (1995), Murphy, Rossini and van der Vaart (1997), Shen (1998), Lam and

Leung (2001), and Chen, Jin and Ying (2002) among others.

In this article, we consider the proportional odds model with random effects for correlated

failure time data. Specifically,

−logit{S(t|Xij,Zij,bi)} = G(t) + XT
ijβ + ZT

ijbi, i = 1, . . . , n; j = 1, . . . , ni, (2)

where Xij is a d1-vector of covariates, as defined earlier, Zij is a d2-vector of covariates, which

usually contains 1 and part of Xij, G(·) is an unspecified strictly increasing function, β is a set

of unknown regression parameters, bi is a set of unobserved random effects, and S(·|Xij,Zij,bi)

is the survival function conditional on Xij Zij, and bi. We assume that bi follows a normal

distribution with mean zero and unknown covariance matrix Σ. Note that model (2) allows

covariate-specific or subject-specific random effects whereas model (1) only allows a cluster-

specific frailty.

Two recent articles are concerned with special versions of model (2). Specifically, Cai, Cheng

and Wei (2002) studied model (2) with a scalar random effect (i.e., Zij ≡ 1). The parameter

estimators are obtained by minimizing the empirical sum of squares of the differences between

certain observed quantities and their expected values. The estimators are not asymptotically

efficient, and the variance estimation is computationally demanding. The censoring mechanism

is required to be purely random and independent of covariates. Lam, Lee and Leung (2002)

considered the proportional odds model with scalar random effects µij, i = 1, . . . , n and j =

1, . . . , ni. Within the ith cluster, µij, j = 1, . . . , ni, are multivariate normal with a specific

covariance structure. Lam et al. (2002) obtained the estimators for the regression parameters

by maximizing a marginal likelihood based on the ranks of the failure times. They did not

provide formal asymptotic results or consider the problem of survival function estimation.

In this article, we study the maximum likelihood estimation of model (2). The estimators

are shown to be consistent and asymptotically efficient. The asymptotic distributions of the

estimators and consistent variance estimators are also obtained. Numerical studies reveal that

the proposed estimators perform well for practical sample sizes and the efficiency gains over

the estimators of Cai et al. (2002) can be substantial.

We describe in greater detail the data structure and model assumptions in the next section,

and develop the estimation theory in Section 3. We then present the results of our numerical

studies in Section 4 and provide an application to a real medical study in Section 5. Some
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concluding remarks are given in Section 6. Most of the technical details are relegated to the

appendix.

2. DATA STRUCTURE AND MODEL ASSUMPTIONS

Suppose that there is a random sample of n clusters with potentially different sizes. For

i = 1, . . . , n and j = 1, . . . , ni, let Tij and C∗
ij be the latent failure time and censoring time

for the jth member of the ith cluster, and let Xij and Zij be the corresponding d1- and d2-

vectors of covariates. The regression relationship between Tij and (Xij,Zij) is given by model

(2). The data consist of (Yij, ∆ij,Xij,Zij) (i = 1, . . . , n; j = 1, . . . , ni), where Yij = Tij ∧ Cij,

∆ij = I(Tij ≤ Cij), and Cij = C∗
ij∧τ . Here and in the sequel, a∧b = min(a, b), a∨b = max(a, b),

I(·) is the indicator function, and τ is a fixed constant denoting the end of the study.

We impose the following regularity conditions.

C.1. Conditional on covariates Xij and Zij, the censoring time C∗
ij is independent of the failure

time Tij and random effects bi.

C.2. There exists some positive constant δ0 such that Pr(C∗
ij ≥ τ |Xij,Zij) ≥ δ0 almost surely.

C.3. All the Xij and Zij are bounded. In addition, if there exist a constant vector c and a

symmetric matrix Σ such that

[1,XT
ij]c + ZT

ijΣZij = 0, j = 1, . . . , ni,

and

ZT
ijΣZij′ = 0, j 6= j′; j, j′ = 1, . . . , ni

almost surely, then c = 0 and Σ = 0.

C.4. The true value G0(t) of G(t) is a strictly increasing function in [0, τ ] and is continuously

differentiable. In addition, G0(0) = −∞, deG0(t)/dt|t=0+ > 0, and G0(τ) < ∞.

C.5. The true values of β and Σ, β0 and Σ0, belong to the interior of a known compact set

Θ = { (β,Σ) : |β| ≤ B for some constant B, Σ is positive definite

and its eigenvalues are bounded away from 0 and ∞}.

C.6. The cluster size is completely random. In addition, there exists a positive integer n0 such

that 1 ≤ ni ≤ n0 and Pr(ni ≥ 2) > 0.
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Remark 1. Conditions C.3, C.4 and C.6 ensure the identifiability of the parameters in

model (2). If Zij = Zij′ in condition C.3 for continuous covariates, then the two displays in this

condition are equivalent to the linear independence of [1,XT
ij] and the linear independence of

Zij. In condition C.4, the equality G0(0) = −∞ follows from the fact that S(0|Xij,Zij,bi) = 1,

and the inequality G0(τ) < ∞ implies that Pr(Tij > τ |Xij,Zij,bi) > 0. The bound G0(τ) is

unknown in practice. Condition C.6 implies that the cluster size is bounded and some clusters

have at least two subjects.

3. MAXIMUM LIKELIHOOD ESTIMATION

Define H(t) = eG(t) and H0(t) = eG0(t). Note that H0(0) = 0. Under model (2) and condition

C.1, the likelihood function for the parameters (β0,Σ0, H0) is proportional to

n∏

i=1




∫

b

ni∏

j=1





e−(XT
ijβ+ZT

ijb)

H(Yij) + e−(XT
ijβ+ZT

ijb)





1−∆ij

×




e−(XT
ijβ+ZT

ijb)H ′(Yij)

(H(Yij) + e−(XT
ijβ+ZT

ijb))2





∆ij

|Σ|−1/2e−bTΣ−1
b/2db


 ,

where H ′(t) is the derivative of H(t). It would seem natural to calculate the maximum likelihood

estimators of (β0,Σ0, H0) by maximizing the above likelihood function. The maximum of this

function, however, is infinity since we can always choose some function H(·) with fixed values

at the Yij while letting H ′(Yij) go to infinity for some Yij with ∆ij = 1. Thus, we relax H(·) to

be right-continuous and allow H(·) to have jumps at the Yij. We then maximize the following

function

Ln(β,Σ, H) ≡
n∏

i=1




∫

b

ni∏

j=1





e−(XT
ijβ+ZT

ijb)

H(Yij) + e−(XT
ijβ+ZT

ijb)





1−∆ij

×




e−(XT
ijβ+ZT

ijb)H{Yij}
(H(Yij) + e−(XT

ijβ+ZT
ijb))2





∆ij

|Σ|−1/2e−bTΣ−1
b/2db


 , (3)

where H{t} denotes the jump size of H(t) at t. To be specific, we maximize Ln(β,Σ, H) over

the parameter space

{(β,Σ, H) : (β,Σ) ∈ Θ, H(t) is an increasing right-continuous function in [0, τ ] with H(0) = 0}.

The resulting estimators, denoted by β̂n, Σ̂n and Ĥn, are referred to as the nonparametric

maximum likelihood estimators (NPMLEs) (Parner, 1998) or the sieve maximum likelihood

estimators (Huang and Rossini, 1997; Murphy, Rossini and van der Vaart, 1997).
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The existence of the maximizers follows from the following arguments. First, for any

(β,Σ, H) in the parameter space, the ith term on the right-hand side of (3) is bounded by

max
Xij ,Zij ,(β,Σ)∈Θ

∫

b

ni∏

j=1

eXT
ijβ+ZT

ijb|Σ|−1/2e−bTΣ−1
b/2db < ∞,

where the inequality follows from the boundedness of Xij and Zij, and the compactness of

Θ. Second, for any H, we can always construct a new increasing function H∗ which is a step

function with jumps only at the Yij for which ∆ij = 1 such that H∗(Yij) = H(Yij). Clearly,

H∗{Yij} ≥ H{Yij} for ∆ij = 1 so that Ln(β,Σ, H∗) ≥ Ln(β,Σ, H). This implies that the

function H which maximizes Ln(β,Σ, H) should be a step function with positive jumps only

at the Yij for which ∆ij = 1. Third, if H{Yij} = ∞ for some Yij, then it is easy to see that

Ln(β,Σ, H) = 0. Therefore, we conclude that the maximizers exist.

The above arguments imply that Ĥn(t) is a step function with jumps only at the Yij for which

∆ij = 1. Thus, the NPMLEs for (β0,Σ0, H0) can be obtained by maximizing Ln(β,Σ, H) over

the parameter space (β,Σ) ∈ Θ and the jump sizes of H at the Yij. This maximization can be

realized via many optimization algorithms such as the large-scale unconstrained optimization

function fminunc in MATLAB, which is described in the next section.

The asymptotic properties of the proposed estimators are stated in the following theorems.

Theorem 1. Under conditions C.1∼C.6, ‖β̂n−β0‖ → 0, ‖Σ̂n−Σ0‖ → 0 and supt∈[0,τ ] |Ĥn(t)−
H0(t)| → 0 almost surely, where ‖ · ‖ is the Euclidean norm.

Theorem 2. Under conditions C.1∼C.6, the random element
√

n(β̂
T

n − βT
0 , Σ̂

T

n −ΣT
0 , Ĥn(·)−

H0(·))T converges weakly to a zero-mean Gaussian process in the metric spaceRd1×Rd2(d2+1)/2×
l∞[0, τ ], where Σ̂n and Σ0 are treated as extended column vectors consisting of the upper

triangle elements, and l∞[0, τ ] is a normed space consisting of all the bounded functions and

the norm is defined as the supremum norm on [0, τ ]. Furthermore, β̂n and Σ̂n are asymptotically

efficient.

Remark 2. Theorem 1 presents the consistency of the maximum likelihood estimators. In

conditions C.1∼C.6, H(·) is not assumed to be a bounded function, which means that the weak-

compactness of the parameter H(·) is not assumed. Thus, obtaining a bound for the maximum

likelihood estimator Ĥn(·) is a key to the proof of Theorem 1. The proof of Theorem 1 adopts

some ideas from Murphy’s (1994) proof of the consistency for the gamma frailty model, but

the technical details are quite different. Once the consistency is established, the asymptotic
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distributions of the maximum likelihood estimators stated in Theorem 2 can be derived along

the lines of Murphy (1995) and Parner (1998), although the verification of the continuous

invertibility of the information operator is substantially different from theirs. In the statement

of Theorem 2, asymptotically efficient estimators mean that the asymptotic variances attain

the semiparametric efficiency bounds as defined in Bickel et al. (1993, Ch. 3). The proofs of

Theorems 1 and 2 are given in the appendix.

It is essential to estimate the asymptotic covariance matrices of β̂n and Σ̂n. Intuitively, the

variation in estimating the parameter H(·) arises from the variation in estimating the jump

sizes of H(·) at the Yij for which ∆ij = 1. Thus, we can regard the observed likelihood function

as a likelihood function indexed by the parameters β, Σ, and the parameters which represent

the jump sizes of H(·) at the Yij for which ∆ij = 1. From the Fisher information theory in

the parametric setting, the asymptotic covariance matrix in Theorem 2 can be estimated by

the inverse of the observed information matrix for all the parameters. Specifically, for any

constant vector (h1,h2) ∈ Rd1 × Rd2(d2+1)/2 and any bounded function h3, the asymptotic

variance of hT
1 β̂n + hT

2 Σ̂n +
∫ τ
0 h3(t)dĤn(t) is equal to the asymptotic variance of hT

1 β̂n +

hT
2 Σ̂n +

∑
∆ij=1 h3(Yij)Ĥn{Yij} so that it can be estimated by hT

nJ−1
n hn, where hn is the vector

comprising of h1, h2 and the h3(Yij) for which ∆ij = 1, and Jn is the negative Hessian matrix

of log Ln(β̂, Σ̂, Ĥ) with respect to (β,Σ) and the jump sizes of H at the Yij for which ∆ij = 1.

The next theorem formalizes this approximation.

Theorem 3. Let V (h1,h2, h3) be the asymptotic variance of the random variable n1/2{hT
1 (β̂n−

β0) + hT
2 (Σ̂n − Σ0) +

∫ τ
0 h3(t)d(Ĥn(t) − H0(t))}. Under conditions C.1∼C.6, the estimator

nhT
nJ−1

n hn → V (h1,h2, h3) uniformly in (h1,h2, h3) in probability.

Theorem 3 implies that, when the number of uncensored observations is not too large, one

can simply invert the observed information matrix for all the parameters, including β,Σ, and

the H{Yij} for which ∆ij = 1 to calculate the variances and covariances. Our numerical studies

revealed that this approximation is satisfactory for practical sample sizes.

4. NUMERICAL STUDIES

Simulation studies were conducted to evaluate the finite-sample properties of the proposed

methods. In the first set of studies, the failure times were generated from the following special

case of model (2):

−logit{S(t|X1ij, X2ij, bi)} = log t−X1ij + X2ij + bi, i = 1, . . . , n; j = 1, 2,
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where X1i1 = 0, X1i2 = 1, X2i1 ≡ X2i2 is a uniform(0, 1) random variable, and bi is zero-

mean normal with variance σ2. The censoring times were generated from the uniform(0, 15)

distribution, corresponding to approximately 33% censoring rate.

We used the optimization algorithm fminunc in the optimization toolbox of MATLAB to

obtain the maximum likelihood estimates of β1, β2, σ and H. When the gradients and the

Hessian derivatives of the likelihood function are provided, the search algorithm is a subspace

trust region method and is based on the interior-reflective Newton method described in Coleman

and Li (1994; 1996). In each iteration of the search, a large linear system is approximately solved

by using the method of preconditioned conjugate gradients. The algorithm converges when the

search step size and the norm of the search gradients are smaller than certain thresholds.

To avoid negative estimates of the jump sizes for H or negative estimates of σ, we used the

logarithms of the jumps sizes and log σ as the parameters during the search. The starting values

for (β1, β2, σ) were set to be (0, 0, 1). The starting value for the jump size H{Yij} at the failure

time Yij was given by expression (A.1) in Appendix A.1, on the right-hand side of which the

values for (β1, β2, σ) were set to be the initial values and H(t) was set to be t. In general, the

search algorithm converged within 10 iterations. After the algorithm converged, the variance

estimates were calculated by inverting the observed information matrix.

Table 1 displays the results of these simulation studies with n = 200. The maximum

likelihood estimators for all the parameters show little bias. The proposed standard error

estimators agree well with the empirical standard errors, and the confidence intervals provide

reasonable coverages.

For comparisons, we also computed the estimates based on the method of Cai et al. (2002),

which minimizes the following criterion function

nρ
n∑

i=1

ni∑

l 6=k=1


∆ilI(Yil ≤ Yik ∧ t0)

Ĝw(Yil)
−

∫

b

∫ α

−∞
e−(t+XT

ikβ+b)

1 + e−(t+XT
ikβ+b)

e−(t+XT
ilβ+b)

{1 + e−(t+XT
ilβ+b)}2

1√
2πσ

e−
b2

2σ2 dtdb




2

+
n∑

j 6=i=1

ni∑

k=1

nj∑

l=1

[
∆jlI(Yjl ≤ Yik ∧ t0)

Ĝ2
c(Yjl)

−
∫

b,̃b

∫ α

−∞
e−(t+XT

ikβ+b)

1 + e−(t+XT
ikβ+b)

e−(t+XT
jlβ+b̃)

{1 + e−(t+XT
jl
β+b̃)}2

1√
2πσ

e−
b2

2σ2
1√
2πσ

e−
b̃2

2σ2 dtdbdb̃




2

, (4)

where t0 is the minimum of the 95th percentile of the observed Yij and the 98th percentile of the

observed Yij for which ∆ij = 1. In (4), ρ is chosen to minimize the asymptotic variance of the

estimator for β0, Ĝc(t) = e−Λ̂c(t) and Ĝw(t) = e−Λ̂w(t), where Λ̂c is the Nelson-Aalen estimator
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based on (Yij, 1−∆ij), i = 1, . . . , n; j = 1, . . . , ni, and Λ̂w is the Nelson-Aalen estimator based

on {Yik ∧ Yil, 1− (I(Yik ≤ Yil)∆ik + I(Yik > Yil)∆il)}, i = 1, . . . , n, 1 ≤ k < l ≤ ni. The mean

squared errors for Cai et al.’s estimators of β1, β2 and σ turned out to be 0.096, 0.749 and

0.935 under σ = 3, and 0.055, 0.192 and 0.311 under σ = 1. Thus, these estimators can be

considerably less efficient than the maximum likelihood estimators, especially when there is

strong intra-class dependence. It would be interesting to make comparisons with Lam et al.’s

method. Their estimators, however, are not easy to program.

Table 1. Summary Statistics for the Simulation Studies With One Random Effect

Paramter Value Mean SE SEE 95% CP MSE
σ = 3 β1 1.00 0.981 0.205 0.207 0.956 0.042

β2 -1.00 -1.020 0.797 0.809 0.950 0.634
σ 3.00 2.918 0.317 0.297 0.924 0.107

H(τ/4) 3.75 4.176 2.519 2.101 0.946 6.517
H(τ/2) 7.50 8.306 4.842 4.334 0.944 24.044
H(3τ/4) 11.25 12.667 7.550 6.919 0.956 58.894

H(τ) 15.00 16.229 10.583 9.763 0.948 113.299

σ = 1 β1 1.00 0.989 0.185 0.191 0.958 0.034
β2 -1.00 -1.014 0.390 0.400 0.952 0.152
σ 1.00 0.949 0.211 0.207 0.980 0.047

H(τ/4) 3.75 3.856 1.037 1.063 0.962 1.085
H(τ/2) 7.50 7.724 2.347 2.365 0.962 5.545
H(3τ/4) 11.25 11.519 4.029 3.964 0.952 16.274

H(τ) 15.00 14.837 6.877 6.306 0.934 47.220

NOTE: Mean and SE stand for the mean and standard error of the estimator. SEE is the mean

of the standard error estimator, and 95% CP is the coverage probability of the 95% confidence

interval. MSE is the mean squared error. Each entry is based on 500 simulated data sets.

In our second set of studies, we considered bivariate normal random effects. The failure

times were generated from the following model:

−logit{S(t|Xi, b1i, b2i)} = log
{
(1 + t/2)2 − 1

}
+ 0.5X1ij − 0.5X2ij + b1i + X2ijb2i,

i = 1, . . . , n; j = 1, 2,

where X1i1 = 0, X1i2 = 1, X2i1 ≡ X2i2 is a uniform(0, 1) random variable, and (b1i, b2i) has

a bivariate normal distribution with zero means, unit variances and covariance −0.4. The

censoring times were set to be min(3, C∗), where C∗ is uniform(3/8, 11/8), so that approximately
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34% of the failure times were censored. The optimization algorithm fminunc was again used

to find the maximum likelihood estimates. We used the logarithms of the jump sizes of H and

the elements in the square-root of the covariate matrix of the random effects as the parameters

during the search. To ensure that the covariance matrix estimate is positive definite, we let the

objective function be a large negative value (i.e., −105) if any condition for a positive definite

matrix was violated. This penalization essentially restricts the search within the meaningful

regions of the parameters. As before, both the gradients and the Hessian derivatives of the

objective function were supplied in the search algorithm. The starting values for the regression

parameters and the covariance matrix were zeros and the identity matrix respectively, while

the starting values for the jump sizes of H were determined by (A.1), in which the parametric

components were set to be the initial values and H(t) to be t.

Table 2. Summary Statistics for the Simulation Studies With Two Random Effects

Parameter Value Mean SE SEE 95% CP MSE
n = 200 β1 0.50 0.498 0.186 0.188 0.958 0.035

β2 -0.50 -0.520 0.391 0.412 0.956 0.153
σ11 0.979 0.861 0.341 0.440 0.978 0.130
σ12 -0.204 -0.324 0.454 0.620 0.968 0.221
σ22 0.979 1.069 0.837 1.222 0.946 0.708

H(τ/4) 0.891 0.920 0.231 0.237 0.962 0.054
H(τ/2) 2.063 2.119 0.540 0.568 0.964 0.295
H(3τ/4) 3.517 3.630 1.069 1.052 0.956 1.153

H(τ) 5.250 5.412 1.821 1.796 0.952 3.336

n = 400 β1 0.50 0.504 0.135 0.133 0.950 0.018
β2 -0.50 -0.499 0.299 0.291 0.948 0.089
σ11 0.979 0.891 0.263 0.295 0.982 0.077
σ12 -0.204 -0.258 0.381 0.475 0.938 0.148
σ22 0.979 1.019 0.731 0.984 0.938 0.535

H(τ/4) 0.891 0.903 0.169 0.163 0.952 0.029
H(τ/2) 2.063 2.088 0.419 0.393 0.946 0.176
H(3τ/4) 3.517 3.527 0.761 0.716 0.944 0.578

H(τ) 5.250 5.250 1.355 1.222 0.932 1.834

NOTE: See Note to Table 1.

Table 2 displays the results for n = 200 and n = 400. For n = 200, the search usually

converged after about 10 iterations, and it took less than 2 hours to complete 500 repetitions

on 20 1.4 GHz Athlon machines. For n = 400, it took about 10 hours to complete. In the table,
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σ11, σ22 and σ12 are the elements in the square-root of the covariance matrix for b1 and b2 so

that σ11 = σ22 = 0.979 and σ12 = −0.204. For the regression parameters and the function H,

the maximum likelihood estimators show little bias and the proposed standard error estimators

agree well with the empirical standard errors. The parameters for the covariance matrix of the

random effects are estimated less well, although there is a trend for improvement as n increases.

5. AN EXAMPLE

We now illustrate the proposed methods with the well-known Diabetic Retinopathy Study

(Huster et al. 1989), which was conducted to assess the effectiveness of laser photocoagulation

in delaying visual loss among patients with diabetic retinopathy. One eye of each patient was

randomly selected to receive the laser treatment while the other eye was used as a control. The

failure time of interest is the time to visual loss as measured by visual acuity less than 5/200.

Following previous authors, we confine our attention to a subset of 197 high-risk patients, and

consider three covariates: X1ij indicates, by the values 1 versus 0, whether or not the jth eye

(j = 1 for the left eye and j = 2 for the right eye) of the ith patient was treated with laser

photocoagulation, X2i1 ≡ X2i2 indicates, by the values 1 versus 0, whether the ith patient had

adult-onset or juvenile-onset diabetics, and X3ij = X1ij ∗ X2ij. We fit model (2) with these

three covariates, along with random effects bi to account for the correlation between the two

eyes of the same patient. We used the fminunc function with the starting values described in

the previous section. The results of the analysis are shown in Table 3. There is a high degree

of dependence between the failure times of the two eyes from the same patient. Both the

treatment indicator and the interaction term are significant, whereas the diabetic type is not.

Cai et al. (2002) reported estimates of β1, β2 and β3 of −0.46, 0.74 and −1.41 with estimated

standard errors of 0.30, 0.38 and 0.54. The conclusions based on the two sets of results would

be somewhat different.

Table 3. Maximum Likelihood Estimates of the Random-Effect Proportional Odds Model for

the Diabetic Retinopathy Study

Parameter Estimate SE Est/SE p-value
β1 -0.659 0.295 -2.233 0.025
β2 0.496 0.345 1.438 0.150
β3 -1.234 0.466 -2.650 0.008
σ 1.296 0.251 5.168 < 0.001
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NOTE: SE is the estimated standard error, and p-value pertains to the two-sided test of zero

parameter value.

To compare the fit of competing models, Cai et al. (2002, p. 516) proposed a distance

measure which summarizes the differences between the observed and fitted values of the failure

times. This distance measure turns out to be 2.233× 104 for the proportional odds model with

normal random effect as opposed to 2.241×104 for the proportional hazards model with gamma

frailty. Thus, the former model appears to fit the data slightly better than the latter.

One important application of random-effects models is to predict the future survival experi-

ence of one member given the survival history of the other members of the same cluster. In the

Diabetic Retinopathy Study, one may be interested in estimating, for example, the conditional

survival probabilities of the treated eye given that it has not failed before 30 months while the

untreated eye failed between 24 and 30 months, i.e., Pr(T2 > t|T2 > 30, 24 < T1 < 30, X11 =

0, X12 = 1, X2) for t > 30, where T2 is the failure time for the treated eye and T1 is the failure

time for the untreated eye, X1k is the treatment status for the kth eye, and X2 is the diabetic

type for this patient. It is straightforward to show that

Pr(T2 > t|T2 > 30, 24 < T1 < 30, X11 = 0, X12 = 1, X2)

=

∫
u g(u, t, 1, X2; β, σ,H){g(u, 24, 0, X2; β, σ,H)− g(u, 30, 0, X2; β, σ,H)}φ(u)du∫

u g(u, 30, 1, X2; β, σ,H){g(u, 24, 0, X2; β, σ,H)− g(u, 30, 0, X2; β, σ,H)}φ(u)du
, (5)

where φ(·) is the standard normal density function, and

g(u, t, X1, X2; β, σ,H) =
e−β1X1−β2X2−β3X1X2−σu

H(t) + e−β1X1−β2X2−β3X1X2−σu
.

We can easily estimate this probability function by replacing β1, β2, σ and H in (5) by their

respective maximum likelihood estimates and then evaluating the integration via the Gaussian-

quadrature formula. The variance function is given by DTJ−1
n D, where D is the derivative of

(5) with respect to (β1, β2, σ) and the jump sizes of H at the Yij for which ∆ij = 1. Figure

1 displays the estimated survival curves along with the 95% confidence intervals for the two

diabetic types.

6. DISCUSSION

We have developed consistent and efficient estimators for the proportional odds model with

random effects, which is a useful alternative to the popular proportional hazards model with

12



Follow-up time (months)

S
ur

vi
va

l p
ro

ba
bi

lit
ie

s

30 40 50 60 70

0.
7

0.
8

0.
9

1.
0

Figure 1: Estimated conditional survival probabilities for the diabetic retinopathy patients:
the “——” curve represents the point estimate of the survival function for the adult-onset
diabetics, and the “· · · · · ·” curves the corresponding 95% confidence limits; the “− − −” curve
represents the the point estimate of the survival function for the juvenile-onset diabetics, and
the “− · − · −” curves the corresponding 95% confidence limits.
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gamma frailty. The proposed estimators are more efficient than those of Cai et al. (2002). It

is computationally less demanding to evaluate the variances of the proposed estimators than

those of Cai et al.’s estimators as the latter requires a multi-layer summation.

The proposed numerical algorithm does not guarantee a global maximum. This is a common

problem for all maximum likelihood estimators in complex settings. Our experience, however,

indicates that the proposed algorithm works well in practice. One approach to increase one’s

confidence in the estimates is to employ different starting values. We have tried different starting

values in our simulated and real data and obtained very similar answers. Note that the existing

ad hoc estimating equations may have multiple solutions as well.

For the variance estimation, we invert the observed information matrix on the basis of

Theorem 3. When the number of uncensored observations is large, the matrix inversion may

potentially be unstable. An alternative approach is to use the numerical differentiation of

the profile log-likelihood function, as implemented by Huang and Rossini (1997) and Murphy,

Rossini and van der Vaart (1997). In the latter approach, the choice of the neighborhood is

arbitrary and no variance estimates are available for the survival function estimators.

It would be worthwhile to study the maximum likelihood estimation for a general class of

linear transformation models with random effects

ψ{S(t|Xij,Zij,bi)} = G(t) + XT
ijβ + ZT

ijbi, (6)

where ψ is a given link function. A versatile family of link functions is ψ(s) = log{λ−1(s−λ−1)},
λ ≥ 0, which contains both the proportional hazards model (λ = 0) and the proportional odds

model (λ = 1). General linear transformation models have been studied by Bickel (1986),

Dabrowka and Doksum (1988), Cheng et al. (1995) and Chen et al. (2003) among others for

independent failure time data and by Cai et al. (2002) for clustered failure time data (with a

scalar random effect), although asymptotically efficient estimators have yet to be developed.

It is expected that the asymptotic normality and the efficiency of the maximum likelihood

estimators for this class of models depend on the smoothness property of ψ. We are currently

investigating the conditions for ψ and developing the requisite asymptotic theory.

The proposed methods are based on the normality of the random effects. The normality

assumption may not be satisfied in some applications. It would be desirable to relax this

assumption and to require only that the random effects have zero means. One possible approach

is to approximate the density of random effects with a truncated series expansion (Davidian

and Giltinana 1995, Ch. 7). We will pursue this generalization in our future work.
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APPENDIX. PROOFS OF THEOREMS

A.1 Proof of Theorem 1

The proof of Theorem 1 mimics Murphy’s (1994) proof of consistency for the proportional

hazards model with gamma frailty. Substantial technical complications arise from the fact

that, unlike the gamma frailty model, the random effects in our setting cannot be integrated

out explicitly. The proof consists of two major steps: in the first step, we show that Ĥn(·) has

an upper bound in [0, τ ] with probability one; in the second step, we show that any convergent

subsequence of (β̂n, Σ̂n, Ĥn) must converge to (β0,Σ0, H0).

Step 1. We prove that Ĥn(·) has an upper bound in [0, τ ] with probability one. Our approach

is to show that since Ĥn maximizes Ln it cannot diverge. Let ln(β,Σ, H) = log Ln(β,Σ, H).

By definition, ln(β̂n, Σ̂n, Ĥn) − ln(β,Σ, H) ≥ 0 for any β, Σ and H. We wish to show that

if Ĥn diverges, then the difference in the log-likelihood must be negative, which will be a

contradiction. If H is continuous, ln(β,Σ, H) will be infinite for finite n. Thus, the choice of

H = H0 is excluded. The key is to construct a suitable function H̃n that uniformly converges

to H0. Suppose that Ĥn(τ) →∞ in some sample space with positive probability. We will show

that n−1{ln(β̂n, Σ̂n, Ĥn)− ln(β0,Σ0, H̃n)} diverges to −∞ if Ĥn(τ) →∞.

We will construct the function H̃n by imitating Ĥn. By differentiating ln(β,Σ, H) with

respect to H{Yij} and setting the derivative to zero, we see that Ĥn{Yij} satisfies the equation

∆ij

H{Yij} =
n∑

k=1





∫
b R1k(β̂n, H,b)R2k(Yij, β̂n, H,b)e−bT Σ̂

−1

n b/2|Σ̂n|−1/2db
∫
b R1k(β̂n, H,b)e−bT Σ̂

−1

n b/2|Σ̂n|−1/2db





, (A.1)

where

R1k(β, H,b) =
nk∏

l=1

e−(XT
klβ+ZT

klb)

{
H(Ykl) + e−(XT

kl
β+ZT

kl
b)

}1+∆kl
,

R2k(t, β, H,b) =
nk∑

l=1

(1 + ∆kl)I(Ykl ≥ t)

H(Ykl) + e−(XT
kl
β+ZT

kl
b)

.

Thus, we define H̃n(t) as a step function with jumps only at the Yij for which ∆ij = 1 and the

jump size H̃n{Yij} satisfies the equation

∆ij

H̃n{Yij}
=

n∑

k=1





∫
b R1k(β0, H0,b)R2k(Yij, β0, H0,b)e−bTΣ−1

0 b/2|Σ0|−1/2db
∫
b R1k(β0, H0,b)e−bTΣ−1

0 b/2|Σ0|−1/2db



 . (A.2)

Specifically, H̃n(t) =
∑n

i=1

∑ni
j=1 I(Yij ≤ t)H̃n{Yij}.
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We will show that H̃n(t) converges to H0(t) uniformly in t ∈ [0, τ ] with probability one.

By the Glivenko-Cantelli theorem (van der Vaart and Wellner 1996, p. 122), H̃n(t) converges

almost surely to E
{∑ni

j=1 I(Yij ≤ t)∆ij/µ(Yij)
}
, where

µ(y) = E





∫
b R1k(β0, H0,b)R2k(y, β0, H0,b)e−bTΣ−1

0 b/2|Σ0|−1/2db
∫
b R1k(β0, H0,b)e−bTΣ−1

0 b/2|Σ0|−1/2db





= E




nk∑

l=1

E





(1 + ∆kl)I(Ykl ≥ y)

H0(Ykl) + e−(XT
kl
β0+ZT

kl
b)

∣∣∣∣∣nk






 .

If we denote by Sc(·|Xkl,Zkl) the survival function of Ckl given (Xkl,Zkl), then

E





(1 + ∆kl)I(Ykl ≥ y)

H0(Ykl) + e−(XT
kl
β0+ZT

kl
b)

∣∣∣∣∣nk





= E


2

∫ ∞

y

1

H0(t) + e−(XT
kl
β0+ZT

kl
b)

H ′
0(t){

H0(t) + e−(XT
klβ0+ZT

klb)
}2Sc(t|Xkl,Zkl)dt




−E





∫ ∞

y

1

H0(t) + e−(XT
kl
β0+ZT

kl
b)

1

H0(t) + e−(XT
kl
β0+ZT

kl
b)

dSc(t|Xkl,Zkl)

∣∣∣∣∣nk





= E


 Sc(y|Xkl,Zkl)

{H0(y) + e−(XT
kl
β0+ZT

kl
b)}2

∣∣∣∣∣nk


 ,

where the second equality follows from integration by part. Thus,

E





ni∑

j=1

I(Yij ≤ t)∆ij

µ(Yij)



 = E




ni∑

j=1

E




∫ t

0

Sc(y|Xij,Zij)H
′
0(y)

µ(y){H0(y) + e−(XT
ijβ0+ZT

ijb)}2
dy

∣∣∣∣∣ni







=
∫ t

0
H ′

0(y)dy = H0(t).

Consequently, H̃n(t) uniformly converges to H0(t) in [0, τ ].

By plugging equation (A.1) into ln(β̂n, Σ̂n, Ĥn), we obtain

ln(β̂n, Σ̂n, Ĥn) =
n∑

i=1

log

{∫

b
R1i(β̂n, Ĥn,b)|Σ̂n|−1/2e−bT Σ̂

−1

n b/2db

}

−
n∑

i=1

ni∑

j=1

∆ij log





n∑

k=1

∫
b R1k(β̂n, Ĥn,b)R2k(Yij, β̂n, Ĥn,b)e−bT Σ̂

−1

n b/2|Σ̂n|−1/2db
∫
b R1k(β̂n, Ĥn,b)e−bT Σ̂

−1

n b/2|Σ̂n|−1/2db





.

Likewise, by plugging equation (A.2) into ln(β0,Σ0, H̃n) and applying the Glivenko-Cantelli

theorem, we see that n−1ln(β0,Σ0, H̃n) = O(1)−n−1 ∑n
i=1

∑ni
j=1 ∆ij log(n), where O(1) denotes

a random variable bounded away from infinity almost surely. Thus,

n−1{ln(β̂n, Σ̂n, Ĥn)−ln(β0,Σ0, H̃n)} = O(1)+n−1
n∑

i=1

log

{∫

b
R1i(β̂n, Ĥn,b)|Σ̂n|−1/2e−bT Σ̂

−1

n b/2db

}
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−n−1
n∑

i=1

ni∑

j=1

∆ij log





n−1
n∑

k=1

∫
b R1k(β̂n, Ĥn,b)R2k(Yij, β̂n, Ĥn,b)e−bT Σ̂

−1

n b/2|Σ̂n|−1/2db
∫
b R1k(β̂n, Ĥn,b)e−bT Σ̂

−1

n b/2|Σ̂n|−1/2db





.

(A.3)

We will show that if Ĥn(τ) →∞, then the right-hand side of (A.3) will diverge to −∞. To

this end, we will bound each term in (A.3). Let m and M be constants such that 0 < m ≤
e−XT

klβ̂n ≤ M < ∞ almost surely for all k = 1, . . . , n; l = 1, . . . , nk. Since

Ĥn(y) + e−(XT
klβ̂n+ZT

klb) ≥




Ĥn(y) + e−XT
klβ̂n , if ZT

klb ≤ 0,

e−ZT
klb

{
Ĥn(y) + e−XT

klβ̂n

}
, if ZT

klb > 0,

we have Ĥn(y) + e−(XT
klβ̂n+ZT

klb) ≥ e−|Z
T
klb|{Ĥn(y) + m}. Similarly, Ĥn(y) + e−(XT

klβ̂n+ZT
klb) ≤

e|Z
T
klb|{Ĥn(y)+M}. Thus, there exist constants C1 and C2 such that the following results hold:

∫

b
R1i(β̂n, Ĥn,b)|Σ̂n|−1/2e−bT Σ̂

−1

n b/2db ≤
∫

b

ni∏

j=1

e−(XT
ijβ̂n+ZT

ijb)+(1+∆ij)|ZT
ijb|

(Ĥn(Yij) + m)1+∆ij
|Σ̂n|−1/2e−bT Σ̂

−1

n b/2db

≤ C1

ni∏

j=1

1

(Ĥn(Yij) + m)1+∆ij
, (A.4)

∫

b
R1k(β̂n, Ĥn,b)R2k(Yij, β̂n, Ĥn,b)|Σ̂n|−1/2e−bT Σ̂

−1

n b/2db

≥
∫

b

nk∏

l=1

e−(XT
klβ̂n+ZT

klb)−(1+∆kl)|ZT
klb|

(Ĥn(Ykl) + M)1+∆kl





nk∑

l′=1

(1 + ∆kl′)I(Ykl′ ≥ Yij)e
−|ZT

kl′b|

Ĥn(Ykl′) + M



 |Σ̂n|−1/2e−bT Σ̂

−1

n b/2db

≥ C2

nk∑

l′=1

I(Ykl′ ≥ Yij)

Ĥn(Ykl′) + M

nk∏

l=1

1

(Ĥn(Ykl) + M)1+∆kl

. (A.5)

After plugging (A.4) and (A.5) into (A.3), we obtain

n−1{ln(β̂n, Σ̂n, Ĥn)− ln(β0,Σ0, H̃n)} = O(1)− n−1
n∑

i=1

ni∑

j=1

(1 + ∆ij) log(Ĥn(Yij) + m)

−n−1
n∑

i=1

ni∑

j=1

log

[
n−1

n∑

k=1

nk∑

l′=1

{
I(Ykl′ ≥ Yij)

Ĥn(Ykl′) + M

} ∏nk
l=1 C2(Ĥn(Ykl) + m)1+∆kl

∏nk
l=1 C1(Ĥn(Ykl) + M)1+∆kl

]
.

Because there exists a constant C3 such that

∏nk
l=1 C2(Ĥn(Ykl) + m)1+∆kl

∏nk
l=1 C1(Ĥn(Ykl) + M)1+∆kl

≥ C3 > 0,

we conclude that

n−1{ln(β̂n, Σ̂n, Ĥn)− ln(β0,Σ0, H̃n)} = O(1)− n−1
n∑

i=1

ni∑

j=1

(1 + ∆ij) log(Ĥn(Yij) + m)
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−n−1
n∑

i=1

ni∑

j=1

∆ij log

{
n−1

n∑

k=1

nk∑

l=1

I(Ykl ≥ Yij)

Ĥn(Ykl) + M

}
. (A.6)

It remains to show that, if Ĥn(τ) → ∞, the right-hand side of (A.6) diverges to −∞. To

this end, we choose a partition of [0, τ ] as follows: with s0 = τ , choose s1 < s0 such that

1

2
E





ni∑

j=1

(1 + ∆ij)I(Yij = s0)



 > E





ni∑

j=1

∆ijI(Yij ∈ [s1, s0))



 .

By conditions C.2 and C.4, such an s1 exists. Define a constant ε ∈ (0, 1) such that

ε

1− ε
<

E
{∑ni

j=1 I(Yij ∈ [s1, s0))
}

E
{∑ni

j=1 ∆ijI(Yij ∈ [0, τ))
} .

If s1 > 0, we can choose s2 ≡ max(0, s) such that s is the minimum value less than s1 satisfying

that

(1− ε)E





ni∑

j=1

(1 + ∆ij)I(Yij ∈ [s1, s0))



 ≥ E





ni∑

j=1

∆ijI(Yij ∈ [s, s1))



 .

Clearly, s2 exists under condition C.4, and s2 < s1. This process is continued so that we obtain

a sequence: τ ≡ s0 > s1 > s2 > . . . ≥ 0 such that

1

2
E





ni∑

j=1

(1 + ∆ij)I(Yij = s0)



 ≥ E





ni∑

j=1

∆ijI(Yij ∈ [s1, s0))



 ,

(1− ε)E





ni∑

j=1

(1 + ∆ij)I(Yij ∈ [sp, sp−1))



 ≥ E





ni∑

j=1

∆ijI(Yij ∈ [sp+1, sp))



 , p ≥ 1.

We claim that such a sequence cannot be infinite, i.e., there exists a finite N such that sN+1 = 0;

otherwise, sp → s∗ for some s∗ ∈ [0, τ). By the definition of sp,

(1− ε)E





ni∑

j=1

(1 + ∆ij)I(Yij ∈ [sp, sp−1))



 = E





ni∑

j=1

∆ijI(Yij ∈ [sp+1, sp))



 , p ≥ 1.

We sum the above equations over p = 1, 2, . . ., and by the continuity of true densities, we obtain

(1− ε)E





ni∑

j=1

(1 + ∆ij)I(Yij ∈ [s∗, τ))



 = E





ni∑

j=1

∆ijI(Yij ∈ [s∗, s1))



 .

Thus,

(1− ε)E





ni∑

j=1

I(Yij ∈ [s∗, τ))



 ≤ εE





ni∑

j=1

∆ijI(Yij ∈ [s∗, s1))



 ,
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which contradicts the choice of ε. Therefore, the sequence is finite: τ = s0 > . . . > sN+1 = 0.

Now the right-hand side of (A.6) can be bounded by

−n−1
n∑

i=1

ni∑

j=1

I(Yij = τ)(1 + ∆ij) log(Ĥn(τ) + m)

−
N∑

p=0

n−1
n∑

i=1

ni∑

j=1

(1 + ∆ij)I(Yij ∈ [sp+1, sp)) log(Ĥn(sp+1) + m)

−
N∑

p=0

n−1
n∑

i=1

ni∑

j=1

∆ijI(Yij ∈ [sp+1, sp)) log

{
n−1

n∑

k=1

nk∑

l=1

I(Ykl ≥ Yij, Ykl ∈ [sp+1, sp))

Ĥn(sp) + M

}
+ O(1)

≤ − 1

2n

n∑

i=1

ni∑

j=1

(1 + ∆ij)I(Yij = τ) log(Ĥn(τ) + m)

−




1

2n

n∑

i=1

ni∑

j=1

(1 + ∆ij)I(Yij = τ) log(Ĥn(τ) + m)

−n−1
n∑

i=1

ni∑

j=1

∆ijI(Yij ∈ [s1, s0)) log(Ĥn(τ) + M)





−
N∑

p=1



n−1

n∑

i=1

ni∑

j=1

(1 + ∆ij)I(Yij ∈ [sp, sp−1)) log(Ĥn(sp) + m)

−n−1
n∑

i=1

ni∑

j=1

∆ijI(Yij ∈ [sp+1, sp)) log(Ĥn(sp) + M)





−
N∑

p=0

n−1
n∑

i=1

ni∑

j=1

∆ijI(Yij ∈ [sp+1, sp)) log

{
n−1

n∑

k=1

nk∑

l=1

I(Ykl ≥ Yij, Ykl ∈ [sp+1, sp))

}
+ O(1).

(A.7)

The first term on the right-hand side of (A.7) diverges to −∞ as Ĥn(τ) → ∞. The second

term is negative as n is large due to the choice of s1. By the selection of sp, p = 1, . . . , N , the

third term cannot diverge to +∞. Finally, the fourth term is bounded because of the Glivenko-

Cantelli theorem. Hence, the right-hand side of (A.7) diverges to −∞. This contradicts the

fact that the left-hand side (A.6) is non-negative.

In conclusion, we have shown that Ĥn(τ) has an upper bound with probability 1. Thus, it

follows from Helly’s selection theorem that there exists a convergent subsequence, still denoted

by Ĥn(·), which converges point-wise to a monotone function H∗(·) in [0, τ ]. Since β̂n and Σ̂n

belong to a compact set, by choosing a further subsequence, we can assume that β̂n → β∗ and

Σ̂n → Σ∗ for some random vectors β∗ and Σ∗.

Step 2. We will show that β∗ = β0,Σ
∗ = Σ0 and H∗(t) = H0(t). Define

R3k(t, β,Σ, H) =

∫
b R1k(β, H,b)R2k(t, β, H,b)e−bTΣ−1

b/2db
∫
b R1k(β, H,b)e−bTΣ−1

b/2db
.
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In view of equations (A.1) and (A.2), we see that Ĥn(t) is absolutely continuous with respect

to H̃n(t), and

Ĥn(t) =
∫ t

0

∑n
k=1 R3k(u, β0,Σ0, H0)∑n
k=1 R3k(u, β̂n, Σ̂n, Ĥn)

dH̃n(u).

By taking the limits on both sides of the above display, we conclude that H∗(t) is absolutely

continuous with respect to H0(t) so that H∗(t) is differentiable with respect to t. In addition,

dĤn(t)/dH̃n(t) converges to dH∗(t)/dH0(t) uniformly in t. On the other hand,

0 ≤ n−1{ln(β̂n, Σ̂n, Ĥn)− ln(β0,Σ0, H̃n)}
= n−1

n∑

i=1

log

{∫

b
R1i(β̂n, Ĥn,b)|Σ̂n|−1/2e−bT Σ̂

−1

n b/2db

}

−n−1
n∑

i=1

log
{∫

b
R1i(β0, H̃n,b)|Σ0|−1/2e−bTΣ−1

0 b/2db
}

+n−1
n∑

i=1

ni∑

j=1

∆ij log
(
Ĥn{Yij}/H̃n{Yij}

)
. (A.8)

By letting n →∞ in (A.8), we have

0 ≤ E





log

∫
b R1i(β

∗, H∗,b)|Σ∗|−1/2e−bTΣ∗−1
b/2db

∏ni
j=1 H∗′(Yij)

∆ij

∫
b R1i(β0, H0,b)|Σ0|−1/2e−bTΣ0

−1
b/2db

∏ni
j=1 H0

′(Yij)∆ij





.

Because the right-hand side is the negative Kullback-Leibler information, we have

ni∏

j=1

H∗′(Yij)
∆ij

∫

b
R1i(β

∗, H∗,b)|Σ∗|−1/2e−bTΣ∗−1
b/2db

=
ni∏

j=1

H0
′(Yij)

∆ij

∫

b
R1i(β0, H0,b)|Σ0|−1/2e−bTΣ0

−1
b/2db

almost surely. In other words,

∫

b

ni∏

j=1

e−(XT
ijβ

∗
+ZT

ijb)H∗′(Yij)
∆ij

{
H∗(Yij) + e−(XT

ijβ
∗
+ZT

ijb)
}1+∆ij

|Σ∗|−1/2e−bTΣ∗−1
b/2db

=
∫

b

ni∏

j=1

e−(XT
ijβ0+ZT

ijb)H0
′(Yij)

∆ij

{
H0(Yij) + e−(XT

ijβ0+ZT
ijb)

}1+∆ij
|Σ0|−1/2e−bTΣ0

−1
b/2db. (A.9)

We will show that equation (A.9) entails that β∗ = β0,Σ
∗ = Σ0 and H∗ = H0. Fix an

integer k such that 1 ≤ k ≤ ni. We let ∆ij = 1, Yij = 0 in (A.9) for j = 1, . . . , k; for those
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j such that j > k, we perform the following action on the jth term on both sides of (A.9): if

∆ij = 0, we replace Yij with τ ; if ∆ij = 1, we integrate Yij from 0 to τ . Thus, we obtain

∫

b

k∏

j=1

{
H∗′(0)eXT

ijβ
∗
+ZT

ijb
} ni∏

j=k+1





H∗(τ)eXT
ijβ

∗
+ZT

ijb

H∗(τ)eXT
ijβ

∗
+ZT

ijb + 1





∆ij




1

H∗(τ)eXT
ijβ

∗
+ZT

ijb + 1





1−∆ij

×|Σ∗|−1/2e−bTΣ∗−1
b/2db

=
∫

b

k∏

j=1

{
H0

′(0)eXT
ijβ0+ZT

ijb
} ni∏

j=k+1





H0(τ)eXT
ijβ0+ZT

ijb

H0(τ)eXT
ijβ0+ZT

ijb + 1





∆ij




1

H0(τ)eXT
ijβ0+ZT

ijb + 1





1−∆ij

×|Σ0|−1/2e−bTΣ0
−1

b/2db. (A.10)

Since {∆ij : j = k + 1, . . . , ni} are arbitrary, we sum the two sides of (A.10) over all possible

∆ij, j = k + 1, . . . , ni to yield

∫

b

k∏

j=1

{
H∗′(0)eXT

ijβ
∗
+ZT

ijb
}
|Σ∗|−1/2e−bTΣ∗−1

b/2db

=
∫

b

k∏

j=1

{
H0

′(0)eXT
ijβ0+ZT

ijb
}
|Σ0|−1/2e−bTΣ−1

0 b/2db.

Thus,

exp





k∑

j=1

XT
ijβ

∗ +
(
∑k

j=1 Zij)
TΣ∗(

∑k
j=1 Zij)

2



 H∗′(0)k

= exp





k∑

j=1

XT
ijβ0 +

(
∑k

j=1 Zij)
TΣ0(

∑k
j=1 Zij)

2



 H ′

0(0)k. (A.11)

Condition C.4 implies that H∗′(0) > 0. Note that the index set {1, . . . , k} in equation (A.11)

can be replaced by any subset of {1, . . . , ni}. Thus, it is easy to derive from (A.11) that

ZT
ijΣ

∗Zij′ = ZT
ijΣ0Zij′ , j 6= j′; j, j′ = 1, . . . , ni,

and

XT
ijβ

∗ +
ZT

ijΣ
∗Zij

2
+ log H∗′(0) = XT

ijβ0 +
ZT

ijΣ0Zij

2
+ log H ′

0(0), j = 1, . . . , ni.

According to condition C.3, Σ∗ = Σ0, β∗ = β0 and H∗′(0) = H ′
0(0).

To show that H∗ = H0, we let ∆i1 = 1 in (A.10) and integrate Yi1 from 0 to y; we also

perform the following action on the jth term on both sides of (A.10) for j = 2, . . . ni: if ∆ij = 0,
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we replace Yij with τ ; if ∆ij = 1, we integrate Yij from 0 to τ . Then we sum the resulting

equalities over all possible {∆ij : j = 2, . . . , ni} to yield

∫

b





H∗(y)eXT
i1β

∗
+ZT

i1b

H∗(y)eXT
i1β

∗
+ZT

i1b + 1



 |Σ

∗|−1/2e−bTΣ∗−1
b/2db

=
∫

b





H0(y)eXT
i1β0+ZT

i1b

H0(y)eXT
i1β0+ZT

i1b + 1



 |Σ0|−1/2e−bTΣ0

−1
b/2db.

Because the two sides of the above equation are strictly monotone in H∗(y) and H0(y), respec-

tively, we have H∗(y) = H0(y).

Combining the results from Step 1 and Step 2, we conclude that, almost surely, ‖β̂n−β0‖ →
0, ‖Σ̂n − Σ0‖ → 0, and |Ĥn(y) − H0(y)| → 0. The uniform convergence of Ĥn to H0 follows

from the fact that H0 is a continuous function.

A.2. Proof of Theorem 2

Consider the set

H = {(h1,h2, h3) : h1 ∈ Rd1 ,h2 ∈ Rd2(d2+1)/2, h3(·) is a function on [0, τ ];

|h1| ≤ 1, |h2| ≤ 1, ‖h3‖V ≤ 1},

where ‖h3‖V denotes the total variation of h3(·) in [0, τ ]. We define a sequence of maps Sn

mapping a neighborhood of (β0,Σ0, H0), denoted by U , in the parameter space for (β,Σ, H)

into l∞(H) (i.e., the space consisting of bounded functionals on H) as follows:

Sn(β,Σ, H)[h1,h2, h3]

≡ n−1 d

dε
ln(β + εh1,Σ + εh2, H(t) + ε

∫ t

0
h3(s)dH(s))

∣∣∣∣∣
ε=0

≡ An1[h1] + An2[h2] + An3[h3],

where Anp, p = 1, 2, 3, are linear functionals on Rd1 ,Rd2(d2+1)/2, and BV [0, τ ], respectively,

and BV [0, τ ] is the space of functions with finite total variation in [0, τ ]. In fact, if we let

lβ, lΣ, lH [h3] be the score function for β, the score function for Σ, and the score for H along

the path H(t) + ε
∫ t
0 h3(s)dH(s) for a single cluster, then

An1[h1] = Pn[hT
1 lβ], An2[h2] = Pn[hT

2 lΣ], An3[h3] = Pn[lH [h3]],

where Pn denotes the empirical measure based on n independent clusters.
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We can explicitly write the functionals Anp,p = 1, 2, 3, as follows. Define the operation

“ · ” between two matrices M1 and M2 of the same size as the trace of (M1M
T
2 ), and for each

h2 ∈ Rd2(d2+1)/2, let D(h2) be the symmetric matrix such that the extended vector taken from

D(h2) is the same as h2. Then,

An1[h1] = n−1
n∑

i=1

∫
b R1i(β, H,b)

∑ni
j=1 XT

ijh1[(1 + ∆ij)/{1 + H(Yij)e
XT

ijβ+ZT
ijb} − 1]e−bTΣ−1

b/2db
∫
b R1i(β, H,b)e−bTΣ−1

b/2db
,

An2[h2] = n−1
n∑

i=1

∫
b R1i(β, H,b)e−bTΣ−1

b/2{bTΣ−1D(h2)Σ
−1b/2−Σ−1 · D(h2)/2}db

∫
b R1i(β, H,b)e−bTΣ−1

b/2db
,

An3[h3] = n−1
n∑

i=1

ni∑

j=1

{
∆ijh3(Yij)

−(1+∆ij)
∫ Yij

0
h3(y)dH(y)

∫
b R1i(β, H,b)/(H(Yij) + e−(XT

ijβ+ZT
ijb))e−bTΣ−1

b/2db
∫
b R1i(β, H,b)e−bTΣ−1

b/2db

}
.

Correspondingly, we define the limit map S : (β,Σ, H) → l∞(H) as

S(β,Σ, H)[h1,h2, h3] = A1[h1] + A2[h2] + A3[h3],

where the linear functionals Ap, p = 1, 2, 3, are obtained by replacing the the empirical sum in

the Anp by the expectation. Clearly, Sn(β̂n, Σ̂n, Ĥn) = 0, and S(β0,Σ0, H0) = 0.

The desired asymptotic normality will follow if we can verify the four conditions stated in

Theorem 2 of Murphy (1995). The first condition that
√

n(Sn(β0,Σ0, H0) − S(β0,Σ0, H0))

weakly converges to a tight Gaussian process on l∞(H) holds since H is a Donsker class and

the functionals Anp are bounded Lipschitz functionals with respect to H. By the smoothness of

S(β,Σ, H), the Fréchet differentiability holds and the derivative of S(β,Σ, H) at (β0,Σ0, H0),

denoted by Ṡ(β0,Σ0, H0), is a map from the space

{(β − β0,Σ−Σ0, H −H0) : (β,Σ, H) is in the neighborhood U of (β0,Σ0, H0)}

to l∞(H). The approximation condition that

sup
(h1,h2,h3)∈H

∣∣∣(Sn − S)(β̂n, Σ̂n, Ĥn)[h1,h2, h3]− (Sn − S)(β0,Σ0, H0)[h1,h2, h3]
∣∣∣

= op

(
n−1/2 ∨

{
‖β̂n − β0‖+ ‖Σ̂n −Σ0‖+ sup

y∈[0,τ ]
|Ĥn(y)−H0(y)|

})

can be verified along the lines of Murphy (1995, appendix).
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It remains to show that the linear map Ṡ(β0,Σ0, H0), denoted by Λ, is continuously invert-

ible on its range. Note that Λ maps (β − β0,Σ−Σ0, H −H0) to a bounded functional on H.

Algebraic manipulations yield

Λ(β − β0,Σ−Σ0, H −H0)[h1,h2, h3]

= (β − β0)
TQ1(h1,h2, h3) + (Σ−Σ0)

TQ2(h1,h2, h3) +
∫ τ

0
Q3(h1,h2, h3)d(H −H0),

where

Q1(h1,h2, h3) = B1

(
h1

h2

)
+

∫ τ

0
h3(y)D1(y)dy,

Q2(h1,h2, h3) = B2

(
h1

h2

)
+

∫ τ

0
h3(y)D2(y)dy,

Q3(h1,h2, h3) = B3

(
h1

h2

)
+ b4h3(y) +

∫ τ

0
h3(t)D3(t, y)dt,

B1,B2,B3 are constant matrices, D1(y), D2(y), D3(t, y) are continuously differentiable func-

tions depending on the true densities, and b4 > 0. Therefore, the operator Q(h1,h2, h3) ≡
(Q1(h1,h2, h3),Q2(h1,h2, h3),Q3(h1,h2, h3))

T can be considered as a sum of a continuously

invertible linear operator and a compact operator from the linear span of H to itself.

The invertibility of Λ ≡ Ṡ(β0,Σ0, H0) is equivalent to the invertibility of the linear operator

Q(h1,h2, h3). It suffices to prove that Q(h1,h2, h3) is a one-to-one map (Rudin 1973, pp. 99-

103). If Q(h1,h2, h3) = 0, then Λ(β−β0,Σ−Σ0, H −H0)[h1,h2, h3] = 0 for any (β,Σ, H) in

the neighborhood U . In particular, we choose

β = β0 + εh1,Σ = Σ0 + εh2, H(y) = H0(y) + ε
∫ y

0
h3(t)dH0(t)

for a small constant ε. By the definition of Λ,

0 = Λ(β − β0,Σ−Σ0, H −H0)[h1,h2, h3] = εE{(lβ[h1] + lΣ[h2] + lH [h3])
2}.

Thus, lβ[h1] + lΣ[h2] + lH [h3] = 0 almost surely. After writing out the expression of this

equation, we obtain

ni∑

j=1

∫

b
R4i(β0, H0,b)


XT

ijh1



−1 +

(1 + ∆ij)

(H0(Yij)e
(XT

ijβ0+ZT
ijb) + 1)






 dbN(0, Σ0)

+
∫

b

{
−1

2
Σ0

−1 · D(h2) +
1

2
bTΣ0

−1D(h2)Σ0
−1b

}
R4i(β0, H0,b)dbN(0, Σ0)

+
ni∑

j=1

∫

b
R4i(β0, H0,b)



∆ijh3(Yij)− (1 + ∆ij)

∫ Yij

0 h3(y)dH0(y)

(H0(Yij) + e−(XT
ijβ0+ZT

ijb))



 dbN(0, Σ0) = 0, (A.12)
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where R4i(β, H,b) = R1i(β, H,b)
∏ni

j=1 {H ′
0(Yij)}∆ij .

We will show that (A.12) entails h1 = 0,h2 = 0 and h3 = 0 by adopting the ideas used in

the proof of the identifiability for Theorem 1. First, we let Xij and Zij be fixed. Then for a

fixed k such that 1 ≤ k ≤ ni, we define measures µ1, . . . µni
on the set {0, 1} × [0, τ ] as follows:

for any Borel set A ⊂ [0, τ ],

µm({0} × A) = 0, µm({1} × A) = I(0 ∈ A), m ≤ k,

µm({0} × A) = I(τ ∈ A), µm({1} × A) =
∫

IAdx, m > k.

We integrate both sides of (A.12) over {(∆i,1, Y1), . . . , (∆i,ni
, Yi,ni

)} with respect to the product

measure dµ1 · · · dµni
. In other words, we let ∆im = 1 and Yim = 0 for m ≤ k; we sum all the

equalities of (A.12) for all possible combinations of {∆i,k+1, . . . , ∆i,ni
} ∈ {0, 1}ni−k, in which we

choose Yim = τ if ∆im = 0 and integrate Yim from 0 to τ if ∆im = 1. The resulting integration

is 0.

We study the integral of each term on the left-hand side of (A.12) with respect to the

measure
∏ni

m=1 µm. For the first term on the left-hand side of (A.12), from the expression of

R4i(β0, H0,b), we have that for any b, if j ≤ k,

∫ 
R4i(β0, H0,b)XT

ijh1



−1 +

(1 + ∆ij)

(H0(Yij)e
(XT

ijβ0+ZT
ijb) + 1)






 d(

ni∏

m=1

µm)

= XT
ijh1

∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

×



∑

δim∈{0,1},m>k

∏

m>k





1

(H0(τ)eXT
imβ0+ZT

imb + 1)1−δim


1− 1

H0(τ)eXT
imβ0+ZT

imb + 1




δim







= XT
ijh1

∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

;

if j > k, it holds that

∫ 
R4i(β0, H0,b)XT

ijh1



−1 +

(1 + ∆ij)

(H0(Yij)e
(XT

ijβ0+ZT
ijb) + 1)






 d(

ni∏

m=1

µm)

= XT
ijh1

∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

×



∑

δim∈{0,1},m>k,m6=j

∏

m>k,m6=j





1

(H0(τ)eXT
imβ0+ZT

imb + 1)1−δim


1− 1

H0(τ)eXT
imβ0+ZT

imb + 1




δim
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× ∑

δij∈{0,1}



(1− δij)

1

(H0(τ)eXT
ijβ0+ZT

ijb + 1)


−1 +

1

H0(τ)eXT
ijβ0+ZT

ijb + 1




+δij

∫ τ

0

H ′
0(t)e

−(XT
ijβ0+ZT

ijb)

(H0(t) + e−(XT
ijβ0+ZT

ijb))2


−1 +

2

H0(t)e
XT

ijβ0+ZT
ijb + 1


 dt





= XT
ijh1

∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

× ∑

δij∈{0,1}



(1− δij)

1

(H0(τ)eXT
ijβ0+ZT

ijb + 1)


−1 +

1

H0(τ)eXT
ijβ0+ZT

ijb + 1




+δij

∫ τ

0

H ′
0(t)e

−(XT
ijβ0+ZT

ijb)

(H0(t) + e−(XT
ijβ0+ZT

ijb))2


−1 +

2

H0(t)e
XT

ijβ0+ZT
ijb + 1


 dt





= 0.

Therefore,

∫ ni∑

j=1

∫

b
R4i(β0, H0,b)


XT

ijh1



−1 +

(1 + ∆ij)

(H0(Yij)e
(XT

ijβ0+ZT
ijb) + 1)






 dbN(0, Σ0)d(

ni∏

m=1

µm)

=
∑

j≤k

XT
ijh1

∫

b

∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

dbN(0, Σ0). (A.13)

Likewise,

∫ ∫

b

{
−1

2
Σ0

−1 · D(h2) +
1

2
bTΣ0

−1D(h2)Σ0
−1b

}
R4i(β0, H0,b)dbN(0, Σ0)d(

ni∏

m=1

µm)

=
∫

b

{
−1

2
Σ0

−1 · D(h2) +
1

2
bTΣ0

−1D(h2)Σ0
−1b

} ∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

dbN(0, Σ0). (A.14)

Furthermore, if j ≤ k,

∫
R4i(β0, H0,b)



∆ijh3(Yij)− (1 + ∆ij)

∫ Yij

0 h3(y)dH0(y)

H0(Yij) + e−(XT
ijβ0+ZT

ijb)



 d(

ni∏

m=1

µm)

= h3(0)
∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

;

if j > k,

∫
R4i(β0, H0,b)



∆ijh3(Yij)− (1 + ∆ij)

∫ Yij

0 h3(y)dH0(y)

H0(Yij) + e−(XT
ijβ0+ZT

ijb)



 d(

ni∏

m=1

µm)

=
∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
} 

 ∑

δij∈{0,1}



−(1− δij)

1

H0(τ)eXT
ijβ0+ZT

ijb + 1

∫ τ
0 h3(y)dH0(y)

H0(τ) + e−(XT
ijβ0+ZT

ijb)

26



+δij

∫ τ

0

H ′
0(t)e

−(XT
ijβ0+ZT

ijb)

(H0(t) + e−(XT
ijβ0+ZT

ijb))2


h3(t)− 2

∫ t
0 h3(y)dH0(y)

H0(t) + e−(XT
ijβ0+ZT

ijb)


 dt






 = 0.

Thus,

∫ ni∑

j=1

∫

b
R4i(β0, H0,b)



∆ijh3(Yij)− (1 + ∆ij)

∫ Yij

0 h3(y)dH0(y)

(H0(Yij) + e−(XT
ijβ0+ZT

ijb))



 dbN(0, Σ0)d(

ni∏

m=1

µm)

=
∑

j≤k

h3(0)
∫

b

∏

m≤k

{
H ′

0(0)eXT
imβ0+ZT

imb
}

dbN(0, Σ0). (A.15)

Combining (A.13), (A.14) and (A.15) and integrating over b, we obtain

k∑

j=1

XT
ijh1 +

1

2

( k∑

j=1

Zij

)TD(h2)
( k∑

j=1

Zij

)
+ kh3(0) = 0.

Since the order for the subscripts j = 1, . . . , k is arbitrary, it holds that

k2∑

j=k1+1

XT
ijh1 +

1

2

( k2∑

j=k1+1

Zij

)TD(h2)
( k2∑

j=k1+1

Zij

)
+ (k2 − k1)h3(0) = 0

for any 1 ≤ k1 < k2 ≤ ni. Thus, ZT
ijD(h2)Zij′ = 0 for j 6= j′ and XT

ijh1+ZT
ijD(h2)Zij/2+h3(0) =

0. By condition C.3, D(h2) = 0. As a result, h2 = 0 and h1 = 0. In (A.13), we set Yij = 0,

j = 2, . . . , ni, and ∆ij = 1, j = 1, . . . , ni, so as to obtain

h3(Yi1) =

2
∫ Yi1

0
h3(y)dH0(y)

∫
b e−(XT

i1β0+ZT
i1b)+

∑ni
j=2

(XT
ijβ0+ZT

ijb)e−bTΣ−1

0 b/2/(H0(Yi1) + e−(XT
i1β0+ZT

i1b))3db
∫
b e−(XT

i1β0+ZT
i1b)+

∑ni
j=2

(XT
ijβ0+ZT

ijb)e−bTΣ−1

0 b/2/(H0(Yi1) + e−(XT
i1β0+ZT

i1b))2db
.

That is, g(y) ≡ ∫ y
0 h3(t)dH0(t) satisfies the homogeneous equation

g′(y)

H ′
0(y)

− g(y)

∫
b e−(XT

i1β0+ZT
i1b)+

∑ni
j=2

(XT
ijβ0+ZT

ijb)e−bTΣ−1

0 b/2/(H0(Yi1) + e−(XT
i1β0+ZT

i1b))3db
∫
b e−(XT

i1β0+ZT
i1b)+

∑ni
j=2

(XT
ijβ0+ZT

ijb)e−bTΣ−1

0 b/2/(H0(Yi1) + e−(XT
i1β0+ZT

i1b))2db
= 0

with boundary condition g(0) = 0. Thus, it is clear that g(y) = 0, i.e., h3(y) = 0. Hence, we

have verified that Q is one-to-one map and have thus shown the invertibility of Ṡ(β0,Σ0, H0).

The asymptotic distribution stated in Theorem 2 now follows from Theorem 2 of Murphy

(1995). Furthermore,

√
nṠ(β0,Σ0, H0)(β̂n − β0, Σ̂n −Σ0, Ĥn −H0)[h1,h2, h3]

=
√

n(β̂n − β0)
TQ1(h) +

√
n(Σ̂n −Σ0)

TQ2(h) +
√

n
∫ τ

0
Q3(h)d(Ĥn −H0)

=
√

n(Pn − P)[hT
1 lβ + hT

2 lΣ + lH [h3]] + op(1) (A.16)
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uniformly in h1, h2 and h3, where h = (h1,h2, h3). Since it has already been shown that

Q ≡ (Q1,Q2,Q3)
T is invertible, we can find N ≡ d1 + d2(d2 + 1)/2 unique directions ω1 ≡

(ω11, ω12, ω13), . . . , ωN ≡ (ωN1, ωN2, ωN3) ∈ H such that

(β̂n − β0)
T (Q1(ω1), . . . ,Q1(ωN)) + (Σ̂n −Σ0)

T (Q2(ω1), . . . ,Q2(ωN))

+
∫ τ

0
(Q3(ω1), . . . ,Q3(ωN))d(Ĥn −H0)

= ((β̂n − β0)
T , (Σ̂n −Σ0)

T ).

For such ω’s,

√
n((β̂n − β0)

T , (Σ̂n −Σ0)
T )

=
√

n(Pn −P)(ωT
11lβ + ωT

12lΣ + lH [ω13], . . . , ω
T
N1lβ + ωT

N2lΣ + lH [ωN3]) + op(1).

Thus, β̂n and Σ̂n are asymptotically linear estimators for β0 and Σ0, respectively, and their

influence functions belong to the space spanned by the score functions. It follows that (β̂n, Σ̂n)

are semiparametrically efficient (Bickel et al. 1993, Ch. 3).

A.3. Proof of Theorem 3

The proof of Theorem 3 parallels the proof of Theorem 3 in Parner (1998) and will be kept

brief. The left-hand side of equation (A.16) is equal to
√

n times the expectation of the second

derivative of the log-likelihood function along the directions of (β̂n − β0, Σ̂n − Σ0, Ĥn − H0)

and the direction (h1,h2,
∫

h3dH0). This second derivative can be approximated uniformly in

(h1,h2, h3) ∈ H by

(hT
1 ,hT

2 ,~hT
3 ) (Jn/n)




β̂n − β0

Σ̂n −Σ0{
Ĥn{Yij} − δH0(Yij) : ∆ij = 1

}


 ,

where ~h3 denotes the vector of {h(Yij) : ∆ij = 1}, and δH0(Yij) = H0(Yij)−maxYkl<Yij ,∆kl=1 H0(Ykl).

On the other hand, for large n, the distribution of the right-hand side of (A.14) approximates

(hT
1 ,hT

2 ,~hT
3 ) (Jn/n)1/2G, where G is standard multivariate normal. It follows that

√
n (hT

1 ,hT
2 ,~hT

3 ) (Jn/n)




β̂n − β0

Σ̂n −Σ0{
Ĥn{Yij} − δH0(Yij) : ∆ij = 1

}


 d≈ (hT

1 ,hT
2 ,~hT

3 ) (Jn/n)1/2G,

where “X
d≈ Y ” means that X and Y have the same asymptotic distribution. The replacement

of (hT
1 ,hT

2 ,~hT
3 ) by (hT

1 ,hT
2 ,~hT

3 ) (Jn/n)−1 yields

√
n (hT

1 ,hT
2 ,~hT

3 )




β̂n − β0

Σ̂n −Σ0{
Ĥn{Yij} − δH0(Yij) : ∆ij = 1

}


 d≈ (hT

1 ,hT
2 ,~hT

3 ) (Jn/n)−1/2G.
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Thus,
√

n(β̂n−β0)
Th1 +

√
n(Σ̂n−Σ0)

Th2 +
∫ τ
0 h3(t)d(Ĥn(t)−H0(t)) converges to a zero-mean

normal distribution whose variance is the limit of n (hT
1 ,hT

2 ,~hT
3 )J−1

n (hT
1 ,hT

2 ,~hT
3 ). Hence, the

conclusion of Theorem 3 holds.
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